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Abstract

Given a transition system M and a specification formula ¢, the problem of
model checking is to determine if M satisfies . An extended problem of
model checking is that of model repair. In the case that M violates ¢, the
problem of model repair is to obtain a new model M’, such that M’ satisfies
©. Moreover, the changes made to M to derive M’ should be minimum with
respect to all such M’. As in model checking, state explosion can make it
virtually impossible to carry out model repair on models with infinite or even
large state spaces.

This thesis examines the problem of model repair for (i) Kripke structures
and Computation Tree Logic and, (i) probabilistic systems and reachabil-
ity temporal logic properties. For Kripke structures, this thesis presents a
framework for model repair that uses abstraction refinement to tackle state
space explosion. The proposed framework aims to repair Kripke Structure
models based on a Kripke Modal Transition System abstraction and a 3-
valued semantics for CTL. An abstract-model-repair algorithm is introduced

for which soundness and semi-completeness are proven, and its complexity



class is studied. Moreover, a prototype implementation is presented to il-
lustrate the practical utility of abstract model repair on an Automatic Door
Opener system model and a model of the Andrew File System 1 protocol.
For probabilistic systems, this thesis presents a framework based on ab-
straction and refinement, which reduces the state space of the probabilistic
system to repair at the price of obtaining an approximate solution. A metric
space is defined over the set of DTMCs, in order to measure the differences
between the initial and the repaired models. For the repair, this thesis intro-
duces an algorithm and discusses its important properties, such as soundness
and complexity. As a proof of concept, experimental results are provided for
probabilistic systems with diverse structures of state spaces, including the
well-known Craps game, the IPv4 Zeroconf protocol, a message authentica-

tion protocol and the gambler’s ruin model.
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211 oUYEOV ETOYT|, T CUC THUNTA UTOAOYIGTOV EVOL EVOWOUUTOUEVN CYE-
00V 0E OAEC TIG UMY AVIXES XUTAOEVES Xou eovi{OVToL OF XITOLES amd TIC TO
ONUOPUAELS Blopnyavieg TNg EToyNS Hog, OTKS oTNV auTtoxivntoflounyavio, otny
aepomopxt| Blounyavio, oTNY LYElD, OTIC UETAPORES, OTNY EVEQYELX X.o.. AUTd
TOL CUC THUOTO TOAAES PORES YpeetdleTon Vol TeoGupUolovTol GE UETUBUANOUEVES
TPOBLUYQOPES XAl OF DLUPOPETIXES AELTOURYIXES UTOUTACELS.

To cUCTAUAUTE UTOAOYIOTGY 0xoUn oyedidlovTon xou VhoTolovvTal ue o
v avipenmivy dwdoinon ot autd To YEYOVOS Tal oo Td EUGAWTA G A&l
Auté pmopel var TEOXAAEGEL ONUAVTIXG TPOBAAUATA O UPXETES OLXOVOUIXES Xl
AOWOVIXEC DPUC TNRLOTNTES XL OXOUN OE XUTOLEG TEPLTTWOELC VO XOC TIOEL XAl
avipnmves Cwéc. To mopdderyua, pLor EAATTOUATIXT OYESlUOT) EVOS QUTOUATOU
CUCTHUUTOS OOAYNONG EVOS AUTOXVATOU UTOREL VoU TPOXUAETEL TNV G0YXEOL-
oY) TOU QUTOXWVATOU 1| axdun xaL TNy mopdcupon xdnowou neCol. Ilohhéc mpo-
ondieeg €youv yivel Tar teheutador 30 Ypovia TOGO amd TNV oXABNUOUXT) TAEUEY
660 xou amd TNV TAeupd NG Bloumnyaviag Yo TNV UoVETNON TEYVIXOY OL OTolEg
Yo emahniedoouy av o clo TNua xavoTolel OAeg Ti¢ Tpodtaypaugéc. H auviing
TEOXTIXT| EVOL 1) BOXUT| TV CUCTNUATWY UECK) CUYXEXQHIEVWY TGOV ELGOB0U
xat 0 €y yoc av Vo xotahfEouy o€ wa xatdo Taon anotuytac. Auth 1 uédodog
elvon ex Yeperlnv avemopxhc, utd TNV €vvola 6TL T0 GUVOAO TGV UOVOTUTIMY E-
xteheong ebvan dmetpo. To teheutala ypodvia, Evo UEYAAO TUAHA TG XOWVOTNTAS
NG EMOTAUNG TWV UTOAOYLO TGV avTIAAQUNXE OTL 0 6TOY0C TNG AmdAEUYNC TwV
OQAUNIGTLY TV LUTOAOYIC TIXWY CUCTNUATOY Untopel va emiteuy el e tn yeron

TEYVIXOY enaldeuone Yepehwpévey e yadnuatixés pedodoue. To clvolo
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TETOLWY TEYVIXWY EVOL YVWOTO O TUTIKES puédodor.

H mo vnooyduevn tumxt| uédodoc twv teeutaiwy 20 ypdvwy elivon o édey-
Xx0s pHovtélou [32]. Ltov éleyyo poviélou, €va UTOhOYLoTXG GUCTNUO TEQL-
YedpeTon amd Evo GUOTNUN UETUSEOEMY, XAl PLol LOLOTNTA DLUTUTIMVETOL (G Lo
popuovha yeovixic Aoyrc. Aovévtog evog cuoTidatog Yetadocwmy M xou
WG WLOTNTOS @, To TEORBANUN Tou eAéyyou Uoviéhou ebvon va Peedel av 1) -
OLOTNTO IXUVOTIOLELTOL Ao TO UOVTERO. XTIC MEPES HAG, EVag PEYEAOG apriuog
OOXUCUEVODY ahyoplduwy eAEYYoU HovTEAOU UTdEYEL, TG00 Yio THovoXEATL-
%8 660 xou yio pn mdovoxeaTxd ovtéra. Av o 1BI6TNTo OEV tavoToteitan,
xdmolot ahyOprioL EMGTEEPOUY Ui outiar Yior TNV Wi emaAAUeEUoY) TNE LOLOTNTOG
1 omola elvol YVWO TH W AVTLTORADELY L.

To npdfAnua tng emdidpPnong 1ovTéLou elvon Lo ETEXTACT] TOL TEOBARMO-
TOC TOU EAEYYOU HOVIEAOU YL TNV TEP(MTWON oTNY omola 1N WOLOTN T OEV ETA-
AnpedeTon. Iho cuyxexpyéva, o oxondg Tng emdidpiwong povtélou ebvar va
Beebolv oL eAdyloteg ahhayEC TOU AmUTOOVTAL OTO POVIEAO, OOTE 1) WOLOTNTA
¢ 1 onola TopafLdleTon 6TO KEY KO UOVTEAO VO IXUVOTIOLE(TOL.

H éxpnén tou ypov twy kataotdoewy eivon Evag ToA) YVWOTOC TEPLOPLOUOC
TWV QUTOUATOTONUEVWY TUTLXGY UEVOBMY, OTWC 0 EAEYYOC UOVIEAOU Xl 1|
emOLOpYwon Yovtéhou, 1 omolo eunodielL TV EQUPUOYT) TOUC OE CUCTAUNTA UE
HEYEAO YWpo xatacTdoewy. To npdAnua evuntdpyel 6TOV EAEY YO LOVTEAMY ol
eunodilel TNV EQopUoYn Tou ot peydha povtéra. To mpdBAnua elvon mapdy o
oxouo HeYahOTepo Bodud oTic UTdEYOoUoES TEYVIXES EBLOpYwong LovTElou,

ol omoleg otoyebouv oTny aneuieiog oAAoyY) TOU HOVTEAOU TOU TEOXEITOL VO
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emodlopUwdel. T'o mopddeltypo 0Tto TAXGIO TWV THUVOXEATIXWY CUCTAUATWY,
oto [13], o OLYYPUPELS UETATEETOUY TO TEOBATA TG emOLOpUwong e Evar un
Yoouuxd medPAnua Behtiotonolnong xdvovtog yenor TUQUUETEIXOU EAEYYOU
HOVTENOU, XU O YEOVOC TOL YEELALETOL Yiol Vo UTOAOYLOTEL €val emBlopYwuévo
uovTéLo auEdvel parydala oe oyéon Pe To UEYEVOS TOU YHPOU TWV XATACTICEWY.

‘Eva 60VOhO BLUQORETIXDY TEYVIXOY EYEL avamTuy el Yot TNV AVTIIETOTIL-
on TS ExENENg TOU YOPOU TWV XATACTACE®Y, AN 1 xUplo uédodog yio Tov
EheYyo povtélou elvon 1) yerion Texvixav agaipeons. Ilo cuyxexpyéva, otny
nepintwon tou ehéyyou povtéhou, n agaipeon [34] [73, b5l 40, B3] yenowwo-
moteltan yiar var dnptoupy Vel uio UixpoTeEn, To aPaLpETIXT €XBOCT) TOU aEY1X00
TEUYUOTIXOU UOVTEAOU, XU O EAEYYOC UOVTEAOU TEOYUATOTOLE(TOL OE qUTO TO
uxpo6tepo povtého. o va Boukéder auth 1 teyvt|, TEEeL Vo Loy el 6TL oy
7 LOLOTNTA LXAVOTIOLELTOL OTO AUPULPETIXO UOVTEAD, TOTE ETiOMG IxavoToleital xou
OTO TEOYUATIXO UOVTERO.

‘Eyovtag ¢ xivntpo Ty emituyior Tou aQoupeTinol EAEYYOU UOVTENOU, -
eouctdle o auTi TN dLaTeLBt| xouvolplo Thalola eTLOLOEYWONG CUC TNUATWY HE-
ToPBdcEWY, To 0Tolol XEVOLY YENOT APAUPECTC YIoL TNV AVTYETOTIOT TNS EXENENG
TOU Y(WPEOU TWV XATUCTUCEWY. XNTO TEWTO UELOS TNG OLUTEBNC, ETXEVTEMVOUAL
oTig dopég Kplmxe xou otny emdiopinot) Toug oe oyéor ue WLOTNTES oL oToleg
exppdlovton oty Aoy Troroyiotixod Aévtpou (ATA), evéow oto deltepo
UEPOC, ETMUXEVTPMOVOUOL OTal THIOVOXEATIXG UOVTEAN OTN) Lop@Y| TV ANUGIDBwWY
Mapxog Awoxprtod Xpdvou (AMAX) xou otny emdiopdwotr toug oe oyéon ue

WOLOTNTEG TEOGPuONG YEOVIXHS hOYIXNS.
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o avahutd, To Thalolo emdLOEVWONG LOVTENOU Yia un) TdovoxeaTixd Jo-
vTéha o omoio TopouctdlETol 0To TPWTO UEpog TN OLuTedrig, Paoileton oTig
oopéc Kpinxe, oe o onuactoroyio teidv tiwov yio ty ATA xo ota Tpomxd
Yvotipoato Metofdoewv Keuxe (TEMK) o onofor tailouv 1o pého tou apou-
eeTixoL povtéhou. To mhaiolo mepthouBdver Evary apoupeTind ahyderiuo emidtop-
Ywong o onolog egapuoletar tévwy ota TEMK. Anodeivin 6Tt o ahydprduog
elvon 0pldg, €yel TOAVWVUULXT] TOAUTAOXOTN T 6TO UEYEDOC TOU APOUEETIXOU
uovTélou xau elvor ThReng Yo éva ueydho utocUvoro tne ATA. T vor defle
TNV TEAUXTIXY €QapUOYT| Tou ahyopliuou, egpriouoca To Thaiclo o €va oUoTN-
MO TOPTAC AUTOUATOU AVOLYUATOC Xol OTO TEWTOXOANO GUC THUATOS ORYELWY
Andrew.

Yyetd ue o mdovoxpatind povtéha, Tapouotdlw éva mhaiolo Bactouévo
otV agaipeot Yo Ty emdLoptwon twv AMAX ce oyéon ue 1idtnteg npdcfa-
oMNg YEOVMAC hoyixiic. L1oy0g Tou TAaciou elvor Vo avTIIETOTIoOLY TNV Exenin
TOU YWPEOU TMV XUTAC TUCEWY XAl VoL TEOCPEPOUV Uid AboT 1 omtolo Yo elvan €-
popuooUn ot TEOBAY T ETOLOEIWONE HE TOAD UEYHAD YMEO XATAC TUCEWY.
Metd v avoluter teprypopy| Tou TAaciou, 1 Slate3r Tapouctdlel Ta 0GERT
AmOB0OOTNE OV TEOXVTTOLY UG TNV CUYXEXQUIEVT) TEOCEYYIOT| OE OYECT| UE TNV
amevieiog emOLOEUMOT TOU TEAYHATIXOU UOVTENOU, CUUTEQLAUUSBUVOUEVNS Xou
g oLlATNoNG Yo EWKES GTEATNYIXES ETOLOPVWONG BACEL GUYXEXQIUEVWY TiE-
olwv eqapuoyric. H mpaxtind yenowdtnta Tou mhaiciou emdeixvieTon Ue THY
eMOLOPUOT TECCEWY BLAPORETIXMY TIAVOXPUTIXDY LOVTEAWY UE TOLXLAOUOE-

¢la 0T BOUY| TOU YWEOU TWV XATAC TUCEMV.
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1.1. Model Repair 17
1.1 Model Repair

Nowadays, computer systems are incorporated in almost all engineering de-
signs and appear in some of the most mainstream industries of our era, such
as automotive, aerospace, healthcare, transportation, energy, etc.. These
systems may also need to adjust to modifying specifications and different
functional requirements.

Computer systems are still designed and implemented based on human
intuition and this makes them vulnerable to errors. This could cause serious
problems in several economic and social activities and even cost human lives.
For example, a faulty design of a system controlling a drive-by-wire car may
lead the car to crash or even kill a pedestrian. Many efforts have been done in
the last 30 years from both academia and industry to adopt techniques which
will verify if the system fulfill all its specifications. The current practice is
to test the systems for specific inputs to check if it will end up with a failure
state. This method is fundamentally unsatisfactory, in the sense that all
the execution paths of a system are infinite. In recent years, a large part of
the computer science community understood that the target for eliminating
faults in computer systems can be accomplished by the use of verification
techniques formally grounded in mathematical methods. The set of such
techniques is known as formal methods.

The most promising formal method of the last 20 years is that of model

checking [32]. In model checking, the system is described by a transition
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system, and the property is formulated as a temporal logic formula. Given
a transition system M and a property ¢, the problem of model checking is
to find if the property is satisfied by the model. Today, a number of ma-
ture model checking algorithms exist, for probabilistic and non probabilistic
models. If the property is not satisfied, some algorithms return a cause for
the refutation of the property known as counterexample.

The problem of model repair is an extension of the model checking prob-
lem for the case where the property is refuted. More specifically, the aim of
model repair is to find the minimal changes to the model, such that the prop-
erty ¢ that is violated in the original model will be satisfied. The problem of
model repair for Kripke structures and Computation Tree Logic (CTL) [49]
properties was first introduced in [23]|, while it has been examined in the
probabilistic setting for the first time in [13].

In recent years, a number of interesting applications of the model repair
problem came in the limelight. Repair of concurrent programs is examined
in [8], while the addition of fault tolerance to distributed systems is studied
in [76]. Authors in [I7] propose a framework for a knowledge-based auto-
mated repair of authentication protocols. Another interesting application
of the model repair problem is presented in [3], where the objective is the
automated fine tuning of probabilistic self-stabilizing algorithms. Finally, a
repair application is discussed in [81] and refers to a least-violating control

synthesis for autonomous systems.
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1.2 Motivation and Contributions

The state space explosion is a well known limitation of automated formal
methods, such as model checking and model repair, which impedes their
application to systems having large or even infinite state spaces. The problem
is inherent in model checking and makes its application infeasible to large
models. The problem is actually present to a greatest extent than model
checking in existing model repair techniques, which aim to directly change
the model under repair. For example, in the context of probabilistic systems,
in [I3], the authors transform the repair problem to a non-linear optimization
problem using parametric model checking, and the time needed for computing
a repaired model increases rapidly with respect to the size of the state space.

Different techniques have been developed to cope with the state space
explosion problem, but the main method for fighting this problem in model
checking is the use of abstraction techniques. More specifically, in the case
of model checking abstraction |34, [73, 55, 40, 53] is used to create a smaller,
more abstract version of the initial concrete model, and model checking is
performed on this smaller model. For this technique to work as advertised, it
should be the case that if a property is satisfied in the abstract model, then
it is also satisfied in the concrete model too.

Motivated by the success of abstraction-based model checking, we present
in this thesis new frameworks for model repair of transition systems, which

use abstraction and refinement to tackle the state space explosion problem.
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At the first part of the thesis, we focus on Kripke Structures and their repair
with respect to properties expressed in the Computational Tree Logic (CTL),
while on the second part, we focus on probabilistic models of Discrete Time
Markov Chains (DTMCs) and their repair regarding reachability temporal
logic properties.

The major contributions of this thesis related to the non-probabilistic

models are:

e The thesis provides an AMR framework that uses Kripke structures
(KSs) for the concrete model M, Kripke Modal Transition Systems
(KMTSs) for the abstract model M, and a 3-valued semantics for in-
terpreting CTL over KMTSs [61]. An iterative refinement of the ab-
stract KMTS model takes place whenever the result of the 3-valued
CTL model-checking problem is undefined. If the refinement process
terminates with a KM'TS that violates the CTL property, this property
is also falsified by the concrete KS M. Then, the repair process for the
refined KMTS is initiated.

e The model repair problem is strengthened by additionally taking into
account the following minimality criterion (refer to the definition of
model repair above): the changes made to M to derive M’ should be
minimum with respect to all M’ satisfying ¢. To handle the minimal-
ity constraint, a metric space is defined over KSs that quantifies the

structural differences between them.
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e The thesis introduces an Abstract Model Repair algorithm for KMTSs,

which takes into account the aforementioned minimality criterion.

e The soundness of the Abstract Model Repair algorithm for the full CTL
and the completeness for a major fragment of it are proved. Moreover,
the algorithm’s complexity is analyzed with respect to the model size
of the abstract KMTS, which can be much smaller than the concrete

KS.

e The utility of our approach is illustrated through a prototype imple-
mentation used to repair a flawed Automatic Door Opener system [11]]
and the Andrew File System 1 protocol. The experimental results show
significant improvement in efficiency compared to a concrete model re-

pair solution.

The main contributions of this thesis regarding the repair of probabilistic

models are as follows:

e The thesis introduces a framework for the repair of a DTMC with
respect to a (not-nested) Probabilistic Computation Tree Logic (PCTL)
reachability formula, using an Abstract Discrete Time Markov Chain
(ADTMC) for the given DTMC and the 3-valued semantics of PCTL
over ADTMC
s. Based on a strong preservation theorem, if a PCTL property is
refuted or satisfied in the ADTMC (abstract model), t hen the same

also holds for the concrete DTMC [64].
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e A metric space is defined over the DTMCs with the same state labeling,
in order to measure the distance of repaired DTMCs from the original

DTMC.

e A Probabilistic Abstract Model Repair (PAMR) algorithm is intro-
duced that transforms the DTMC repair problem to a non-linear min-
imization problem for the state space of the abstract model, instead of
the concrete one. If a solution is found, the repaired DTMC is returned,
which corresponds to an approximate (not the optimal) solution; oth-
erwise, the algorithm is iteratively applied to refined ADTMCs until a
solution is found. The refinement can be potentially adapted by the

analyst, for implementing alternative repair strategies.

e The thesis analyzes the PAMR computational gains and more specif-
ically the achieved reduction in the expensive non-linear optimization
and linear equation solving problems, which are involved respectively

in the concrete model repair and model checking techniques.

e Asa proof of concept, experimental results are provided for the DTMCs
of extended versions of the Craps game, the IPv4 Zeroconf protocol, a

message authentication protocol and the gambler’s ruin model.
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1.3 Thesis structure

The thesis is organized as follows. Chapter [2| introduces all the prelimi-
nary definitions and background information on which the thesis is grounded.
More specifically, Sections and introduce KSs, KMTSs, as well
as abstraction and refinement based on a 3-valued semantics for CTL. In
Section [2.4] the notion of DTMC is introduced which is the formalism for
the concrete model in our probabilistic framework. Section discusses
how an ADTMC can serve as an abstraction of a DTMC and how a PCTL
reachability formula can be verified in an ADTMC for CTL.

In Chapter 3| the abstract model repair framework for Kripke structures
is presented. In particular, Section defines a metric space for KSs and
formally defines the problem of model repair. Section presents our frame-
work for Abstract Model Repair, while Section introduces the abstract-
model-repair algorithm for KMTSs and discusses its soundness, completeness
and complexity properties. Section presents the experimental evaluation
of our method through its application to the Andrew File System 1 protocol
(AFS1). Section compares our approach with the related work.

The abstract model repair framework for probabilistic systems is pre-
sented in Chapter[d] In Section[4.T] the model repair problem for probabilistic
systems is formulated together with a metric space for DTMCs. We present
the abstract model repair process for probabilistic systems in Section

together with the basic model repair operations. The PAMR algorithm is
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described in Section [£.3] The algorithm’s steps are illustrated using an ap-
plication in Section [4.4] where we also elaborate on the method’s efficiency
gains, its cost in terms of the solution’s optimality and its flexibility per-
spectives. In Section [4.5] we present the experimental results for extended
models with progressively larger state spaces of the Craps game, the TPv4
Zeroconf protocol, a message authentication protocol and the gambler’s ruin
model. The related work is reviewed in Section [4.6l

The conclusions and the future prospects of the thesis are presented in
Chapter 5] Namely, Section concludes with a review of the overall ap-
proach and a summary of contributions, while Section 5.2 pinpoints directions

for future work.
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2.1 Kripke structures

Let AP be a set of atomic propositions. Also, let Lit be the set of literals:
Lit=AP U {-p|pe€ AP}

Definition 1. A Kripke Structure (KS) is a quadruple M = (S, So, R, L),
where:
1. S s a finite set of states.

2. Sy C S 1s the set of initial states.

3. R C S x S is a transition relation that must be total, i.e.,

Vse S:3s' € S: R(s,¢).

4. L:S — 2 45 g state labeling function, such that

VseS:Vpe AP :pe L(s) < —p ¢ L(s).

The fourth condition in Def. [I] ensures that any atomic proposition p € AP
has one and only one truth value at any state.

Example. We use the Automatic Door Opener system (ADO) of [I1] as a
running example throughout the thesis for Kripke structures. The system,

given as a KS in Fig , requires a three-digit code (po,p1,p2) to open a
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door, allowing for one and only one wrong digit to be entered at most twice.
Variable err counts the number of errors, and an alarm is rung if its value
exceeds two. For the purposes of the thesis, we use a simpler version of

the ADO system, given as the KS M in Fig. where the set of atomic

propositions is AP = {q} and ¢ = (open = true).

Figure 2.1: The Automatic Door Opener (ADO) System.

2.2 Kripke Modal Transition Systems

Definition 2. A Kripke Modal Transition System (KMTS) is a 5-tuple M =
(Sa SO: Rmust, Rmay, f/), where:
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1. Sisa finite set of states.
2. Sy C S is the set of initial states.

8. Ryust C S xS and Ry C S x S are transition relations such that

Rmust g Rmay'

4. L:S — 2kt s q state-labeling such that Vs € S, Vp € AP, § is labeled

by at most one of p and —p. [

A KMTS has two types of transitions: must-transitions, which exhibit
necessary behavior, and may-transitions, which exhibit possible behavior.
Must-transitions are also may-transitions. The “at most one” condition in
the fourth part of Def. [2] makes it possible for the truth value of an atomic
proposition at a given state to be unknown. This relaxation of truth values
in conjunction with the existence of may-transitions in a KMTS constitutes
a partial modeling formalism.

Verifying a CTL formula ¢ over a KMTS may result in an undefined
outcome (L). We use the 3-valued semantics [61] of a CTL formula ¢ at a

state 8 of KMTS M.

Definition 3. [61] Let M = (S, S0, Riust> Rmay, L) be a KMTS. The 3-
valued semantics of a CTL formula ¢ at a state § of M, denoted as (M, 5) =3

o, is defined inductively as follows:

o If ¢ = false
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— (M, 8) ° ¢] = false

o If ¢ = true
- [(M,3) E* ¢] = true
o If o =p wherep € AP

- [(M,§) =3 @] = true, iff p € f)(§)
— (M1, 8) |23 ¢] = false, iff =p € L(3).

- [(M>§) =3 ¢] = L, otherwise.

o If ¢ =9
B [(M7§> ):3 ¢] = true, Z.[f [(M7 §) ):3 ¢1] - false.
— [(M,3) E® ¢] = false, iff [(M,3) =° ¢1] = true.
— [(M,3) |2 ¢] = L, otherwise.

o Ifp=01V ¢

— [(M,3) E® ¢] = true, iff [(M,3) E® ¢1] = true or [(M,3) =2
¢o] = true.

— (M, 3) E® ¢] = false, iff [(M,5) =2 ¢1] = false and [(M,3) |=°
¢o] = false.

— [(M,3) 3 ¢] = L, otherwise.

o Ifo=0¢1 A @2
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— (M, 38) E3 ¢] = true, iff [(M,3) E* ¢1] = true and [(M,3) =°
¢o] = true.

= [(M,3) E* ¢] = false, iff [(M,5) E° ¢1] = false or [(M,5) E*
¢o] = false.
— [(M,3) 3 ¢] = L, otherwise.
o Ifp=AX¢
— [(M,8) =3 ¢] = true, iff for all 3; such that (3,5;) € Ruay,
(M, 3;) =3 ¢1] = true.

— (M, 8) E® ¢] = false, iff there exists some §; such that (§,5;) €

Ronust and [(M, 8;) =3 ¢1] = false.

— [(M,3) 3 ¢] = L, otherwise.
o Ifp=FEX¢

— [(M,3) =3 @] = true, iff there exists §; such that (3,3;) € Rust
and [(M, §;) =2 ¢1] = true.

— [(M,8) =3 ¢| = false, iff for all 3; such that (3,3;) € Ruay,
(M, ) 2 ¢1] = false.

— (M, 8) E3 ¢] = L, otherwise.

o If o= AG¢

— [(M,8) =% ¢] = true, iff for all may-paths Tma, = [3,31, 82, ...]

and for all §; € Tpmay it holds that (M, 3,) E® ¢1] = true.
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— [(M,5) =3 @] = false, iff there exists some must-path Ty =
3, 81, 82, ...], such that for some $§; € Tpust, [(M,éz) =3 9] =

false.
— (M, 8) E3 ¢] = L, otherwise.
o If¢p=EGh
— [(M,é) =3 @] = true, iff there exists some must-path T, =
(3,81, 82, ...], such that for all ; € Tust, [(M,3;) E® ¢1] = true.

— [(M,8) E® ¢] = false, iff for all may-paths Tmey = [3, 51, 82, ...],

there is some §; € Tmay such that (M, 3;) =% ¢1] = false.
— [(M,3) 3 ¢] = L, otherwise.
o If¢p=AF¢
— [(M,8) 3 @] = true, iff for all may-paths Ty, = [3, 51, 82, ...],
there is a 8; € Tmay such that [(M, 5;) E* ¢1] = true.

— [(M,3) E® ¢] = false, iff there exists some must-path Tpmus =

(3,81, 82, ...], such that for all 3; € Tpust, [(M,3;) E® ¢1] = false.
— (M, 8) 3 ¢] = L, otherwise.
o Ifp=EF¢

— (M, 8) E3 ¢ = true, iff there exists some must-path Tpus =

3, 81, 82, ...], such that there is some §; € Tpus for which [(M, 5)

=3 1] = true.
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— [(M,8) =% ¢| = false, iff for all may-paths Tpmey = [3,31, 52, ...]
and for all §; € Tmay, (M, 3;) =* ¢1] = false.

— (M, 8) 3 ¢] = L, otherwise.

o Ifp=A(p1U 2)

— [(M,8) =* @] = true, iff for all may-paths Tmaey = [3, 51, 32, ...],
there is §; € Tomay such that [(M,5;) = ¢9] = true and ¥j < i :
(1, 8;) = 4] = true.

— (M, 38) E® ¢] = false, iff there exists some must-path Tpmus =
3, 81, S2, ...], such that

i. for all 0 < k < |Tpust] :
(Vj <k + [(M,8) > én] # false) = ((M,5) F* o] =
false)

ii. (for all 0 < k < |Tpust] = [(M,5) E® ¢o] # false) = |Tomust|
= 00

- [(M7§> =3 ¢] = L, otherwise.

o If o= E(¢:1Uds)

— [(M,3) |3 ¢| = true, iff there exists some must-path Tpus =
(3,81, 82, ...] such that there is a §; € Tpue with [(M,3;) E® ¢5] =

true and for all j < i,[(M,3;) E® ¢1] = true.

— [(M, 8) = ¢] = false, iff for all may-paths Tmay = (3,51, 52, ...]
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i. for all 0 < k < |Tpmayl :
(V) <k [(M,3) E° ¢1] # false) = ((M.5) F* é] =
false)

ii. (for all 0 < k < |Tomay| = [(M, 3) =2 ¢o] # false) = |may| =

o0

- [(M>§) =3 ¢] = L, otherwise. ]

From the 3-valued CTL semantics, it follows that must-transitions are
used to check the truth of existential CTL properties, while may-transitions
are used to check the truth of universal CTL properties. This works inversely
for checking the refutation of CTL properties. In what follows, we use =

instead of =2 in order to refer to the 3-valued satisfaction relation.

2.3 Abstraction and Refinement for 3-Valued

CTL

2.3.1 Abstraction

Abstraction is a state-space reduction technique that produces a smaller ab-
stract model from an initial concrete model, so that the result of model
checking a property ¢ in the abstract model is preserved in the concrete
model. This can be achieved if the abstract model is built with certain re-

quirements [34], 53].
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Definition 4. Given a KS M = (S,Sy, R, L) and a pair of total functions

(a:S—S8,v:5— 2% such that
VseS:VseS:(als)=35eseq(3)

the KMTS (M) = (S, So, Rinust Roay, [:) is defined as follows:
1. €Sy iff Is € v(8) such that s € Sy
2. lit € L(8) only if Vs € v(3) : lit € L(s)
3. Rpust = {(S1,82) | Vs1 € y($1) : Tso € y($2) : (s1,92) € R}

4. Riay = {(51,82) | 3s1 € y(s1) : Isa € y($2) : (s1,82) € R} O

For a given KS M and a pair of abstraction and concretization functions
a and v, Def. introduces the KMTS «(M) defined over the set S of abstract
states. In our AMR framework, we view M as the concrete model and the
KMTS a(M) as the abstract model. Any two concrete states s; and sy of M
are abstracted by « to a state s of a(M) if and only if s1, sy are elements of
the set (3) (see Fig[2.2). A state of (M) is initial if and only if at least one
of its concrete states is initial as well. An atomic proposition in an abstract
state is true (respectively, false), only if it is also true (respectively, false) in
all of its concrete states. This means that the value of an atomic proposition
may be unknown at a state of «(M). A must-transition from s; to sy of
a(M) exists, if and only if there are transitions from all states of (s7) to

at least one state of y(sy) (V3 — condition). Respectively, a may-transition
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Figure 2.2: Abstraction and Concretization.

from s to Sy of a(M) exists, if and only if there is at least one transition

from some state of y(s;) to some state of v(sy) (I3 — condition).

Definition 5. Given a pair of total functions (o : S — Sv:S = 2%) such
that

VseS:VieS: (afs) =38 sey(d)

and a KMTS M = (S, So, Rimust, Rmay, L), the set of KSs (M) = {M | M =

~

(S, S0, R, L)} is defined such that for all M € ~(M) the following conditions
hold:

1. s €Sy iff afs) € S,
2. lit € L(s) if lit € L(a(s))
3. (81,82) €ER Zﬂ

o ds) € v(a(sy)) : 3sh € y(a(s2)) : (as1),(s2)) € Rimay and,

o Vs) € y(a(sy)): 3sh € y(a(s2)) : (as1),a(s2)) € Rimust O
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For a given KMTS M and a pair of abstraction and concretization func-
tions o and «y, Def. 5 introduces a set V(M) of concrete KSs. A state s of a
KS M e (M) is initial if its abstract state a(s) is also initial. An atomic
proposition in a concrete state s is true (respectively, false) if it is also true

(respectively, false) in its abstract state «(s). A transition from a concrete

state s; to another concrete state s, exists, if and only if

e there are concrete states s| € y(a(s1)) and s5 € v(a(sz)), where

(a(s1),a(s2)) € Rpay, and

e there is at least one concrete state s, € 7v(a(sz)) such that for all

sy € v(a(s1)) it holds that (a(s1),a(s2)) € Rpust-

Abstract Interpretation. A pair of abstraction and concretization func-
tions can be defined within an Abstract Interpretation |36, 37| framework.
Abstract interpretation is a theory for a set of abstraction techniques, for

which important properties for the model checking problem have been proved

40, A1),

Definition 6. [40, 54] Let M = (S, Sy, R, L) be a concrete KS and M =
(S, S’o,Rmust, Rmay,[:) be an abstract KMTS. A relation H C S x S for M

and M is called a mixed simulation, when H(s, s) implies:
o L(3) C L(s)

o ifr = (s,8) € R, then there is exists 8 € S such that Tpe, = (5,8') €

Rypay and (s',8") € H.
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o if ryust = (8,8) € Ryust, then there exists s' € S such that r = (s,5') €

R and (s',§8") € H. O

The abstraction function a of Def. dlis a mixed simulation for the KS M and

its abstract KMTS a(M).

Theorem 1. [54] Let H C S x S be a mized simulation from a KS M =
(S, S0, R, L) to a KMTS M = (S7 SAO,Rmust,Rmay?[:). Then, for every CTL

formula ¢ and every (s,8) € H it holds that

[(M,3) 9] # L= [(M,s) E ¢] =[(M,3) = 9]

Theorem [I| ensures that if a CTL formula ¢ has a definite truth value
(i.e., true or false) in the abstract KMTS, then it has the same truth value in
the concrete KS. When we get L from the 3-valued model checking of a CTL
formula ¢, the result of model checking property ¢ on the corresponding KS
can be either true or false.

Example. An abstract KMTS M is presented in Fig. , where all the

states labeled by ¢ are grouped together, as are all states labeled by —q.
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Figure 2.3: The KS and KMTSs for the ADO system.
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2.3.2 Refinement

When the outcome of verifying a CTL formula ¢ on an abstract model us-
ing the 3-valued semantics is L, then a refinement step is needed to acquire
a more precise abstract model. In the literature, there are refinement ap-
proaches for the 2-valued CTL semantics [33, B35, B8], as well as a number
of techniques for the 3-valued CTL model checking [53] [78, 79, 57]. The
refinement technique that we adopt is an automated two-step process based

on [33, [78]:

1. Identify a failure state in a(M) using the algorithms in [33] [78]; the
cause of failure for a state s stems from an atomic proposition having

an undefined value in §, or from an outgoing may-transition from s.

2. Produce the abstract KMTS apgefined(M ), where apefined is a new ab-
straction function as in Def. 4] such that the identified failure state is
refined into two states. If the cause of failure is an undefined value of
an atomic proposition in §, then § is split into states $; and §,, such
that the atomic proposition is true in $; and false in $5. Otherwise, if
the cause of failure is an outgoing may-transition from §, then § is split
into states 5; and S, such that there is an outgoing must-transition

from §; and no outgoing may- or must-transition from 3s.

The described refinement technique does not necessarily converge to an ab-
stract KMTS with a definite model checking result. A promising approach

in order to overcome this restriction is by using a different type of abstract
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model, as in [78|, where the authors propose the use of Generalized KMTSs,
which ensure monotonicity of the refinement process. GKMTSs introduce
a new type of must-transitions which are called hyper-must transitions and
their refinement process ensures that if a property is satisfied from a GKMTS
produced at a refinement step it will also be satisfied in any GKMTS pro-
duced at any succeeding refinement step.

Example. Consider the case where the ADO system requires a mecha-
nism for opening the door from any state with a direct action. This could
be an action done by an expert if an immediate opening of the door is re-
quired. This property can be expressed in CTL as ¢ = AGEXq. Observe
that in (M) of Fig. the absence of a must-transition from §y to $y,
where [(a(M), §1) | q] = true, in conjunction with the existence of a may-
transition from Sy to §1, i.e. to a state where [(a(M),31) E ¢ = true,
results in an undefined model-checking outcome for [(a(M), 30) E ¢|. No-
tice that state Sy is the failure state, and the may-transition from 354 to $;
is the cause of the failure. Consequently, 3y is refined into two states, Sg1
and Sgp, such that the former has no transition to $; and the latter has an
outgoing must-transition to §;. Thus, the may-transition which caused the
undefined outcome is eliminated and for the refined KMTS agefined(M) it

holds that [agefinea(M),51) = ¢] = false. The initial KS and the refined

KMTS agefined(M) are shown in Fig.
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Figure 2.4: A Discrete Time Markov Chain.

2.4 Probabilistic systems

Definition 7. A (labeled) Discrete Time Markov Chain (DTMC) is a 4-tuple
M = (S, Sinit, P, L), where:

1. S 1s a finite set of states;

2. Sinit € S 1s the initial state;

8. P:SxS —[0,1] is a transition probability function with Y .o P(s,s")
=1 forallsesS;

4. L:S — 2L 4s g state labeling function such that Vs € S, Vp € AP,
p € L(s) & —p ¢ L(s).

A DTMC is a transition system with labelled states and probabilities

assigned to its transitions.

Example. (ROBOT) We use a robot system as a running example for

probabilistic systems. The DTMC for the robot system is shown in Fig. [2.4
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The robot moves among states with different color and tries to reach a state,
where the color will be green. The robot is “fair”, in the sense that for each
state the transition probabilities to the directly accessible states are equal
(%) The set of atomic propositions for the robot DTMC is AP = {q} with

q = (color = green). O

Definition 8. A path 7 in a DTMC M = (S, Sini, P, L) is an (infinite)
sequence ™ = [sq, $1.S9, ...]; we denote by 7[i| the (i+1)-th state of m. A path

fragment p = [sg, $1.S2, ..., Sp| @S a finite prefiz of a path.

Definition 9. Let PathM be the set of all paths starting from state s. Let Q)
be the set Path™ = J, g Path} and Cyl(so, ..., si) be the (cylinder) set of
states sg, ..., S, i.e. the set of all paths in Path™ with prefix so, ..., s;. For

any such Cyl, a probability measure x is defined such that:

k—1

z(Cyl(sg, ..., k) = H P(s;,8i11)

=0

The cylinder sets include paths in DTMCs, and their probability measure
is used to evaluate the probability of reachability properties, which can be

expressed in Probabilistic Computation Tree Logic (PCTL).

Definition 10. The syntaz of the reachability fragment of PCTL over a set

of atomic propositions AP is given by the following grammar:

P = PNP[F¢] | PMP[FSIQM
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Y = truelg| =l VY At
where ¢ € AP, p € [0,1], k € N and, e {<,<, >, >}

Def. is focused on reachability properties of PCTL without nested
probabilistic quantifiers. The model checking problem for reachability prop-

erties is reduced to the solution of a system of equations, as it is shown in

Def. [11] for unbounded properties and in Def. [12| for bounded properties .
Definition 11. Let M = (S, Sinit, P, L) be a DTMC. The probability measure

xs of a state s € S to satisfy the property F is defined as:

1 if (M. s)

Ts =40 if there is no path from s to a state satisfying ¢

> P(s,t)-x;  otherwise

\tcS

Definition 12. Let M = (S, Sinit, P, L) be a DTMC. The probability measure

z% of a state s € S to satisfy the property F<* with k € N is defined as:

I if (M, 5) = v
0 if there is no path from s to a state satisfying 1
b = or there is a path from s to a state satisfying 1
and k=0
STP(s,t) - xK' otherwise

\teS
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2.5 Abstract Discrete Time Markov Chains

Definition 13. Given a transition probability function P : S x S — [0,1]
defined over a finite set of states S, the extended transition probability func-
tion P : S x 25 — [0,1] is defined, such that ¥s € S,S" C S, p(s,S’) =
Dses Pls; ).

Definition 14 ([64]). An Abstract Discrete Time Markov Chain (ADTMC)
is a 5-tuple M = (5', Sinit, Pt P, f)), where:

1. Sisa finite set of states;
2. Sinit € S is an initial state;

3. P':Sx 8 —[0,1] and P*: S x S — [0,1] are two transition proba-
bility functions, such that for all § € S: ]55(3,5”) <1< p“(§,$’) and
P!(3,8) < P38,8) forall § € S;

4. L:S — 2Lt is q state-labeling, such that Vs € S, Vp € AP, § is labeled

by at most one of p and —p.

In an ADTMC, the exact transition probability between any two states
is not defined explicitly, but instead an upper and a lower bound for this
probability is given. We therefore call the P’ and P* as lower and upper
transition probability functions. Consequently, the verification of a PCTL
formula ¢ over an ADTMC may yield an indefinite answer (). The seman-
tics of a reachability PCTL formula ¢ at a state § of an ADTMC M is given
in Def.



2.5. Abstract Discrete Time Markov Chains 45

Definition 15 ([64]). Let M = (S, 8ini, P', P*, L) be a ADTMC. The se-
mantics of a reachability PCTL formula ¢ = Pup[F| at a state § of M,
denoted as [(M, 8) E* @], is defined as follows:

o If o = Pg,[FY]
— [(M, 5) =3 @] = true, if 2*({m € Path? | 3i > 0.7[i] = ¥}) < p.
— [(M, 3) |3 o] = false, if z'({r € Pathéw | 3i > 0.7[i] E¥}) > p.

— (M, 3) E3 o] = L, otherwise.

o If o= Ps)[FY]
— [(M,38) E3 @] = true, if 2'({x € Path™ | 3i > 0.x[i] = ¥}) > p.
— [(M,8) 2 ¢] = false, if *({m € Path}" | 3i > 0.7i] = ¢}) < p.
— [(M,3) =2 ] = L, otherwise.

4

where x°, " are the probability measures for the lower and upper tran-

sition probability functions. [

From the 3-valued PCTL semantics over ADTMCs, it follows that the
truth of P>,[F] is checked based on the paths with lower bound proba-
bilities, as opposed to P<,[F], for which the paths with the upper bound
probabilities are used. For checking the refutation of Ps,[F], the upper
bound probabilities are used, whereas for the refutation of P-,[F] the

check is based on the lower bound probabilities. The 3-valued semantics
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for a bounded reachability property in the form P.,[F=*y] differ only in
that only the finite paths with length & are taken into account.

In Def. [16] given a DTMC M and a pair of total functions « (abstraction)
and v (concretization), an ADTMC «(M) is defined with state space the set
S, derived by abstracting the concrete state space S of M. The ADTMC
a(M) serves as the abstract model and the DTMC M as the concrete model

in our framework.
Definition 16 ([64]). Given a DTMC M = (S, Sinit, P, L) and a pair of total
functions (o : S — S,y : S — 25) such that

VseSVse S a(s)=5asec(3)

the ADTMC a(M) = (S, 8init, P', P*, L) is defined as follows:
1. Sinit = (Sinit);
2. for all 3, lit € L(8) only if for all s € v(5), lit € L(s);
3. for all 3,55, P'(31,85) = infoeqs) Pls,7(32));
4. for all 51,52, P"(81,89) = min(1, sup,e. ) ]5(577(§2)).

A state § of a( M) is an abstract state of some s € S, if and only if § = «a(s)
(equivalently s € y(«(s))). The abstract state $;,;; of the concrete state s,
of the DTMC is initial in «a(M). Proposition ¢ € AP is true (resp. false)

in § = a(s), if and only if ¢ is true (resp. false) in all s € y(§). Otherwise,
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q is unknown (L) at 8. P%(51, 8) for two abstract 3;, 8, is defined as the
infinum of the transition probabilities from each s; € v(51) to all s; € v(52).
On the other hand, P“(8,5;) for §;, So is defined as the minimum of 1

and the supremum of the transition probabilities from each s; € v(5;) to all

Sj € ’}/(3’2)

A, [2/3,1]

[0,1/3]

(1.1

Figure 2.5: The abstraction of a Discrete Time Markov Chain.

Example. (ROBOT) In Fig. 2.5 an abstract DTMC of the robot system
is presented where the green state (labeled with ¢) and the non-green states
(labeled with —q) are abstracted using one abstract state for each case. The
lower bound of the outgoing transition from the non-green abstract state
Ag to A;p is 0, because there are no concrete non-green states with outgoing
transition of probability greater than 0 to the concrete green state. The
upper bound for the same transition is (%), because the greatest transition
probability from a concrete non-green state to the concrete green state is
(%) All other lower and upper bound probabilities in Fig. are calculated

in the same way. 0
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Theorem 2 ([64]). Let M = (S, Sinit, P, L) a DTMC and a(M) = (S, 8init
Pt P, [:) the ADTMC as in Def. . Then for every PCTL formula ¢ and

every s € S, 5 € S with § = a(s) we have:

[(a(M),3) = ¢l # L = [(M,s) F ¢] = [(«(M),3) = ¢]

From Theorem |2} it follows that if a PCTL formula is satisfied (or vio-
lated) in the ADTMC, then it is also satisfied (or violated) in the DTMC. If
the answer of model checking a PCTL formula over the ADTMC is unknown,
then there is no definite conclusion for the same formula over the DTMC. To
be concise, in the rest of the thesis we will denote [(a(M),3) | ¢] = false

by just writing (a(M), 8) |~ ¢.



Chapter 3

Abstract Model Repair of Kripke

structures

3.1 The Model Repair Problem for Kripke
Structures

In this section, we formulate the problem of Model Repair. A metric space
over Kripke structures is defined to quantify their structural differences. This
allows us taking into account the minimality of changes criterion in Model
Repair.

Let m be a function on the set of all functions f : X — Y such that:

m(f) = {(z, f(x)) [z € X}

49
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A restriction operator (denoted by ) for the domain of function f is defined

such that for X; C X,

f rX1: {(ZL’,f(ZE)) | S Xl}

By S¢, we denote the complement of a set S.

Definition 17. For any two M = (S, S0, R, L) and M' = (S', Sy, R', L") in
the set Ky of all KSs, where

S" = (SUSw) — Sour for some Sy € S¢, Sour C S,
R'= (RURy) — Rour for some Riy € R, Rour C R,
L = Sl N 2LIT

the distance function d over Ky, is defined as follows:

|T(L Tsns) Am(L' [sns)|
2

A(M, M) =|SAS |+ |RAR|+

with A A B representing the symmetric difference (A — B)U (B — A). O

For any two KSs defined over the same set of atomic propositions AP, func-
tion d counts the number of differences |S A S’| in the state spaces, the num-
ber of differences |R A R'| in their transition relation and the number of

common states with altered labeling.

Proposition 3. The ordered pair (K, d) is a metric space.
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Proof. We use the fact that the cardinality of the symmetric difference be-

tween any two sets is a distance metric. It holds that:

1. [SAS'| > 0, |[RAR'| > 0 and |7(L [sns)An(L" Jsns/)] > 0 (non-

negativity)

2. |[SAS| = 0iff S = 5, |[RAR'| = 0 iff R = R and |7(L [sns
)|A|7T(L/ mes')| = 0 iff 7T(L rSmS’) = 7T(L/ rSﬂS’) (identity of indis-
cernibles)

’W(L/ meS/>A7T(L [Smgl)|(symmetry)

4. |S'AS"| < |S'AS| + |SAS”|, |RRAR"| < |R'AR| + |RAR"|,
(L Tsrnsm ) A (L |srnsm)| < |m(L' [sins) AT(L [sns)| +
|7 (L Tsns) Am(L"sns)|
(triangle inequality)

We will prove that d is a metric on Kj;. Suppose M, M', M" € Ky,

o It casily follows from (1) that d(M, M) > 0 (non-negativity)

e From (2), d(M,M') =0 iff M = M’ (identity of indiscernibles)

e Adding the equations in (3), results in d(M, M') = d(M', M) (symme-
try)

o If we add the inequalities in (4), then we get d(M', M") < d(M', M)+

d(M, M") (triangle inequality)
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So, the proposition is true. O

Definition 18. For any two M = (5’, go,Rmust,Rmay, jl) and M' = (S’,Sol,
R/

may)

R, L') in the set Ky, of all KMTSs, where

must?

S = (SUSw) — Sour for some Sy € SC, Sour C S,

- o f ~ ~ ~ SO - -

must (Rmust U RIN) — Rour for some Ry C Rmustﬁ Rour € Rinust,
o/ (D D/ D! N/ HC D/ »
Rmay - (Rmay U R[N) - ROUT fO?" some RIN g Rmay7 ouT g Rmay;

Tr__ Q& LIT
L'=5 — 24",

the distance function d over Ky, is defined as follows:

must

A (R — Bpy)| + T i) ST o)

cZ(M, M/) — |SA§/| + |Rmu5tAR/ | ‘|’ |(Rmay - émust)

with AAB representing the symmetric difference (A — B) U (B — A).

We note that d counts the differences between K and Rmay, and those

may

between R;nust and Ry, separately, while avoiding to count the differences

in the latter case twice (we remind that must-transitions are also included in

~

Riay)-

A

Proposition 4. The ordered pair (K, d) is a metric space.

Proof. The proof is done in the same way as in Prop. O]
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Definition 19. Given a KS M and a CTL formula ¢ where M [~ ¢, the
Model Repair problem is to find a KS M’', such that M' = ¢ and d(M, M')

is minimum with respect to all such M’.

The Model Repair problem aims at modifying a KS such that the resulting
KS satisfies a CTL formula that was violated before. The distance function
d of Def. [17]features all the attractive properties of a distance metric. Given
that no quantitative interpretation exists for predicates and logical operators
in CTL, d can be used in a model repair solution towards selecting minimum

changes to the modified KS.

3.2 The Abstract Model Repair Framework

Our AMR framework integrates 3-valued model checking, model refinement,
and a new algorithm for selecting the repair operations applied to the abstract
model. The goal of this algorithm is to apply the repair operations in a way,
such that the number of structural changes to the corresponding concrete
model is minimized. The algorithm works based on a partial order relation
over a set of basic repair operations for KMTSs. This section describes the
steps involved in our AMR framework, the basic repair operations, and the

algorithm.
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3.2.1 The Abstract Model Repair Process

Failure

l

Ab . Abstract Model

straction

Model (KS) (KMTS)
M a(M) M = o(M)

Initial Concrete

Refinement

Failure

Repaired Abstract O Refined ( ]W) Abstract MC Undefined
Abstract Model Model ( o §) ': 0%
(KMTS) M’ Repair ’
!
(M) Repaired Concrete

— Model (KS) (M) = ¢
Concretization MRepaired € Y(M')

Figure 3.1: Abstract Model Repair Framework.

The process steps shown in Fig. [3.1] rely on the KMTS abstraction of Def.

These are the following:

Step 1. Given a KS M, a state s of M, and a CTL property ¢, let us call
M the KMTS obtained as in Def. 4l

Step 2. For state § = a(s) of M, we check whether (]\7[, $) = ¢ by 3-valued

model checking.

Case 1. If the result is ¢rue, then, according to Theorem(] (M, s) = ¢

and there is no need to repair M.
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Case 2. If the result is undefined, then a refinement of M takes place,

and:

Case 2.1. If an MRefined is found, the control is transferred to

Step 2.

Case 2.2. If a refined KMTS cannot be retrieved, the repair pro-

cess terminates with a failure.

Case 3. If the result is false, then, from Theorem [} (M, s) = ¢ and

the repair process is enacted; the control is transferred to Step 3.

Step 3. The AbstractRepair algorithm is called for the abstract KMTS

(MRefmed or M if no refinement has occurred), the state § and the

property ¢.
Case 1. AbstractRepair returns an M’ for which (M, 3) |= ¢.

Case 2. AbstractRepair fails to find an M’ for which the property

holds true.

Step 4. If AbstractRepair returns an M’, then the process ends with select-
ing the subset of KSs from ~(M’), with elements whose distance d from

the KS M is minimum with respect to all the KSs in (M").

3.2.2 Basic Repair Operations
We decompose the ADTMC repair process into two basic repair operations:

AddMust Adding a must-transition
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AddMay Adding a may-transition

RemoveMust Removing a must-transition
RemoveMay Removing a may-transition
ChangeLabel Changing the labeling of a KMTS state
AddState Adding a new KMTS state

RemoveState Removing a disconnected KMTS state

Adding a must-transition

Definition 20 (AddMust). For a given KMTS M = (g, gg,RmUSt,Rmay7
L) and 7, = (31,83) ¢ Rupust, AddMust(M,#,) is the KMTS M’ = (S, Sy,

~

L) such that R,

/ /
Rmust ) Rmay ) must

= Rypust U{"n} and R, = Ry U{7}. O

may ~

Since Ryust © Rinay, 7 must also be added to Ry, resulting in a new
may-transition if 7, € Ryey. Fig. shows how the basic repair operation

AddMust modifies a given KMTS. The newly added transitions are in bold.
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(b) May-transition does not exist

Figure 3.2: AddMust: Adding a new must-transition

Proposition 5. For any M' = AddMust(M,#,), it holds that d(M,M’) =
1. ]

A

Definition 21. Let M = (S, Sy, R, L) be a KS and let a(M) = (S, So, Ryust,



3.2. The Abstract Model Repair Framework 58

Ry, f/) be the abstract KMTS derived from M as in Def. . Also, let M' =
AddMust(a(M), ) for some 7, = (81, 82) & Rpmust- The set Ky C ’y(M’)

with all KSs, whose distance d from M is minimized is:
Kopin ={M' | M' = (S,Sy, RUR,,, L)} (3.1)
where R, is given for one sy € ¥(82) as follows:

R,= |J {(s1,5) | #s € ¥(32) : (s1,5) € R}

s1€7(81)
]
Def. 21} implies that when the AbstractRepair algorithm applies AddMust
on the abstract KMTS ]\7[, then a set of KSs is retrieved from the con-
cretization of M’. The same holds for all other basic repair operations and

consequently, when AbstractRepair finds a repaired KMTS, one or more KSs

can be obtained for which property ¢ holds.
Proposition 6. For all M' € K, it holds that 1 < d(M,M') < |S].

Proof. Recall that

L [sng)Am(L' [snsr)]
2

d(M, M) = |SAS| + |[RAR| + 1™

Since |SAS/| =0 and |7T(L meS')AW(L/ rSﬂS’)’ = 0, d(M, M/> = ’RAR/| =
|IR— R'|+|R — R| =0+ |R,|. Since |R,| > 1 and |R,| < |S]|, it is proved
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that 1 < d(M,M’) < |S|. O
From Prop. [0} we conclude that a lower and upper bound exists for the
distance between M and any M’ € K,,;,.

Adding a may-transition

Definition 22 (AddMay). For a given KMTS M = (5‘, ﬁo,Rmust,Rmay,f/)
and 7, = (31, 52) ¢ Rmay, AddMay(M,7,) is the KMTS M’ = (S, S0, Rl yust>

R;my,f/) such that R, = Rmust U {Pn} if |S1] = 1 or R, ..ci = Ruust if
|Sl‘ >1 f07n S| = {51 | S1 € ’y(gl)} and R;nay = Rmay U {72”} O

From Def. 22| we conclude that there are two different cases in adding
a new may-transition 7,; adding also a must-transition or not. In fact, 7,
is also a must-transition if and only if the set of the corresponding concrete
states of $; is a singleton. Fig.[3.3|displays the two different cases of applying

basic repair operation AddMay to a KMTS.
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(b) Must-transition is also added

Figure 3.3: AddMay: Adding a new must-transition

Proposition 7. For any M’ = AddMay(M,+,), it holds that d(M,M') =
1. O
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Definition 23. Let M = (S, Sy, R, L) be a KS and let a(M) = (S, So, Ryust,
Ry, [A/) be the abstract KMTS derived from M as in Def. . Also, let M' =
AddMay (a(M),7y,) for some 7, = (51, 82) & Rmay- The set Kppin C ”y(M’)

with all KSs, whose structural distance d from M 1is minimized is given by:
Kppin = {M" | M" = (S, So, RU{r,}, L)} (3.2)

where 1, € R, and R, = {r, = (s1,82) | s1 € (81),82 € Y(82) and r, ¢
R}. O

Proposition 8. For all M' € K,;,,, it holds that d(M, M') = 1.

Proof. d(M, M") = |SAS'|+|RAR/| 4 T Elsns)rWsos)l - Because [SAS'| =
0 and |7 (L [sns)Am(L' [sns/)| = 0, d(M,M') = [RAR'| = |R — R'| + |R' —
R| =0+ [{r,}| = 1. So, we prove that d(M,M') = 1. O

Removing a must-transition

Definition 24 (RemoveMust). For a given KMTS M = (S, g{), Ropust; Rinays
L) and #y, = (31,%3) € Rpust, RemoveMust(M,#,,) is the KMTS M’ =
(8,80, R, ... R L) such that R Ropust — {"m} and R, = Rpay —

must? may’? must may

{fm} Zf |Sl| =1 or R/ Rmay 'lf |Sl| > 1 fOT‘ Sl = {81 | S1 € ’}/(gl)} ]

may

Removing a must-transition 7,,, in some special and maybe rare cases,
could also result in the deletion of the may-transition 7, as well. In fact,

this occurs if transitions to the concrete states of Sy exist only from one
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concrete state of the corresponding ones of §;. These two cases for function

RemoveMust are presented graphically in Fig. [3.4]

(b) May-transition is also removed

Figure 3.4: RemoveMust: Removing an existing must-transition
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Proposition 9. For any M’ = RemoveMust(M,#,,), it holds that d(M, M)
=1. [

Definition 25. Let M = (S, Sy, R, L) be a KS and let (M) = (S, Sy, Rinust,
Ry, [A/) be the abstract KMTS derived from M as in Def. . Also, let M' =
RemoveMust(a(M), #,,) for some T, = (81,82) € Rpust- The set Ky C
”y(M’) with all KSs, whose structural distance d from M is minimized is given
by:

Koin ={M' | M' = (S,Sy,R—{R,,}, L)} (3.3)

where R, is given for one s1 € ¥(81) as follows:

Rn= |J {(s1,%) € R}

s2€7(382)

Proposition 10. For M’, it holds that 1 < d(M,M') < |S)|.

Proof. d(M,M') = |SAS'|+|RAR'|+ ‘W(L[S“S’)AQW(L,TS”S'”. Because |SAS’| =
0 and [7(L [sns)AT(L [sns)| = 0, d(M, M) = |[RAR| = |R — R| + |R
R| = |Ryu| +0 = |Ry|. It holds that |R,,| > 1 and |R,,| < [S]. So, we proved
that 1 < d(M,M") < |S|. O

Removing a may-transition

Definition 26 (RemoveMay). For a given KMTS M = (S, So, Runust Rinay:

A

L) and 7, = (51,52) € Roay, RemoveMay(M,fm) is the KMTS M' =
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(Sa SOv R/ R;naya

must?

L) such that R!

must

= Rypust — {"m} and R, = Riay —

may ~

{Fm}- ]

Def. 26| ensures that removing a may-transition 7, implies the removal of
a must-transition, if 7, is also a must-transition. Otherwise, there are not
any changes in the set of must-transitions R,,,s. Fig. shows how function

RemoveMay works in both cases.
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RemoveMay

(b) May-transition is not a must-transition

Figure 3.5: RemoveMay: Removing an existing may-transition

Proposition 11. For any M' = RemoveMay(M,fm), it holds that cZ(]\Z/,
M) =1. O

A

Definition 27. Let M = (S, Sy, R, L) be a KS and let a(M) = (S, So, Rynust,
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Ry, f/) be the abstract KMTS derived from M as in Def. . Also, let M' =
RemoveMay(a(M), Ty,) for some Ty, = (81, 82) € Ryay with 81,5 € S. The
KS M' e 7(]\7[’), whose structural distance d from M is minimized is given

by:
M' = (S,S0,R— R, L} (3.4)

where Ry, = {r,m = (s1,82) | 51 € v(81), $2 € ¥(82) and r,, € R}. O
Proposition 12. For M, it holds that 1 < d(M, M’) < |S|’.

Proof. d(M,M") = |SAS'|+|RAR'|+ \W(LFsmsx)AQW(L/[smer. Because |SAS'| =

0 and |7(L [sns)AT(L [sns)] = 0, d(M,M’) = |RAR| = |R— R'| + |R' —
R| = 0+ |R,| = |Rn|- Tt holds that |R,,| > 1 and |R,,| < |S[>. So, we
proved that 1 < d(M, M) <|S|>. O

Changing the labeling of a KMTS state

Definition 28 (ChangeLabel). For a given KMTS M = (S, S[), Roust; Rinays
I:), a state § € S and an atomic CTL formula ¢ with ¢ € 28T Change Label
(M, 3,0) is the KMTS M’ = (S, S0, Rumust> Rmay, L') such that L' = (L —
{[Old}) U {Znew} for L = (8, litoq) and lLyew = (8, lityew) where lit,e, =

L(3) U {lit | lit € ¢} — {—lit | lit € ¢}. O

Basic repair operation ChangeLabel gives the possibility of repairing a
model by changing the labeling of a state, thus without inducing any changes
in the structure of the model (number of states or transitions). Fig.

presents the application of ChangeLabel in a graphical manner.
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Figure 3.6: ChangeLabel: Changing the labeling of a KMTS state

Proposition 13. For any M’ = C’hangeLabel(M,é,gzﬁ), it holds that cZ(M,
M) =1. N

Definition 29. Let M = (S, Sy, R, L) be a KS and let (M) = (S, Sy, Rinust,
Rinay, f/) be the abstract KMTS derived from M as in Def. . Also, let M' =
ChangeLabel(a(M),3,¢) for some § € S and ¢ € 2MT. The KS M’ €

”y(M’), whose structural distance d from M is minimized, is given by:
M = (87 SOaRvL - LoldULnew} (35)
where

Lold = {lold = (S, litold) ’ S € ’y(g), S € S, ﬁl’itold ¢ (b and lold € L}
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Liew = {lnew = (8, litnew) | S € 7(8), 8 € S, litnew € ¢ and lyew & L}

Proposition 14. For M', it holds that 1 < d(M, M") < |S|.

Proof. d(M,M') = |SAS'|+|RAR'|+ ‘N(L[S“S/)A;(L,[S“S’)l. Because |RAR/| =

0 and |RAR/| =0, d(M, M/) _ \W(L[SQS/)AQW(L/[SQSJI _ \Lom\-ganew\ _ |Lold| _
|Lyew|. It holds that Ly, > 1 and Lyew < [S|. So, we prove that 1 <

d(M, M) < |S). O

Adding a new KMTS state

Definition 30 (AddState). For a given KMTS M = (S, So, Rimust> Rimay, L)
and a state §,, & S, AddState(M, ) is the KMTS M = (3’, S[), Roust; Rimays
L) such that S" = S U{4,} and L' = LU {l,,}, where I, = (3,, L). O

The most important issues for function AddState is that the newly created
abstract state s, is isolated, thus there are no ingoing or outgoing transitions
for this state, and additionally, the labeling of this new state is L. Another
conclusion from Def. [30|is the fact that the inserted stated is not permitted

to be initial. Application of function AddState is presented graphically in
Fig. 3.7
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M M/

Figure 3.7: AddState: Adding a new KMTS state
Proposition 15. For any M’ = AddState(M,3,), it holds that d(M, M') =
1. O

Definition 31. Let M = (S, Sy, R, L) be a KS and let a(M) = (S, So, Ryust,
Rinay, j}) be the abstract KMTS derived from M as in Def. . Also, let M' =
AddState(o(M), §,) for some 3, ¢ S. The KS M' € v(M'), whose structural

distance d from M s minimized is given by:
M = (SU{sn},So, R, LU{l,}) (3.6)

where s, € v(5,) and l,, = (sp, L). O

Proposition 16. For M’', it holds that d(M,M’) =1

Proof. d(M,M") = |SAS'| + |RAR| 4 mElsns)8rWlsnsl - Because [RAR/|
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= 0 and |7(L [sns)AT(L [sns)| = 0, d(M, M) = [SAS'| = |S = 5| +]5" —
S| =0+ [{sn}| = 1. So, we proved that d(M,M') = 1. O

Removing a disconnected KMTS state

Definition 32 (RemoveState). For a given KMTS M = (S*, g[), Roust; Riays
L) and a state 3, € S such that ¥5 € S : (3,5,) & Ryay A (3:,8) & Rnay,
RemoveState(Mﬁr) is the KMTS M' = (g’,é('),Rmust,Rmay,f/) such that
S'=8-1{5), S =S0— {5} and L' = L—{i,}, where I, = (3,,lit) € L. O

From Def. [32] it is clear that the state being removed should be isolated,
thus there are not any may- or must-transitions from and to this state. This
means that before using RemowveState to an abstract state, all its ingoing
or outgoing must have been removed by using other basic repair operations.
RemoveState are also used for the elimination of dead-end states, when such
states arise during the repair process. Fig. presents the application of

RemoveState in a graphical manner.
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Figure 3.8: RemoveState: Removing a disconnected KMTS state

Proposition 17. For any M' = RemoveState(M, S,.), it holds that cZ(M,
M) =1. O

Definition 33. Let M = (S, Sy, R, L) be a KS and let a(M) = (S, So, Ryust,
Rinay, j}) be the abstract KMTS derived from M as in Def. . Also, let M' =
RemoveState(a(M), 5,) for some &, € S with I, = (3,,1it) € L. The KS

M e ’y(M’), whose structural distance d from M is minimized, is given by:
M = (5,5, R,L) s.t. S=S5-5,,5,=5—95,R =R, L' =L—-L, (3.7)

where S, = {s, | s, € S and s, € v(5,)} and L, = {l, = (s,,lit) | I, €
L}. O

Proposition 18. For M', it holds that 1 < d(M,M") < |S|.
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Proof. d(M, M') = |SAS'|+|RAR' |+ T s0s) 7 s0s)l Because [RAR| =
0and [r(L [sns)Ar(L' [s05)] = 0, d(M, M') = |SAS| = |S—&'|+]5'—5]| =
|S.| +0 = |S,|. It holds that |S,| > 1 and |S,| < |S|. So, we proved that
1<d(M,M") <]S]|. O

Minimality Of Changes Ordering For Basic Repair Operations

The distance metric d of Def. reflects the need to quantify structural
changes in the concrete model that are attributed to model repair steps ap-
plied to the abstract KM'TS. Every such repair step implies multiple struc-
tural changes in the concrete KSs, due to the use of abstraction. In this
context, our distance metric is an essential means for the effective applica-
tion of the abstraction in the repair process.

Based on the upper bound given by Prop. [6] and all the respective re-
sults for the other basic repair operations, we introduce the partial ordering
shown in Fig. [3.9) This ordering is used in our AbstractRepair algorithm to
heuristically select at each step the basic repair operation that generates the
KSs with the least changes. When it is possible to apply more than one basic
repair operation with the same upper bound, our algorithm successively uses
them until a repair solution is found, in an order based on the computational
complexity of their application.

If instead of our approach, all possible repaired KSs were checked to
identify the basic repair operation with the minimum changes, this would

defeat the purpose of using abstraction. The reason is that such a check
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inevitably would depend on the size of concrete KSs.

Remove
State

Figure 3.9: Minimality of changes ordering of the set of basic repair opera-
tions

3.3 The Abstract Model Repair Algorithm

The AbstractRepair algorithm used in Step 3 of our repair process is a re-
cursive, syntax-directed algorithm, where the syntax for the property ¢ in
question is that of CTL. The same approach is followed by the SAT model
checking algorithm in [62] and a number of model repair solutions applied
to concrete KSs [89, 26]. In our case, we aim to the repair of an abstract
KMTS by successively calling primitive repair functions that handle atomic
formulas, logical connectives and CTL operators. At each step, the repair
with the least changes for the concrete model among all the possible repairs
is applied first.

The main routine of AbstractRepair is presented in Algorithm [I} If the



3.3. The Abstract Model Repair Algorithm 74

Algorithm 1 AbstractRepair

Input: M = (S, SO,Rmust,Rmay,I:), 5 € S, a CTL property ¢
in PNF for which (M,3) F ¢, and a set of constraints C' =
{(5e,: 0e1)s (Beys By )s oos (3, e )} Where &, € S and ¢, is CTL formula.

Output: M’ = (5, S}, Rlysrs Riays L') and (M, 8) |= ¢ or FAILURE.

1: if ¢ is false then
2:  return FAILURE
3: else if ¢ € LIT then

4: return AbstmctRepairATOMIC(M, 5,0,C)

5: else if ¢ is @1 A ¢ then

6

7

8

9

. return AbstmctRepaz’rAND(M, 5,¢,C)
: else if ¢ is ¢ V ¢ then
. return AbstmctRepairOR(M, $,0,C)
: else if ¢ is OPER¢, then
10: return AbstmctRepairopER(]\Zl, 3,0,C)
11:  where OPER € {AX,EX, AU, EU, AF, EF, AG, EG}

property ¢ is not in Positive Normal Form, i.e. negations are applied only to
atomic propositions, then we transform it into such a form before applying
Algorithm [T}

An initially empty set of constraints C' = {(S.,, ®¢,), (Seps Per)y -y (36,
®e, )} 1s passed as an argument in the successive recursive calls of AbstractRe-
pair. We note that these constraints can also specify existing properties that
should be preserved during repair. If C' is not empty, then for the returned
KMTS M, it holds that (M, 3..) £ ¢., for all (3, ¢.,) € C. For brevity, we
denote this with M’ |= C. We use C in order to handle conjunctive formulas
of the form ¢ = ¢; A ¢o for some state S. In this case, AbstractRepair is
called for the KMTS M and property ¢; with C' = {(5,¢2)}. The same is

repeated for property ¢o with C' = {(8, ¢1)} and the two results are combined
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Algorithm 2 Abstract Repair aronmic

Input: M = (S’, g{)aRmust;Rmayaj—J)y 5 € S, a CTL property ¢ where ¢
is an atomic formula for which (M,3) £ ¢, and a set of constraints
C = {(30,,0¢,.), (3¢ys bey)s oo (3¢, e )} where 8., € S and ¢, is a CTL
formula.

Output: M’ = (5,5, R, .., R

. M= ChangeLabel(M, s, 0)

if M’ = C then

return M’
else

return FAILURE

~

L') and (M',3) |= ¢ or FAILURE.

appropriately.

For any CTL formula ¢ and KMTS state s, AbstractRepair either outputs
a KMTS M’ for which (M’,8) = ¢ or else returns FAILURE, if such a model
cannot be found. This is the case when the algorithm handles conjunctive
formulas and a KMTS that simultaneously satisfies all conjuncts cannot be

found.



3.3. The Abstract Model Repair Algorithm 76

Algorithm 3 Abstract Repair anp

Input: M = (5’, So, Rnust Riay, j}), § € S, a CTL property ¢ =
¢1 A ¢y for which (M,3) B ¢, and a set of constraints C' =
(3¢, Der )y (Beys Gey)s oo (30, b)) Where 3., € S and ¢, is a CTL for-
mula. R

Output: M’ = (S’,S(’),R;nust,R;nay,

URE.

RET, = AbstractRepair(M, s, ¢1,C)

RET, .= AbsﬁfractRepai7“(]\Z7 8, ¢9,C)

Cri=CU{(5,01)}, Ca:= CU{(5,02)}

RET] := FAIURE, RET) := FAIURE

if RET, # FAILURE then

M, := RET,
RET] = AbstractRepair(Ml, S, ¢9,Ch)
if RET] # FAILURE then
M| := RET]
if RET; # FAILURE then
My := RET
RET} = AbstractRepai’r(Mg, 3, ¢1,C%)
if RET,# FAILURE then
M}, := RET}

. if RET] # FAILURE && RET) # FAILURE then

M’ := MinimallyChanged(M, M, M})

: else if RET] # FAILURE then

M’ := RET!

: else if RET), # FAILURE then

M’ := RET;}

: else

return FAILURE

. return M’

L), 3 € S and (M',5) = ¢ or FAIL-

I N R R e e e e e e e e
P el B A - el




3.3. The Abstract Model Repair Algorithm 7

Algorithm 4 Abstract Repair g

Input: M = (g,go,Rmust,Rmay,ﬁ), § € S, a CTL property ¢ =
AG¢, for which (M, s§) = ¢, and a set of constraints C =
{(5er, Ber)s (Bey, ey )s s (Be,5 be, )} Where 8., € S and ¢, is a CTL for-
mula. R

Output: M’ = (5", S}, R ... Ry

. if (M, 3) £ 61 then

RET = AbstractRepai'r(M, s, ¢1,C)

if RET == FAILURE then

return FAILURE

else

M’ := RET

~

L’) and (M, 3) |= ¢ or FAILURE.

else
M =M
for all reachable states $j through may-transitions from § such that
(M, 8) = 1 do )
10:  RET := AbstractRepair(M’, 8, ¢1,C)
11: if RET == FAILURE then
12: return FAILURE
13: else
14: M':= RET
15: if M’ |= C then
16: return M’
17: return FAILURE

3.3.1 Primitive Functions

Algorithm [2| describes Abstract Repair aronric, which for a simple atomic for-
mula, updates the labeling of the input state with the given atomic propo-
sition. Disjunctive formulas are handled by repairing the disjunct leading to
the minimum change (Algorithm [5), while conjunctive formulas are handled

by the algorithm with the use of constraints (Algorithm .
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Algorithm 5 Abstract Repairor

Input: M = (5’, So,Rmust,Rmay,ﬁ), § € S, a CTL property ¢ =
¢1 V ¢y for which (M,3) £ ¢, and a set of constraints C =
((8ey, ey )s (Seny Pey )y -vs (86,5 Pe,)) Where §.. € S and ¢, is a CTL for-

mula.
Output: M’ = (S, S, Rt Ripays L), § € S" and (M’,3) |= ¢ or FAIL-
URE.
1: RET, := AbstractRepair(M,é, ¢, C)
2: RET, := AbstractRepcm“(]\Z7 8, ¢9,C)
3: if RET, # FAILURE && RET, #+# FAILURE then
4 M, = RET,
5. M, := RET),
6: M’ := MinimallyChanged(M, My, M,)
7: else if RET) # FAILURE then
8 M':=RET)
9: else if RET, # FAILURE then
10: M’ := RET,
11: else
12:  return FAILURE

: return M’

—
w

Algorithm 4] describes the primitive function AbstractRepairag which
is called when ¢ = AG¢,. If AbstractRepair,q is called for a state §, it
recursively calls AbstractRepair for § and for all reachable states through
may-transitions from § which do not satisfy ¢;. The resulting KMTS M is

returned, if it does not violate any constraint in C.
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Algorithm 6 Abstract Repairgx

Input: M = (5’, So,Rmust,Rmay,ﬁ), § € S, a CTL property ¢ =
EX¢, for which (M,3) ¥ ¢, and a set of constraints C' =
{(5er, Ber)s (Bey, Bey)s s (8e,5 be, )} where 5, € M and ¢, is a CTL for-
mula. R

Output: M’ = (5", S, Riusts Binay: L') and (M, 8) = ¢ or FAILURE.

1: if there exists 8, € S such that (M, §;) = ¢, then
for all §; € S such that (M, 3;) = ¢1 do
o= (8,8), M’ := AddMust(M ;)

~

2
3:
4: if M’ = C then
5
6
7

return M’
: else )
for all direct must-reachable states §; from § such that (M, 3;) & ¢

do
8: RET = AbstractRepair(M, $i,¢1,C)
9: if RET # FAILURE then
10: M’ := RET
11: return M’

12 M’ := AddState(M, 3,), n := (8,8,), M’ := AddMust(M', )
13: 7= (Sp, Sn)

14: M’ := AddMay(M',#,)

15:  RET := AbstmctRepair(M’,§n,¢1,0)

16: if RET # FAILURE then

17: M’ := RET

18: return M’

19: return FAILURE

Abstract Repairgx presented in Algorithm [6]is the primitive function for
handling properties of the form EX ¢; for some state 5. At first, the KMTS is
attempted to be repaired by AbstractRepairgyx by adding a must-transition
from § to a state that satisfies property ¢;. If a repaired KMTS is not
found, then AbstractRepair is recursively called for an immediate successor

of 5§ through a must-transition, such that ¢, is not satisfied. If a constraint
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in C' is violated, then (i) a new state is added, (ii) AbstractRepair is called
for the new state and (iii) a must-transition from $ to the new state is added.
The resulting KMTS is returned by the algorithm if all constraints of C' are

satisfied.
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Algorithm 7 Abstract Repairax

Input: M = (g,SO,Rmust,Rmay,ﬁ), § € S, a CTL property ¢ =

Output: M’ = (S’,ﬁ(’), R R
1:

—

13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

AX ¢, for which (M,5) F ¢, and a set of constraints ¢ =
{(8ey, Dcr)s (8eqs ey )y oovs (8eps D, )} Where S, € M and ¢, is a CTL for-

mula.

~

must’ * “may> L/) and (M/a §) }Z ¢ or FAILURE.

M = M
RET := FAILURFE
for all direct may-reachable states $; from § with (§,3;) € R,,q, do
if (M, 3;) = ¢, then
RET = AbstmctRepaz’r(M’, 8, ¢1,C)
if RET == FAILURE then
BREAK
M':= RET
if RET # FAILURE then
returAn M

. M =M
: for all direct may-reachable states §; from § with 7; := (5,5;) € Ry
do

if (M, 3;) = ¢; then
M’ := RemoveMay(M', #;)
if there exists direct may-reachable state $; from § such that (3,3;) €
Ryqy then
if M’ }= C then
return M’
else
for all §; € S such that (M, 3;) = ¢, do
;= (3,8;), M" := AddMay(M', ;)
if M’ = C then
return M’
M’ := AddState(M, 3,,)
if s, is a dead-end state then
P i= (8, 8n), M’ := AddMay(M', )
RET = AbstractRepair(M’, S, ¢1,C)
if RET # FAILURE then
M’ := RET, #, := (8,8,), M' := AddMay(M', )
if M’ = C then
return M’
return FAILURE
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Algorithm [7] presents primitive function Abstract Repair 4x which is used
when ¢ = AX ¢,. Firstly, Abstract Repair sx tries to repair the KMTS by ap-
plying Abstract Repair for all direct may-successors §; of § which do not sat-
isfy property ¢, and in the case that all the constraints are satisfied the new
KMTS is returned by the function. If such states do not exist or a constraint
is violated, all may-transitions (3, §;) for which (M, §;) £ é1, are removed.
If there are states §; such that r, := (5,5;) € R4, and all constraints are
satisfied then a repaired KMTS has been produced and it is returned by the
function. Otherwise, a repaired KMTS results by the application of AddM ay
from s to all states 5; which satisty ¢,. If any constraint is violated, then the
KMTS is repaired by adding a new state, applying Abstract Repair to this
state for property ¢; and adding a may-transition from $ to this state. If all

constraints are satisfied, the repaired KMTS is returned.
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Algorithm 8 Abstract Repairpg

Input: M = (5’, So,Rmust,Rmay,f}), § € S, a CTL property ¢ =
EG¢, for which (M,s) £ ¢, and a set of constraints C' =
{(8ey, Dcr)s (Scqs ey )y oovs (8eps D, )} Where §., € S and ¢, is a CTL for-

mula.
Output: M’ = (5, S}, Rpsrs Riays L') and (M, 8) = ¢ or FAILURE.
1: Ml = M
2: if (M,3) £ ¢, then
3:  RET := AbstractRepair(M, $,¢1,C)
4: if RET == FAILURFE then
5: return FAILURE
6: M, :=RET
7: while there exists maximal path 7,,,s = [$1, S2, ...] such that V§; € m,us

it holds that (M1, 3;) = ¢1 do

8 1= (8,4), M := AddMust(M, )

9: if M'|=C then

10: return M’

11: while there exists maximal path 7,5 = [3, §1, S2, ...] such that Vs; #
§ € Mpust it holds that (M, 3;) f~ ¢1 do

12: M= M,

13: for allA§i € Tust dO
14: if (Mla '§Z) l?é ¢1 then

15: RET = AbstractRepair(M’, Si, 01, C)
16: if RET # FAILURE then

17: M':= RET

18: else

19: continue to next path

20: return M’

21: M’ := AddState(M, 5,)

22: RET := AbstractRepair(M’, Sy 01, C)
23: if RET # FAILURE then

24: M’ := RET

25 = (8, 8,), M’ := AddMust(M', )
26: if 3, is a dead-end state then

27: P = (8n, 8n), M := AddMust(M', )
98: if M’ |=C then

29: return M’

30: return FAILURE
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Abstract Repair g which is presented in Algorithm [8)is the primitive func-
tion which is called when input CTL property is in the form of EG¢;. Ini-
tially, if ¢; is not satisfied at § Abstract Repair is called for s and ¢, and a
KMTS M, is produced. At first, a must-transition is added from § to a state
$; of a maximal must-path (i.e. a must-path in which each transition ap-
pears at most once) Tpust := [S1, S2, ...] such that V§; € must, (Ml, 8) E é1.
If all constraints are satisfied, then the repaired KM'TS is returned. Oth-
erwise, a KMTS is produced by recursively calling AbstractRepair to all
states §; # § of any maximal must-path m,,,s := [$1, S2, ...] With V&; € must,
(Ml, $;) & ¢1. If there are violated constraints in C, then a repaired KMTS
is produced by adding a new state, calling Abstract Repair for this state
and property ¢, and calling AddMust to insert a must-transition from §
to the new state. The resulting KMTS is returned by the algorithm, if all

constraints in C' are satisfied.
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Algorithm 9 Abstract Repair ap

Input: M = (5’, So,Rmust,Rmay,ﬁ), § € S, a CTL property ¢ =
AF¢, for which (M,3) [ ¢, and a set of constraints C' =
{(8ey, Dcr)s (Scqs ey )y oovs (8eps D, )} Where §., € S and ¢, is a CTL for-

mula.
Output: M’ = (5, S}, Rpsrs Riays L') and (M, 8) = ¢ or FAILURE.
1: M' = M
2: while there exists maximal path 7., = [$, 1, ...] such that Vs, € 7,4,

it holds that (M’,3;) b~ ¢, do
3 for all 5; € mpqy do

4 RET = AbstmctRepair(M’,@,gbl,C)
5 if RET # FAILURE then

6: M':= RET

7 continue to next path

8:  return FAILURE

9: return M’

Abstract Repair o shown in Algorithm [9]is called when the CTL formula
¢ is in the form of AF¢;. While there is maximal may-path 7,4, =[5, 51, ...]
such that V5, € T4y, (M’,éi) K @1, AbstractRepairap tries to obtain a
repaired KMTS by recursively calling AbstractRepair to some state §; €
Tmay- 1f all constraints are satisfied to the new KMTS, then it is returned as

the repaired model.
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Algorithm 10 Abstract Repairgp

Input: M = (g,go,Rmust,Rmay,ﬁ), § € S, a CTL property ¢ =
EF¢, for which (M,s) £ ¢, and a set of constraints C' =
{(8ey, Dcr)s (8cqs ey )y oovs (8eps D, )} Where §., € S and ¢, is a CTL for-
mula.

Output: M’ = (S’,ﬁ(’), R R

must’ ~ “may’

L’) and (M, 3) |= ¢ or FAILURE.
1: for all must-reachable states §; from § with (M, ;) & ¢1 or §;:= 5 do

2. for all §, € S such that (M, §;) = ¢1 do

3: = (3, 8), M’ := AddMust(M, )

1: if M’ |= C then

5: return M’

6: for all must-reachable states §; from § with (M, §;) £ ¢; do

7. RET := AbstmctRepair(M, Si,¢1,C)

8: if RET # FAILURE then

9: M':= RET

10: return M’

11: M = AddState(M’,én), RET = AbstmctRepair(Ml,é’n,qﬁl,C’)

12: if RET # FAILURE then

13: M, := RET

14:  for all must-reachable states 3; from § with (M,é,) e ¢ or § = §
do

15: o= (81, 8,), M' := AddMust(M, #;)

16: if §,, is a dead-end state then

17: P = (8, 8n), M’ := AddMust(M', 7,)

18: if M'}=C then

19: return M’

20: return FAILURE

Abstract Repairgr shown in Algorithm (10| is called when the CTL prop-
erty ¢ is in the form EF¢,. Initially, a KMTS is acquired by adding a
must-transition from a must-reachable state §; from S to a state 55 € S such
that (M,3,) | ¢1. If all constraints are satisfied then this KMTS is re-

turned. Otherwise, a KMTS is produced by applying Abstract Repair to a
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must-reachable state §; from s for ¢;. If none of the constraints is violated
then this KMTS is returned. At any other case, a new KMTS is produced by
adding a new state s,, recursively calling Abstract Repair for this state and
¢ and adding a must-transition from § or from a must-reachable §; from s to
Sp. If all constraints are satisfied, then this KMTS is returned as a repaired

model by the algorithm.

Algorithm 11 Abstract Repair ay

Input: M = (5’, go,RmushRmay,lAl), 5§ € 5’, a CTL property ¢
A(¢1Ugs) for which (M,3) £ ¢, and a set of constraints C' =
),

{(8eys Pey)s (Segs Pen)y oy (8, De,, )} Where 8., € S and ¢, is a CTL for-
mula.
Output: M’ = (5, S}, Rlpsrs Ripays L') and (M, 8) |= ¢ or FAILURE.

1: Ml = M

2: if (M,3) ~ ¢, then

3: RET := AbstmctRepai'r’(M, s, ¢1,C)

4 if RET == FAILURFE then

5: return FAILURE

6: else

7 M, := RET

8: while there exists path 7,4, = [51, ..., $p,] such that V3§; € m,,,, it holds

that (Ml, $;) = ¢1 and there does not exist 7, := (8, 8n) € Ry such
that (Ml,én) ): gbg do A
9: for all §]‘ € Mmnay for which (Ml, §]) 175 ¢2 with §j 7& 5 do

10: RET = AbstmctRepair(Ml,éj,qﬁQ,C)
11: if RET # FAILURE then

12: M’ := RET

13: continue to next path

14: return R FAILURE
15: return M’

Abstract Repair 5y is presented in Algorithm [11] and is called when ¢ =
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A(1U¢ps). If ¢ is not satisfied at §, then a KMTS M is produced by
applying Abstract Repair to s for ¢;. Otherwise, M is same to M. A new
KMTS is produced as follows: for all may-paths 7,4, := [51, ..., $;] such that
V3; € Tumay, (M1, 3;) = ¢y and for which there does not 7, := (8, 8n) € Rinay
with (Ml, $n) E @2, AbstractRepair is called for property ¢, for some state
8j € Tmay With (Ml, ;) = ¢o. If the resulting KMTS satisfies all constraints,

then it is returned as a repair solution.
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Algorithm 12 Abstract Repair gy

Input: M = (5’, So,Rmust,Rmay,f}), § € S, a CTL property ¢ =
E(p1U¢y) for which (M,3) W ¢, and a set of constraints C' =
{(8ey, Dcr)s (8cqs ey )y oovs (8eps D, )} Where §., € S and ¢, is a CTL for-

mula.
Output: M = (8", 80, Rlpsts Ry L') and (M, 3) |= ¢ or FAILURE.
1: M1 =M

2: if (M,3) ~ ¢, then

RET = AbstractRepair(M, $,¢1,C)

if RET == FAILURFE then
return FAILURE

else
M, := RET

: while there exists path muq = [51, .., $m] such that V$; € muse,
(M, 8;) = ¢1 do )

9: for all §; € S with (M3, 5,) = ¢2 do

10: fj = (§m>§j)7 M/ = AddMUSt(Ml,f]>
11:  if M'|=C then
12: return M’

13: M’ := AddState(My, §;)

14: RET = AbstmctRepair(M’, Sk, ¢, C)
15: if RET # FAILURFE then

16: M’ := RET

17: 7= (3,8,), M’ := AddMust(M',#,)
18: if §; is a dead-end state then

19: o= (8, 8), M= AddMust(M', 7)
20 if M'=C ‘then
21: return M’

22: return FAILURE

Abstract Repairgy is called if for input CTL formula ¢ it holds that ¢ =
E(¢1Ugs). AbstractRepairgy is presented in Algorithm [12] Firstly, if ¢, is
not satisfied at s, then AbstractRepair is called for § and ¢; and a KMTS

M, is produced for which (Ml,é) = ¢1. Otherwise, M, is same to M. A
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~

new KMTS is produced as follows: for a must-path 7,5 = [$1, ..., $,n] such
that V3; € Tmust, (M1,3) = ¢y and for a ; € S with (M, 3;) = ¢, a
must-transition is added from s, to 5;. If all constraints are satisfied then
the new KMTS is returned. Alternatively, a KMTS is produced by adding a
new state §,, recursively calling Abstract Repair for ¢9 and §,, and adding a
must-transition from $ to §,,. In the case that no constraint is violated then

this is a repaired KMTS and it is returned from the function.

3.3.2 Properties of the Algorithm

AbstractRepair is well-defined [82], in the sense that the algorithm always
proceeds and eventually returns a result M1’ or FAILURE such that (', §) |=
¢, for any input M, ¢ and C, with (M, 8) b~ ¢. Moreover, the algorithm steps
are well-ordered, as opposed to existing concrete model repair solutions [25]

89] that entail nondeterministic behavior.

Soundness

Lemma 19. Let a KMTS M, a CTL formula ¢ with (M,§) ¥ ¢ for some
8 of M, and a set C = {(30, 9c,), (Bezs Gea)s s (0, b))} with (M, 3¢,) = 6,
for all (s.,,¢.,) € C. If AbstractRepair(M,é,gzﬁ, C) returns a KMTS M,
then (M',3) = ¢ and (M',5.,) | o, for all (3, ¢,) € C.

Proof. We use structural induction on ¢. For brevity, we write M E C to

denote that (M, 8,,) |= ¢, for all (5., ¢.,) € C.
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Base Case:
e if =T, the lemma is trivially true, because (M, S$)Eo¢

e if = 1, then AbstmctRepair(M, $,¢,C) returns FAILURE at line 2

of Algorithm [I] and the lemma is also trivially true.

e ifp=pe AP, AbstractRepairATOMlc(M, $,p,C) is called at line 4 of
Algorithm [1| and an M’ = C’hangeLabel(M, §,p) is computed at line 1
of Algorithm 2l Since p € IA/(§) in M, from 3-valued semantics of CTL
over KMTSs we have (M, §) |= ¢. Algorithm [2| returns M at line 3, if

and only if M’ |= C' and the lemma is true.

Induction Hypothesis: For CTL formulae ¢, ¢, the lemma is true.
Thus, for ¢; (resp. ¢o), if AbstmctRepair(M,§,¢1,C) returns a KMTS
M, then (M, 3) = ¢y and M’ |= C.

Inductive Step:

e if ¢ = Vo, then AbstmctRepair(]V[, s, ¢,C) calls Abstract Repairor
(M, 8,01V 9, (') at line 8 of Algorithm . From the induction hypothe-
sis, if a KMTS M is returned by AbstmctRepair(M, §,¢1,C) at line 1
of Algorithmand a KMTS M, is returned by AbstmctRepair(M , S, ¢
,C) respectively, then (Ml, 3) E ¢, M, = C and <M27 5) E o1,
M, = C. AbstmctRepairOR(M, 8,01V ¢9,C) returns at line 8 of Al-
gorithm (1| the KMTS M/, which can be either Ml or MQ. Therefore,



3.3. The Abstract Model Repair Algorithm 92

(M’,8) |= ¢y or (M',8) |= ¢ and M’ |= C in both cases. From 3-valued

semantics of CTL, (M, 8) = ¢1 V ¢, and the lemma is true.

o if p = Py Ao, then Abstract Repairanp (M, 8,01 AN, C) is called from
Abstract Repair(M, §, ¢, C) at line 6 of Algorithm |1l From the induc-
tion hypothesis, if at line 1 of Algorithm AbstmctRepair(M, 8, ¢1,C)
returns a KMTS My, then (My, 3) |= ¢, and M, = C. Consequently,
M, = C, where C; = C' U (8, ¢1). At line 7, if AbstmctRepair(Ml, 3,
¢, Cy) returns a KMTS M, then from the induction hypothesis (M1, §)
= ¢y and M| = C).

In the same manner, if the calls at lines 2 and 12 of Algorithm [3|return
the KMTSs M, and M}, then from the induction hypothesis (Ms, §) =
$a, My |= C and (M}, 8) = ¢y, M} = Cy with Co = C' U (3, ¢5).

The KMTS M’ at line 6 of Algorithm [1| can be either M/ or M} and
therefore, (M',3) = ¢y, (M',5) = ¢3 and M’ |= C. From 3-valued
semantics of CTL it holds that (M’,5) = é1 A ¢o and the lemma is

true.

o if g = EX¢, AbstmctRepairEX(M, S, EX ¢1,C) is called at line 10 of
Algorithm [I}

If a KMTS M’ is returned at line 5 of Algorithm |§|, there is a state §;
with (M, 4,) = ¢, such that M’ = AddMust(M, (%,%,)) and M’ |= C.
From 3-valued semantics of CTL, we conclude that (M’,3) = EX ;.
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If a M’ is returned at line 11, there is (8,51) € Rpust such that
(M’,%,) = ¢ and M’ = C from the induction hypothesis, since
M = AbstmctRepair(M, 81, ¢1, C). From 3-valued semantics of CTL,
we conclude that (M, §) = EX¢,.

If a M is returned at line 18, a must transition (8, §,,) to a new state has
been added and M’ = Abstract Repair(AddMust(M, (3, 5,)), 4n, 61, C).
Then, from the induction hypothesis (M’, 3,) = ¢, M’ = C' and from
3-valued semantics of CTL, we also conclude that (M, 3) = EX¢;.

o if o = AG¢y, AbstmctRepaz’r(M,§,¢, C) calls AbstmctRepai?“Ag(M,
3,AG¢y,C) at line 10 of Algorithm [I} If (M,3) £ ¢y and Abstract
Repair(M, $,¢1,C) returns a KMTS Moy at line 2 of Algorithm , then
from the induction hypothesis (Mp, 8) = ¢; and M, = C. Otherwise,
My = M and (My, §) |= ¢ also hold true.

If Algorithm 4| returns a M’ at line 16, then M’ | C and M’ is
the result of successive AbstractRepair(Mi, Sk, ¢1,C) calls with M, =
AbstmctRepair(Mi,l,§k,gz§1,C) and i = 1,..., for all may-reachable
states S from 5 such that (MO, S) & ¢1. From the induction hypoth-
esis, (M',4,) = ¢y and M’ |= C for all such §, and from 3-valued

semantics of CTL we conclude that (M, §) = AGé;.
We prove the lemma for all other cases in a similar manner. O

Corrolary 1 (Soundness). Let a KMTS M, o CTL formula ¢ with (M, 8)
®, for some § of M. If AbstmctRepair(M, 5,0,0) returns a KMTS M', then



3.3. The Abstract Model Repair Algorithm 94

(M',3) = ¢.

Proof. We use structural induction on ¢ and Lemma [I9]in the inductive step
for ¢1 N ¢2.

Base Case:
e if ¢ = T, Theorem [1] is trivially true, because (M, 3) | ¢.

o if = 1, then AbstmctRepair(M, §, L,0) returns FAILURE at line 2

of Algorithm [I] and the theorem is also trivially true.

eif p=pec AP, AbstmctRepairATOMm(M, 5,p,0) is called at line 4 of
Algorithm |1} and an M = ChangeLabel(M, $,p) is computed at line
1. Because of the fact that p € L/(3) in M, from 3-valued semantics
of CTL over KMTSs we have (M, §) |= ¢. Algorithm [2| returns M’ at

line 3 because C' is empty, and the theorem is true.

Induction Hypothesis: For CTL formulae ¢1, ¢o, the theorem is true.
Thus, for ¢; (resp. ¢s), if AbstmctRepaz’r(M,é,gb, ) returns a KMTS M,
then (M, 3) = ¢.

Inductive Step:

o if ) = 1V ¢y, then AbstractRepair(M, 5, ¢,0) calls Abstract Repairor

(M, §,01V ¢a,0) at line 8 of Algorithm
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From the induction hypothesis, if AbstmctRepaz’r(M , 8,01, 0) returns
a KMTS M at line 1 of Algorithm 5| and Abstract Repair(M, 8, ¢o,0)
returns a KMTS M, respectively, then (Ml, $) E ¢1 and (Mg, 3) E o¢1.
AbstmctRepairOR(M, S, 01V ¢, D) returns at line 8 of Algorithm [1|the
KMTS M’, which can be either M; or M,. Therefore, (M, §) |= ¢, or
(M’,3) |= ¢. From 3-valued semantics of CTL, (M’,38) = ¢1 V ¢ and

the theorem is true.

e if = ¢ Ao, then AbstmctRepairAND(M, 8,01 A ¢a, D) is called from
AbstractRepair(M, 5, ¢,0) at line 6 of Algorithm . From the induction
hypothesis, if at line 1 of Algorithm AbstmctRepair(M, §,¢1,0) re-
turns a KMTS M;, then (Ml, §) E ¢1. Consequently, M, = C4, where
Cr =0U (8 ¢1). At line 7, if AbstmctRepaz’r(Ml, $, ¢9,C1) returns a
KMTS M, then from Lemma [19] (M}, 3) = ¢, and M] |= C}.
Likewise, if the calls at lines 2 and 12 of Algorithm [3|return the KMTSs
M, and M}, then from the induction hypothesis (Ms, §) = ¢» and from
Lemma (M3, 8) |= ¢1, M} = Co with Cy = QU (3, ¢s).

The KMTS M’ at line 7 of Algorithm [1| can be either M/ or M} and

therefore, (M, 3) = ¢y and (M’,38) |= ¢y. From 3-valued semantics of
CTL it holds that (M’,3) |= ¢1 A ¢ and the lemma is true.

o if 9 = EX¢y, AbstractRepair(M, 5,0,0) calls AbstractRepairEX(M,
5, EX¢1,0) at line 10 of Algorithm [1]

If a KMTS M’ is returned at line 5 of Algorithm |§|, there is a state
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8, with (M, %) = ¢y such that M’ = AddMust(M,(3,5)). From
3-valued semantics of CTL, we conclude that (M, ) = EX¢,.

If a M’ is returned at line 11, there is (8,51) € Rpust such that
(M’,él) = ¢1 from the induction hypothesis, since M' = Abstract

Repair(M, $1,¢1,0). From 3-valued semantics of CTL, we conclude

that (M’,8) = EX¢,.

If a M is returned at line 18, a must transition (8, §,,) to a new state has
been added and M’ = Abstract Repair(AddMust(M, (3,3,)), 5, ¢1,0).
Then, from the induction hypothesis (M’,3,) = ¢; and from 3-valued

semantics of CTL, we also conclude that (M, §) = EX¢,.

o if p = AG¢y, AbstmctRepair(M, 5,0,0) calls AbstmctRepairAg(M, 3,
AG¢1,0) at line 10 of Algorithm If (M, 3) W~ ¢y and Abstract Repair
(M, §, 1, 0) returns a KMTS My at line 2 of Algorithm then from the
induction hypothesis (My, §) |= ¢. Otherwise, My = M and (Mo, §)
¢1, My = C also hold true.

If Algorithmreturns a M’ at line 16, this KMTS is the result of succes-
sive calls of AbstractRepair(Mi, Sk, ¢1,0) with M; = Abstract Repair
(Mi,1,§k,q§1,(2)) and i = 1,..., for all may-reachable states §; from §
such that (My, 8,) F ¢1. From the induction hypothesis, (M, §;) |= ¢

for all such §;, and from 3-valued semantics of CTL we conclude that

(A1, 3) = AGér.

We prove the theorem for all other cases in the same way.
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O

Theorem [I] shows that AbstractRepair is sound in the sense that if it
returns a KMTS M, then M’ satisfies property ¢. In this case, from the

definitions of the basic repair operations, it follows that one or more KSs can

be obtained for which ¢ holds true.

Semi-completeness

Definition 34 (mr-CTL). Given a set AP of atomic propositions, we define

the syntax of a CTL fragment inductively via a Backus Naur Form:

¢ u==L|T|p[(=p)|(¢V )| AXp|EXp|AFp

| EFp| AGp | EGp| A[pU p] | E[pU p]

where p ranges over AP.

mr-CTL includes most of the CTL formulae apart from those with nested

path quantifiers or conjunction.

Theorem 20 (Completeness). Given a KMTS M, an mr-CTL formula ¢
with (]\AJ7 3) W @, for some § of M, if there exists a KMTS M" over the same
set AP of atomic propositions with (M”, 3) E o, AbstractRepair(M, 5,0,0)

returns a KMTS M’ such that (M',3) = ¢.

Proof. We prove the theorem using structural induction on ¢.
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Base Case:

o if = T, Theorem is trivially true, because for any KMTS M it
holds that (M, ) = ¢.

e if = 1, then the theorem is trivially true, because there does not

exist a KMTS M” such that (M",3) = ¢.

o if ® = p € AP, there is a KMTS M” with p € f/”(é) and therefore
(M”, $) = ¢. Algorithm [1] calls AbstractRepai?"ATOM[c(M,§,p, 0) at
line 4 and an M’ = C’hcmgeLabel(M, $,p) is computed at line 1 of
Algorithm . Since C'is empty, M is returned at line 3 and (M’, 8) = ¢

from 3-valued semantics of CTL. Therefore, the theorem is true.

Induction Hypothesis: For mr-CTL formulae ¢1, ¢o, the theorem is true.
Thus, for ¢; (resp. ¢9), if there is a KMTS M" over the same set AP of
atomic propositions with (M”, s) E ¢, AbstmctRepair(M, §,¢1,0) returns
a KMTS M’ such that (M, 3) |= 6.

Inductive Step:

o if p = ¢ V ¢, from the 3-valued semantics of CTL a KMTS that
satisfies ¢ exists if and only if there is a KMTS satisfying any of the
¢1, ¢2. From the induction hypothesis, if there is a KMTS M{’ with
(M}, 8) |= ¢1, AbstractRepair(M,3,¢1,0) at line 1 of Algorithm
returns a KMTS M/ such that (M],3) = ¢;. Respectively, Abstract
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Repair(M, 8, ¢o, 0) at line 2 of Algorithmcan return a KMTS M} with
(M3, 5) = ¢o. In any case, if either M{ or M} exists, for the KMTS
M’ that is returned at line 13 of Algorithm [5| we have (M’,8) = ¢y or
(M’,3) |= ¢ and therefore (M, §) = ¢.

o if p = FX¢, from the 3-valued semantics of CTL a KMTS that sat-
isfies ¢ at s exists if and only if there is KMTS satisfying ¢; at some

direct must-successor of s.

If in the KMTS M there is a state § with (M,3,) = ¢, then the
new KMTS M’ = AddMust(M, (3,3;)) is computed at line 3 of Algo-
rithm@ Since C'is empty M’ is returned at line 5 and (]\7[’, S) E EX¢.

Otherwise, if there is a direct must-successor §; of s, AbstractRepair
(M, 3;, ¢1,0) is called at line 8. From the induction hypothesis, if there
is a KMTS M” with (M”, §;) |= ¢, then a KMTS M’ is computed such

~

that (M’, $;) | ¢1 and therefore the theorem is true.

If there are no must-successors of §, a new state §, is added and sub-
sequently connected with a must-transition from §. AbstractRepair is

then called for ¢; and §,, as previously and the theorem holds also true.

o if 9 = AG¢q, from the 3-valued semantics of CTL a KMTS that satisfies
¢ at § exists, if and only if there is KMTS satisfying ¢; at s and at
each may-reachable state from 3.

AbstractRepair(M, §,¢1,0) is called at line 2 of Algorithm |4/ and from
the induction hypothesis if there is KMTS M}, with (M, 8) = ¢, then
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a KMTS M, is computed such that (M, §) |= ¢1. AbstractRepair is
subsequently called for ¢, and for all may-reachable §; from § with
(Mo, 3) ¥~ ¢1 one-by-one. From the induction hypothesis, if there
is KMTS MZ’ that satisfies ¢; at each such 5i, then all M, = Abstract

Repair(M;_1, 8k, $1,0), i = 1, ..., satisfy ¢ at §; and the theorem holds

true.

We prove the theorem for all other cases in the same way.
O

Theorem [20| shows that AbstractRepair is semi-complete with respect to
full CTL: if there is a KMTS that satisfies a mr-CTL formula ¢, then the
algorithm finds one such KMTS.

3.3.3 Complexity Issues

AMR’s complexity analysis is restricted to mr-CTL, for which the algorithm
has been proved complete. For these formulas, we show that AMR is upper
bounded by a polynomial expression in the state space size and the number
of may-transitions of the abstract KMTS, and depends also on the length of
the mr-CTL formula.

For CTL formulas with nested path quantifiers and/or conjunction, AMR
is looking for a repaired model satisfying all conjunctives (constraints), which
increases the worst-case execution time exponentially to the state space size of

the abstract KMTS. In general, as shown in [19], the complexity of all model
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repair algorithms gets worse when raising the level of their completeness, but
AMR has the advantage of working exclusively over an abstract model with
a reduced state space compared to its concrete counterpart.

Our complexity analysis for mr-CTL is based on the following results.
For an abstract KMTS M = (5’, So, Rnusts Rinay: f)) and a mr-CTL property
¢, (i) 3-valued CTL model checking is performed in O(|¢|- (|S|+|Rmay|)) [53],
(i) Depth First Search (DFS) of states reachable from § € S is performed in
O(S] + |Rmay|) in the worst case or in O(]S| + |Ryus|) when only must-
transitions are accessed, (iii) finding a maximal path from § € S using
Breadth First Search (BFS) is performed in O(|S| + |Rymay|) for may-paths
and in O(|S| + | Ryust|) for must-paths.

We analyze the computational cost for each of the AMR’s primitive func-

tions:

o if = p € AP, AbstractRepairaroyic is called and the operation

ChangeLabel is applied, which is in O(1).

o if ¢ = EX¢q, then AbstractRepairgx is called and the applied op-
erations with the highest cost are: (1) finding a state satisfying ¢,
which depends on the cost of 3-valued CTL model checking and is
in O(|S| - |p1] - (IS] + |Rimayl)), (2) finding a must-reachable state,
which is in O(|S| + |Rpust|). These operations are called at most once

and the overall complexity for this primitive functions is therefore in

O(IS] - 1] - (IS] + | Rynay]))-
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o if ¢ = AX¢q, then AbstractRepairax is called and the most costly
operations are: (1) finding a may-reachable state, which is in O(|S| +
| Rnay|), and (2) checking if a state satisfies ¢, which is in O(|¢y|-(|S|+
| Rimay|)). These operations are called at most | S| times and the overall

bound class is O(|S| - |¢1] - (|S] + | Rumay]))-

o if p = EF ¢y, Abstract Repairgp is called and the operations with the
highest cost are: (1) finding a must-reachable state, which is in O(| S|+
|Riust|), (2) checking if a state satisfies ¢; with its bound class being
O(|61] - (|S] + | Rmay|)) and (3) finding a state that satisfies ¢;, which
is in O(|S] - |¢1] - (|S] + | Rmay|)). These three operations are called at
most | S| times and consequently, the overall bound class is O(|S|?-|¢y|-

(151 + [Runay))-

o if = AF ¢, Abstract Repair 45 is called and the most costly operation
is: finding a maximal may-path violating ¢; in all states, which is in
O(IS| - [é1] - (|S] + | Rmay|). This operation is called at most | S| times

and therefore, the overall bound class is O(|S|? - [¢1] - (IS| 4 | Rmay|))-

In the same way, it is easy to show that: (i) if ¢ = EG¢,, then Abstract
Repairgg is in O(|S] - |p1] - (|S] + |Rmust]), (ii) if ¢ = AG¢y, then Abstract
Repairag is in O(|S| - [¢1] - (|1S] + |Rmayl)), (iii) if ¢ = E(¢Ugs), then
the bound class of AbstractRepairgy is O(|S| - |é1] - (|S] + |Rmuse|), (iv) if
¢ = A(¢1Udy) then AbstractRepairay is in O(|S)? - |¢1] - (|S] + | Rmayl))-

For a mr-CTL property ¢, the main body of the algorithm is called at
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most |¢| times and the overall bound class of the AMR algorithm is O(|S|? -

(67 - (151 + [ Rnay ))-

3.3.4 Application

We present the application of AbstractRepair on the ADO system from Sec-
tion 2.1} After the first two steps of our repair process, AbstractRepair is
called for the KMTS agefinea(M) that is shown in Fig. the state Sp; and
the CTL property ¢ = AGEXq.

AbstractRepair calls Abstract Repair ac with arguments agefinea(M), So1
and AGEXq. The AbstractRepair g algorithm at line 10 triggers a recur-
sive call of AbstractRepair with the same arguments. Eventually, Abstract
Repairgx is called with arguments agefinea(M), So1 and EXg, that in turn
calls AddMust at line 3, thus adding a must-transition from $g; to §;. Ab-
stractRepair terminates by returning a KMTS M’ that satisfies ¢ =AGEXq.
The repaired KS M’ is the single element in the set of KSs derived by the
concretization of M’ (cf. Def. . The execution steps of AbstractRepair and
the obtained repaired KMTS and KS are shown in Fig. and Fig.

respectively.
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Figure 3.10: Repair of ADO system using abstraction.

Although the ADO is not a system with a large state space, it is shown
that the repair process is accelerated by the proposed use of abstraction. If on
the other hand model repair was applied directly to the concrete model, new

transitions would have have been inserted from all the states labeled with
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—open to the one labeled with open. In the ADO, we have seven such states,
but in a system with a large state space this number can be significantly
higher. The repair of such a model without the use of abstraction would be

impractical.

3.3.5 Discussion

AMR algorithm has a strong efficiency upper hand with respect to other con-
crete model repair methods, because all the operations needed to acquire the
repaired solution take place on the abstract model which may be significantly
smaller than the state space of the concrete model.

The refinement process which is a main part of the AMR framework
always tries to find a bigger and potentially more precise KMTS, in the case
that a repair solution cannot be retrieved from the current abstract KMTS.
Despite the fact that the current refinement method is not monotonic, i.e. it
does not ensure that it will always terminate with an abstract model which
will give a definite answer to the model checking problem, it will always
converge to the initial concrete model. Consequently, our AMR framework
does not reduce the possibility of obtaining a repaired KS compared to the
direct concrete model repair method. All cases, having in mind that the use
of GKMTSs [78] as the abstract model can lead to monotonic refinement
method, it makes the potential of creating an AMR framework based on
GKMTSs far more intriguing.

The distance of the repair solution found from the AMR framework from
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the initial concrete model may be greater than the distance of the repair
solution found from a direct concrete model repair method to the initial
concrete model. This is the price we should pay for the use of abstraction
though in practice the price is a benefit in the sense that direct concrete
model repair algorithms cannot terminate due to the state space explosion
problem for models with large state spaces.

In this thesis, the use of constraints in our AMR algorithm is used only as
a means of repairing nested or conjunctive CTL formulas. These constraints
can be used in the future in order to ensure that the repair solution returned
from the algorithm satisfies a number of major CTL formulas which are also
satisfied in the initial concrete model, thus ensuring that crucial properties

of the model are not violated in the final repaired KS.

3.4 Experimental Results: The Andrew File

System 1 (AFS1) Protocol

In this section, we provide experimental results for the relative performance
of a prototype implementation of our AMR algorithm in comparison with
a prototype implementation of a concrete model repair solution [89]. The
results serve as a proof of concept for the use of abstraction in model repair
and demonstrate the practical utility of our approach.

As a model we use a KS for the Andrew File System Protocol 1 (AFSI)

[88], which has been repaired for a specific property in [89]. AFS1 is a client-
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server cache coherence protocol for a distributed file system. Four values are
used for the client’s belief about a file (nofile, valid, invalid, suspect) and
three values for the server’s belief (valid, invalid, none).

A property which is not satisfied in the AFS1 protocol in the form of

CTL is:

AG((Server.belief = valid) — (Client.belief = valid))
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Figure 3.11: The KS and the KMTS of the AFS1 protocol after the 2nd
refinement step.
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Figure 3.12: The repaired KMTS and KS of the AFS1 protocol.
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We define the atomic proposition p as Server.belief = wvalid and q as
Client.belief = valid, and the property is thus written as AG(p — ¢). The
KS for the AFS1 protocol is depicted in Fig. State colors show how
they are abstracted in the KMTS of Fig. [3.11b] which is derived after the
2nd refinement step of our AMR framework (Fig. [3.1). The shown KMTS
and the CTL property of interest are given as input in our prototype AMR
implementation.

To obtain larger models of AFS1 we have extended the original model by
adding one more possible value for three model variables. Three new models
are obtained with gradually increasing size of state space.

The results of our experiments are presented in Table The time
needed for the AMR prototype to repair the original AFS1 model and its
extensions is from 124 to even 836 times less than the needed time for concrete
model repair. The repaired KMTS and KS for the original AFS1 model are
shown in Fig.

An interesting observation from the application of the AMR algorithm on
the repair of the AFS1 KS is that the distance d (cf. Def. of the repaired
KS from the original KS is less than the corresponding distance obtained
from the concrete model repair algorithm in [89]. This result demonstrates

in practice the effect of the minimality of changes ordering, on which the

AMR algorithm is based on (cf. Fig.[3.9).
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Models Concrete | Concr. Re- | AMR Improvement
States pair (Time | (Time in | (%)
(thou- in sec.) sec.)
sands)
AFS1 26 17.4 0.14 124
AFS1(Extensionl) | 30 24.9 0.14 178
AFS1(Eaxtension2) | 34 35.0 0.14 250
AFS1(Extension3) | 38 117.0 0.14 836

Table 3.1: Experimental results of AMR with respect to concrete repair
3.5 Related Work

To the best of our knowledge this is the first work that suggests the use
of abstraction as a means to counter the state space explosion in search
of a model repair solution. However, abstraction and in particular abstract
interpretation has been used in program synthesis [84], a different but related
problem to the model repair. Program synthesis refers to the automatic
generation of a program based on a given specification. Another related
problem where abstraction has been used is that of t¢rigger querying [9):
given a system M and a formula ¢, find the set of scenarios that trigger ¢ in
M.

The related work in the area of program repair do not consider KSs as the
program model. In this context, abstraction has been previously used in the
repair of data structures [74]. The problem of repairing a Boolean program
has been formulated in [80, 63, 56, 85] as the finding of a winning strategy
for a game between two players. The only exception is the work reported

in [77].
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Another line of research on program repair treats the repair as a search
problem and applies innovative evolutionary algorithms [6], behavioral pro-
gramming techniques [59] or other informal heuristics [86, 2l 87].

Focusing exclusively on the area of model repair without the use of ab-
straction, it is worth to mention the following approaches. The first work
on model repair with respect to CTL formulas was presented in [5]. The
authors used only the removal of transitions and showed that the problem
is NP-complete. Another interesting early attempt to introduce the model
repair problem for CTL properties is the work in [23]. The authors are based
on the Al techniques of abductive reasoning and theory revision and propose
a repair algorithm with relatively high computational cost. A formal algo-
rithm for model repair in the context of KSs and CTL is presented in [89).
The authors admit that their repair process strongly depends on the model’s
size and they do not attempt to provide a solution for handling conjunctive
CTL formulas.

In [26], the authors try to render model repair applicable to large KSs by
using “table systems”, a concise representation of KSs that is implemented
in the NuSMYV model checker. A limitation of their approach is that table
systems cannot represent all possible KSs. In [90], tree-like local model up-
dates are introduced with the aim of making the repair process applicable to
large-scale domains. However, the proposed approach is only applicable to
the universal fragment of the CTL.

A number of works attempt to ensure completeness for increasingly larger
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fragments of the CTL by introducing ways of handling the constraints as-
sociated with conjunctive formulas. In [67], the authors propose the use of
constraint automata for ACTL formulas, while in [25] the authors introduce
the use of protected models for an extension of the CTL. Both of the two
methods are not directly applicable to formulas of the full CTL.

The model repair problem has been also addressed in many other contexts.
In [48], the author uses a distributed algorithm and the processing power of
computing clusters to fight the time and space complexity of the repair pro-
cess. In [42], an extension of the model repair problem has been studied
for Labeled Transition Systems. In [I3], we have provided a solution for the
model repair problem in probabilistic systems. Another recent effort for re-
pairing discrete-time probabilistic models has been proposed in [75]. In [15],
model repair is applied to the fault recovery of component-based models.
Finally, a slightly different but also related problem is that of Model Revi-
sion, which has been studied for UNITY properties in [16], 18] and for CTL
in [58]. Other methods in the area of fault-tolerance include the work in [52],
which uses discrete controller synthesis and [50], which employs SMT solv-
ing. Another interesting work in this direction is in [47], where the authors
present a repair algorithm for fault-tolerance in a fully connected topology,

with respect to a temporal specification.



Chapter 4

Abstract Model Repair for

Probabilistic systems

4.1 The Model Repair problem for probabilis-
tic systems

In this section, we define a metric space for measuring the distance between
DTMCs with the same state labeling, and then the Model Repair problem

for DTMCs [13].
Definition 35. For any two vectors A = (ay, ..., a,) and B = (by, ..., b,) with
length n, the Manhattan distance d,, is defined as follows:

du(A,B) =Y Ja; b

=1

114
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O

Definition 36. For any two M = (S, Sinit, P, L) and M’ = (S, Sini, P', L) in
the set Dy of all DTMCs with the same state space S and the same labeling

function L, the distance function d over D), is defined as follows:

d(M,M") = d,,(A, B)

with A = (P(s0,50), P(s0,51), .-, P(5i,5;) ... P(sp, Sn))
and B = (P'(so,50), P'(50,51)s -, P'(8i,85) ... P'(8n,8p)) for all s;,s; € S.

For any two DTMCs with the same state space S and the same labeling
function L, the function d measures the differences between the corresponding

transition probabilities.
Proposition 21. The ordered pair (D), d) is a metric space.

Proof 1. This is inferred from the fact that the Manhattan distance between

any two vectors is a distance metric. [

Definition 37. Given a DTMC M and a PCTL formula ¢ where M [~ ¢,
the Model Repair problem is to find a DTMC M’, such that M' = ¢ and

d(M, M) is minimum with respect to all such M.

The objective of the Model Repair problem in the context of probabilistic
systems is to modify the given DTMC, in order to satisfy a PCTL property ¢,

which is not satisfied. The repair solution should have the smallest possible
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distance from the initial model compared to all other models satisfying .
In next sections we show how the model repair problem is transformed into

a minimization problem for the changes of the transition probabilities in the

DTMC.

4.2 The PAMR framework

The PAMR framework uses 3-valued abstract probabilistic models for the
repair of DTMCs with respect to given probabilistic reachability properties
(ADTMGCs) . The goal of our framework is to provide a method that looks for
the repair solution with the smallest possible distance from a given DTMC.
This method should be feasible and efficient for models with large state
spaces.

The process consists of the following steps, which are shown in Fig. [4.1}

Step 1. For a DTMC M, a state s and a property ¢ = P<,[F] or ¢ =
Ps,[F1)], such that (M, s) }~ ¢, an ADTMC M = a(M) is acquired as
in Def.

Step 2. The PAMR algorithm is called with inputs M, M, § = a(s) and

the property .

Case 1. If the result is FAILURE, i.e. a repair solution is not found,

then a refinement step takes place for M, and:
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Abstraction

Infeasible

Failure
Repair
Algorithm

Repaired Concrete Model

( DT™M C) M Repaired

Figure 4.1: Probabilistic Abstract Model Repair Framework.
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Case 1.1. If an ADTMC MRefined is found, then the control is

transfered to Step 2 with M Refined S input.

Case 1.2. If it is not feasible to retrieve a new refined ADTMC,

the repair process terminates with a FAILURE.

Case 2. A repaired DTMC Mpgepgirea is found.

Example. (ROBOT) The initial abstraction for the DTMC of the robot

system is shown in Fig. In this case, a predicate abstraction is used where

the concrete state s, which is the only one where ¢ is true, is abstracted

to one state, while all the other states which are not labeled with ¢ are
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abstracted to a different state. Thus, a two-state ADTMC is constructed

which is the first abstract model arising from the concrete DTMC M. [

4.2.1 Refinement

The refinement step plays a fundamental role in the PAMR process, since
it is the means to obtain a repair solution, if possible, when the PAMR
algorithm terminates with a FAILURE result in a previous step. Moreover,
even if a repair solution has been already found, it may be possible to apply
a refinement step in order to find a more fine-grained repair solution.

In the related bibliography, there are various proposals for the refinement
of models for probabilistic systems [60, [65, 66, B9, 68, 28]. The ultimate
goal of such a technique is to get an optimally refined model with respect
to some criteria, which differ in each work. We adopt a simple, yet effective
refinement technique, which fulfills the following objective: the refinement
procedure monotonically converges to the concrete DTMC with respect to the
size of the model’s state space. To this end, at each refinement step we split
the abstract states invalidating the atomic propositions of the reachability
property.

Nevertheless, the PAMR process can be adapted through the adoption of
alternative refinement methods according to different criteria (the so-called

repair strategies [13]).

Example. (ROBOT) From the ADTMC in Fig. 2.5] for the robot system,
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a refined model can be derived by splitting the abstract state not satisfying
q in two states, thus getting a three-state ADTMC. The refined ADTMC

and the corresponding partitioning of the DTMC’s state space are shown in

Fig. (1.2

(1.1

Figure 4.2: DTMC and ADTMC after the first refinement step.

The ADTMC of Fig. can be further refined by splitting both abstract
states that do not satisfy ¢ in two states. This second refinement and the
corresponding partitioning of the DTMC’s state space are shown in Fig.
The result obtained from the third refinement step is shown in Fig. [£.4] from
which a subsequent refinement yields the concrete DTMC.

The impact of the refinement method on the PAMR process is better
illustrated if we consider the ADTMC obtained from Fig. [2.5] using an al-
ternative refinement. The result is shown in Fig. [1.5] which differs from the

ADTMC in Fig.[d.2]and will eventually lead to a different repair solution. [
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[0,1/3]

[0,173]

[1.11  [1.1]

Figure 4.3: DTMC and ADTMC after the second refinement step.

4.2.2 Repair operations for ADTMCs

In the PAMR process, the model repair problem is reduced to a problem
addressed through a smaller state space, i.e. that of the abstract ADTMC.
Every change to the transition probabilities of the ADTMC by the PAMR
algorithm is mapped to the concrete DTMC through the pair of functions
(av,y) in Def. [16]

Repairing the DTMC with respect to the reachability property ¢ =
Ps,[F1)] means, according to the 3-valued semantics of PCTL in Def.
that specific lower bound transition probabilities of the ADTMC should be
increased (similarly in the case of Ps,[F'<*1]). When the DTMC is repaired
with respect to ¢ = P<,[F], specific upper bound transition probabilities
should be decreased. We hereby introduce two distinct repair operations

applicable to ADTMCs, the IncreaseLowerBound and DecreaseUpperBound.

Definition 38 (IncreaseLowerBound). Let M = (S, sinit, P, L) a DTMC and
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Figure 4.4: DTMC and ADTMC after the third refinement step.

the ADTMC derived from M as in Def. |16 be a(M) = (S, 8init, P', P*, L).
For a given vy € Ry and a pair §;,5; € S, let proby, = P*(3:,3;) + vo.
Then, Vs, € S\ Y($:),Sn € S, P'(Sm, S$n) = P(Sm, Sn), whereas for all s; €

V(SAZ')’S]' € 7(§j)78k S \ V(SAJ)

(
P(s;,s;) + diff [card; if diff = probyi, — probe, >0
PI(SZ',S]') =
P(s;,sj) otherwise
\
(
P(s;, s,) — diff Jcardy, if diff = probpi, — probyy >0
P,(Siysk‘) -
P(s;, sk) otherwise
\

with probou = Y4 e5().5,ens;) £ (8i587), card; = [{(si,s;)}| and card, =
[{(si 56) 3

If P' fulfills the stochastic conditions, thus P'(s;, s;), P'(s;, si) € [0,1] for
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Figure 4.5: DTMC and ADTMC for a different refinement from Fig. .

all s;, s, sk, then the DTMC M'" = (S, Sinit, P', L) = Increase Lower Bound
(M, (M), (54, 8;),v0) is defined.

Figure 4.6: Increasing the lower bound of an ADTMC and the resulting
concrete DTMC. (The lower bound probabilities of the ADTMC are only
shown.)

The IncreaseLowerBound operation, which is illustrated in Fig. 4.6| increases

the lower bound probability of a transition (;,$;) of the ADTMC (yellow



4.2. The PAMR framework 123

to red transition of M ) by some given value vy € R, through modifying the

DTMC M; this is feasible for the given vy, if and only if:

~

P(s;,8;) +vg <1, for all s; € y($;), with S; = {s; : s; € v§;} (4.1)

P(si,S;) — o > 0, for all s; € v(5,), with Sy = {5 : 5, € S\ 7(s;)} (4.2)

i.e. there is a concretization strategy for the given vy, such that a DTMC
exists (stochastic constraints are satisfied). Def. proposes a particular
concretization strategy: from all concrete s; (yellow states of M) of the
abstract §;, their outgoing transition probabilities to s; (red states of M) of
the abstract 5; are increased uniformly to fulfill Def. [16|for the ADTMC with
the increased lower bound probability. All other probabilities for outgoing
transitions from s; to s (blue state of M) are decreased uniformly, in order
to preserve the stochastic conditions; if this is not feasible for the given vy,
then the IncreaseLowerBound operation fails to return a DTMC M.

In fact, the ADTMC entails multiple DTMCs, and thus, in our case a
repaired ADTMC allows for a multitude of ways to repair the DTMC. Apart
from the concretization strategy of Def. [38] other strategies could be applied
either, (i) interactively by the user, or (ii) automatically, in order to find a

DTMC, i.e. the stochastic conditions to be satisfied.

Definition 39 (DecreaseUpperBound). Let M = (S, sinit, P, L) a DTMC
and the ADTMC derived from M as in Def. |16 be o(M) = (S, $init, P*, P*,

I:) For a given vy € Ry and a pair §;,5; € 5, let probya, = P*(5;,5;) — vo.
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Figure 4.7: Decreasing the upper bound of an ADTMC and the resulting
concrete DTMC. (The upper bound probabilities of the ADTMC are only
shown.)

Then, Vs, € S\ Y($:), 80 € S, P'(Sm, $n) = P(Sm, Sn), whereas for all s; €

Y(5i), 85 € ¥(55), 56 € S\ V(s5):

(

P(s;,s;) — diff [card; if diff = probyu:s — probye, > 0
PI<SZ', Sj) =
P(si,s5) otherwise
\
(
P(s;, s) + diff [cardy, if diff = probyys — probma: >0
P/(Si78k) =
P(si, sk) otherwise

\
with probout = Y-, ey 6).5,ens;) £ (8i87), card; = [{(si,s;)}| and card, =

[{(si, sx) 3

If P" fulfills the stochastic conditions, thus P'(s;, s;j), P'(s;, si) € [0,1] for
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all s;, 85, Sk, then the DTMC M’ = (S, sinit, P', L) = DecreaseUpper Bound
(M, (M), (54, 8;),v0) is defined.

The DecreaseUpperBound operation, which is illustrated in Fig. decreases
the upper bound probability of a transition ($;, §;) of the ADTMC (yellow to
red transition of M ) by some given value vy € R, by modifying the DTMC
M:; this is feasible for the given vy if and only if equations and
hold.

4.3 The PAMR algorithm

Algorithm 13 PAMR

Input: M = (S, Sinit, P, L), M = a(M) = (S, $ipy, P', P*, L), $ € S and a
property ¢ = Ps,[Ft] or ¢ = P<,[Fy] such that (M, 3) £ .
Output: M’ = (S, Sinit, P’, L) such that (M’,s) = ¢ or FAILURE.
1: if o= P5,[FY] then
P! = AddVoLowerToADTMC(M, M, 3, ¢)
eq_set,, := LowerReachabilityEquations(1/, Pl .3, ¢)
vo := NLPSolve(min(vy), eq _sety,,x > p,vy > 0)
return ConcretizeLowerRepairedModel( M, M, Pfo, S, 0, 10)
else if ¢ = P.,[F{] then
P! := SubtractVoUpperToADTMC(M, 3, ¢)

eq_sety, = UpperReachabiIityEquations(M, P s )
)

vo?
vo := NLPSolve(min(vg), eq_sety,,z < p,vy >0
return ConcretizeUpperRepairedModel (M, M, P s, v, vg)

vo?

g
e

The algorithm is executed at Step 2 of the PAMR process. For brevity, we
present the PAMR algorithm for the case of unbounded properties, whereas

for the bounded properties there are minor differences that we discuss at the
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end. The algorithm accepts as input the concrete DTMC M, the abstract
ADTMC M = a(M), a state 8 = a(s) and a reachability property ¢ =
Ps,[F] or ¢ = P<,[F] such that (M,s) & ¢. The main body of the
algorithm with two possible execution paths, one for ¢ = P5,[F] and the
other for ¢ = P<,[F¢], is shown in Algorithm [13]

Algorithm 14 AddVyLowerToADTMC

Input: M = (S, Sini, P, L), M = (S’, §imt,Pﬁ,P“,[2), § € S and a property

¢ = Psp[FY).
Output: P!

1: for all §;, such that (M, 3,) = ¢ do
2:  for all (§;,5;) in shortest maximal paths of the form

T =1$,..., 8,8, ..., 8] where for all (5;,5;) of m, P(s;,s;) > 0 for some
si,s; € S with §; = a(s;), §; = a(s;) do
3: P! (i, 8;) :== P(3;,8;) + vo with vy > 0

Algorithm 15 LowerReachabilityEquations
Input: M = (S, Sinit, P, PY, ﬁ), Pfo, 5 € S and a property © = P5,[F].

Output: The equations for the probability measure of ¢ = P>, [F)].
1: Generate the equations for ¢ from the probabilities in PzO as in Def.

(¥

If ¢ = Ps,[F], then AddVoLowerTOADTMC is initially called with M, M,
5 and ¢ as arguments and returns a transition probability function Pfo. This
function modifies M’s lower bound transition probabilities according to a
repair strategy defining with a parameter vy which transition probabilities are
increased, in order for LowerReachabilityEquations to subsequently generate
the nonlinear equations for the probability measure of ¢. These equations,

together with the objective function, the inequality constraints for vy, and
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the probability measure of ¢ are then passed to NLPSolve. If a solution is
returned for vy, then ConcretizeLowerRepairedModel is called with arguments
M, M, Pfo, 3, and vy, and either a repaired model M’ is found or else
it returns FAILURE. The returned value is eventually reported as the final
result of the main PAMR algorithm.

More specifically, the body of AddVoLowerToOADTMC is described in Al-
gorithm The P* is modified as follows. For the shortest maximal paths
(i.e. paths with transitions that appear at most once) from § to a state §j
which satisfies 1), in all transitions (§;, 5;) for which there is transition be-
tween corresponding concrete states with non-zero probability, the P*(3;, 3;)
is increased by adding the parameter .

The function LowerReachabilityEquations is described in Algorithm
where the equations for the probability measure x of ¢ being true in the

ADTMC are generated as in Def. We note here that the number of

generated equations is equal to the number of states of the ADTMC.

Algorithm 16 NLPSolve

Input: An objective function obj(vg), a set of equations eq set,,, an in-
equality constraint for an unknown in eq set,, and the vy’s range.
Output: The value vy for which obj is optimized or FAILURE.
1: Use the Sequential Quadratic Programming (SQP) method to solve the
non-linear optimization problem for vy.

The function NLPSolve is described in Algorithm This function is
called in line 4 of Algorithm (13| with min(vg) as the objective function, the

equations eq set,, generated by LowerReachabilityEquations, the inequality
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constraint x > p, where p is the given probability bound, and the inequality
constraint which ensures positive solution for vy.

For NLPSolve, the exact solution of constrained nonlinear optimization
problems has been proved to be NP-Hard in the worst case [83]. We adopt
the Sequential Quadratic Programming (SQP) [I4] method, which looks for
a local solution instead of a global one. The complexity of SQP algorithms
is bound to the number of equations, which in NLPSolve is equal to the
number of the abstract states, and can be exponential in the worst case [72].
By applying SQP to the state-space of the ADTMC we achieve significant

efficiency gains compared to applying it to the state-space of the concrete

model M (Table[{.1)).

Algorithm 17 ConcretizeLowerRepairedModel

Input: M = (S, i, P, L), M = (S’, §imt,Pé,P“,[A/), Pfo, § € S, a property
@ = P5p[F] and a ¢ € R,
Output: Mpepairea = (S, Sinit, P, L) or FAILURE.
1: M =M
2: for all (5;,3;) € S x S with P! (3;,3;) = P'(8;,3;) + v do
3:  RET := IncreaseLowerBound(M’, M, (3;, 5;), c)
4: if RET == FAILURE then
5 return FAILURE
6: else
7
8
9

: M':=RET
. M= (M)

. if AbstractModelCheck(}M’, o) == TRUE then
10:  return M’
11: return FAILURE

The function ConcretizeLowerRepairedModel in Algorithm [I7, which finds

the repaired DTMC M’, is called if NLPSolve computes a solution for vy that
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is passed as argument. The IncreaseLowerBound repair operation is invoked
for all (8;,8;), for which the transition probability in P includes vy. Each
invocation of IncreaseLowerBound produces a modified DTMC or a FAILURE
result, if the computed value for vy cannot yield a valid DTMC because the
stochastic conditions are not fulfilled. For the M’ produced by the final call
of IncreaseLowerBound, the algorithm verifies if it really satisfies ¢. This
check is essential because IncreaseLowerBound operation alters the transition
probabilities of the DTMC in order to preserve the stochastic conditions and
these changes might affect the probability measure for ¢. As opposed to
other model repair approaches [75], which validate the solution by model
checking the concrete model, we model check ¢ over the abstract ADTMC
M'. If the model checking result is true, then M is returned by the PAMR

algorithm as the repair solution.

Algorithm 18 SubtractVoUpperToADTMC

Input: M = (S, Sinit, P, PY, ﬁ), § € S and a property ¢ = P_,[F].
Output: P}
1: for all §;, such that (M, 3,) = ¢ do
2:  for all (§;,5;) in shortest maximal paths of the form
T = [§7 cery '§i7 '§j7 ceey ék] with Pu(§z,§]) > 0 for all (§Z, §]) of 7 do
3: P;ﬁ)(%, .§]> = Pu<§i, §]) — Vg with v9 > 0

Algorithm 19 UpperReachabilityEquations
Input: M = (S, Sinit, P, PY, ﬁ), Py, s € S and a property ¢ = P_,[F).
Output: The equations for the probability measure of ¢ = P<,[F].

1: Generate the equations for ¢ from the probabilities in P} as in Def.

(N

The execution path of PAMR in Algorithm [13| for ¢ = P-,[F¢] is im-
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plemented in an analogous way, with the only difference that instead of in-
creasing the lower bounds, the upper bounds are decreased. The main body

of the functions called in this execution path of PAMR are presented in

Algorithms and 20|

Algorithm 20 ConcretizeUpperRepairedModel

Input: M = (S, Sinit, P, L), M = (S, §init,P£,P“,f/), Py, s e S, a property
@ = P<,[F1] and a ¢ € R;.

Output: Mpepairea = (S, Sinit, P, L) or FAILURE

1 M =M

2: for all (5;,3;) € S x S with P (3;,3;) = P*(8;,3;) — v do

3:  RET := DecreaseUpperBound(M’, M, (3;, 3;), ¢)

if RET == FAILURE then
return FAILURE

4
5
6: else
7
8
9

: M’ :=RET

. M= (M)

. if AbstractModelCheck(}M’, p) == TRUE then
10:  return M’
11: return FAILURE

The PAMR algorithm can be easily shown to be sound in the sense that if
a DTMC M’ is returned for the property ¢ being true at state s, then we have
(M',s) = ¢. The proof is straightforward as a consequence of Theorem
and the fact that a DTMC is returned if and only if the result of model
checking the ADTMC M’ that is derived from M’ is true.

For bounded properties of the form P.q,[F<*1)], the AddV,LowerTOADTMC
and SubtractVoUpperToADTMC are modified, such that they work only for
the paths of finite length k, whereas LowerReachabilityEquations is modified

together with UpperReachabilityEquations, in order to produce the equations
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of Def. instead of Def.

4.4 Application and discusssion

We present the results of the repair of the DTMC in Fig. for the robot
system. In the illustrated scenario we are interested to achieving a probability
level of at least 0.325 for the robot to reach the green state. The PCTL
property for the mentioned goal is ¢ = P>¢.325/F'q|, where ¢ is the atomic

proposition for color = green. This property is not satisfied in the model M

of Fig.

Figure 4.8: Repaired DTMC after the first refinement step.

When the PAMR algorithm is applied to the ADTMC of Fig. (initial
abstract model) the NLPSolve fails to compute a solution for the parameter v,
(Case 1 of Step 2 in the PAMR process of Section . The process continues
with a refinement step (Case 1.1 of Step 2 in the PAMR process) and the

refined ADTMC of Fig. is obtained. The PAMR algorithm generates the
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following equations for the refined ADTMC and ¢:

Tog = OZL’O + (O + Uo)l’l
2
T = (5) T+ (O + Uo)mg

1’2:1

The NLPSolve function is eventually called for the above equations and
the inequality constraint xg > 0.325. In this case, a solution is returned for
the parameter vy, which is 0.329. The execution of the PAMR algorithm is
completed with the computation of the repaired DTMC shown in Fig.
Thus, a solution is obtained by reducing the repair problem for a model with

16 states to that for an abstract model with only 3 states.

4.4.1 Discussion

The efficiency advantage of the PAMR algorithm is based on the fact that the
non-linear optimization problem is solved over the state space of the abstract
ADTMC, which may be orders of magnitude smaller than the state space of
the concrete DTMC.

The PAMR process of Section does not deteriorate the possibility to
obtain a repair solution compared to the concrete model repair case. This

happens due to the fact that the refinement process always converges to the
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concrete DTMC, if in the meantime a repair solution is not found.

If a repair solution M’ is found, the distance of M’ from the initial DTMC
M (Def. may be greater than the distance of a solution derived by directly
applying the repair to the concrete model. This happens because minimizing
vo only represents the best we can do regarding the Manhattan distance
minimality at the granularity of precision offered by the specific ADTMC.
In essence, this is the price to pay for using abstraction though in practice
this may be the only way to obtain a repair solution for models with large or
even medium size state space. In our application, the differences between the
first PAMR repair solution shown in Fig. and the direct repair solution

in Fig. [4.9] are noticeable.

Figure 4.9: Repaired DTMC after applying repair directly to the concrete
model.

Whatever the solution is, it is still possible for the refinement process to
continue, such that the PAMR algorithm can be applied to ADTMCs with

larger state spaces, in which case a more fine grained repair solution could be
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obtained. This is illustrated through applying the PAMR algorithm in the
ADTMCs of Fig. and Fig. [4.4] which depict respectively the ADTMCs
after the second and the third refinement steps in the model for the robot

system. The corresponding repaired DTMCs for these two cases are shown

in Fig. [4.10] and Fig. d.10]

Figure 4.10: Repaired DTMC after the second refinement step.

Figure 4.11: Repaired DTMC after the third refinement step.

The PAMR process can be effectively controlled through the refinement

method, as well as through specifying how the transition probabilities are
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modified. These two provide the means to follow alternative repair strategies.
The refinement method can be replaced by any other method which may be
considered as more adequate for a specific application domain [60, 65, (66 39
68, 28]. The solution from applying the PAMR algorithm to the first refined
ADTMC of Fig. is shown in Fig. It is clear that this solution differs
from the one in Fig. that was obtained through the previous refinement
approach.

AddVyToLowerADTMC and SubtractVoToUpperADTMC specify which of
the transition probabilities can be changed and how. The implementation of
these functions in our algorithm aims to find a repair solution that distributes
the changes to many transitions instead of localizing them to just a few, and
that the transition probabilities are evenly changed. This repair strategy, as
well as other strategies can result in sub-optimal solutions, i.e. the minimal
repair according to the distance of Def. may be missed. However, in
practice it is not possible to adopt a single strategy for all domains where
the repair problem can arise. Therefore, the aforementioned functions can
be replaced by analogous user-defined functions, to specify the parameters
(vo, v1,...) for modifying the transition probabilities, and which transition
probabilities can be modified.

By using the same parameter vy for all transitions to be modified and
the same implementation of IncreaseLowerBound, DecreaseUpperBound for all
modified transitions, we ensure that the same parameter can affect multiple

transitions in the same way. This is essential if the PAMR framework is to be



4.5. Experimental Results 136

Figure 4.12: Repaired DTMC after the alternative first refinement step.

applied to a probabilistic model specified in a high-level guarded command

language like the one used in widely used model checking tools |71}, [45)].

4.5 Experimental Results

We have implemented the PAMR algorithm using MAPLE [1]. In particular,
we utilized specific functions for model checking ADTMCs (the solve()
linear equations’ solver) [70] and for the solution of the constrained non-
linear optimization problem (the NLPSolve() function called with the sqp
parameter).

Using these functions we compared the efficiency of the PAMR algorithm
with that of the same algorithm when it is directly applied to the DTMC, i.e.
without abstraction. In particular, we experimented with four systems from
various domains, whose state spaces have significantly different structure.

These systems are the Craps game [11], the IPv4 Zeroconf protocol [13, [69],
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a message authentication protocol [51] and the gambler’s ruin model, which
demonstrates the worst-case behaviour of the PAMR process in terms of its
efficiency gains. The message authentication protocol is mentioned in [31],
as a model repair scenario, where the primary aim is not finding the optimal
repair solution, but it is sufficient to find some repair solution rapidly (fast
model repair problem). Our PAMR framework fits ideally to this context,
since a repair solution can be obtained even for very large model sizes, which
can be afterwards refined with respect to the needs of the user.

The Craps game model shown in Fig. refers to a dice game, where
the player wins or loses based on the outcome of the roll of two dice. The
outcomes 2, 3, 7, 11, 12 are “craps”, i.e. the player loses. On any other
outcome the dice are rolled again and the outcome of the come-out roll is
remembered (the “point”). The dice are rolled repeatedly until the outcome
is 7, in which case the player loses, or the outcome is the point, in which case

the player wins.

Figure 4.13: The DTMC for a version of the Craps game.
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[5/18,5/18]
[1/3,1/3]

[25/36,25/36;

22,

[1/6,1/6]

A5

Figure 4.14: The ADTMC after the third refinement step for the Craps game.

The probability for winning the Craps game, i.e. reaching the Win state
in Fig. is approximately 0.27. In order to increase the probability to at
least 0.3 for the player to win the game, we would like to find how much the
dice should be biased each time they are rolled. Let us consider the atomic
proposition g as Win = true, in which case the PCTL property of interest is
@ = P5o3[Fq]. The DTMC of Fig. was eventually repaired after three
refinement steps, which resulted in the ADTMC shown in Fig. The
repair solution given by the PAMR algorithm is shown in Fig.

Zeroconf is a protocol for assigning IP addresses in a network of hosts.
When a new host joins the network it asks the other hosts if the newly
selected IP is already in use from any other host. There is a probability that
the new host will not get any answer and in this case the query is repeated.
The host will assume falsely that the chosen address is valid, if after n tries

no answer is received.

The DTMC for an instance of the Zeroconf protocol is shown in Fig.
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(a) The initial DTMC. (b) The repaired DTMC for n = 10.

Figure 4.16: The IPv4 Zeroconf protocol

where the probability of not getting an answer is 0.99. We try to repair the
DTMC for n = 10 tries, in order to ensure that the probability for reaching
the OK state (which is 0.32) becomes at least 0.99. We consider the atomic
proposition ¢ as OK = true, in which case the reachability PCTL property of
interest is ¢ = Pso.99[F'q]. The application of our PAMR framework resulted,
after three refinement steps, to the repair solution presented in Fig. [£.16b]
The DTMC of the message authentication protocol for n users is depicted
in Fig. [4.17al An authentication process takes place for each user, which can

fail with a probability of 0.15. After the successful authentication, each user
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(a) The initial DTMC. (b) The repaired DTMC for n = 5.

Figure 4.17: A message authentication protocol

can send a message with a failure probability of 0.25. The users log out from
the system after having successfully sent a message. We applied our PAMR
framework for n = 5 users, in order to get the repaired DTMC on which the
probability for the users to log out is at least 0.75. A repaired DTMC is
acquired after four refinement steps and is shown in Fig.

For the gambler’s ruin model, let us consider a gambler who starts playing
a game with initial wealth NV coins and can bet at each time one coin. The
gambler can win the bet with a probability p and can lose the bet with
probability ¢. The game stops either when the gambler has no more money to
bet or when he has earned a specific amount WW. The DTMC for a version of
the game with N =20, W = N x 10% =2, p = 0.3 and ¢ = 0.7 is presented
in Fig. [4.18a] The gambler’s ruin model belongs to a special category of
Markov Chains, called birth-death, where only a one-step transition to the
nearest neighbors is permitted.

The probability for the gambler to earn the amount W is 0.183. After



4.5. Experimental Results 141

applying our PAMR framework with the aim of finding a repaired DTMC
where the probability of the gambler to earn the amount W will be at least
0.25, we acquire the DTMC in Fig [4.18b|

1
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(a) The initial DTMC. (b) The repaired DTMC

Figure 4.18: The gambler’s ruin model for initial wealth N = 20.

Our experiments include extended versions for all the four models. For
the Craps game, the model’s state space is expanded by rolling more than two
dices and also adapting the conditions for wining/losing the game. For the
IPv4 Zeroconf protocol, for the message authentication protocol and for the
gambler’s ruin model, the state space is expanded by increasing the number
of tries, the number of users and the initial wealth respectively. As shown
in the Table [4.1] the state space size varies between a few hundred of states
and transitions up to several tens of thousands states and transitions.

For all the models and for the same reachability properties, we applied our
model repair algorithm directly to the DTMC (concrete model) and we com-
pared its execution time and the repair solution’s distance with that of the
PAMR algorithm for the ADTMC. For the Craps game and the IPv4 Zeroconf
protocol, we get a repair solution after three refinement steps, whereas for
the message authentication protocol a solution is obtained after four refine-

ment steps. For the gambler’s ruin model the number of needed refinement



4.5. Experimental Results 142

Models Concr. | Concr. | Concrete PAMR Ref. Abstr. | deoner dpavR
States | Trans. | Repair Steps | States
Craps (Ext.1) 123 483 0.8s 0.1s 3 6 7.4 10.4
Craps (Ext.2) 243 963 5.1s 0.1s 3 6 14.6 20.5
Craps (Ext.3) 483 1923 38.3s 0.1s 3 6 29 40.6
Craps (Ext.4) 963 3843 5m13s 0.1s 3 6 57.8 80.9
Craps (Ext.5) 1923 7683 49m43s 0.1s 3 6 115.4 161.6
Craps (Ext.6) 3843 15363 | 8h30m23s | 0.1s 3 6 230.6 322.9
Craps (Ext.7) 7683 30723 | time-out 0.1s 3 6 - 645.42
Craps (Ext.7) 7683 30723 | time-out 1.2s 8 123 - 608.5
Craps (Ext.7) 7683 30723 | time-out 19.1s 10 483 — 562.4
Craps (Ext.7) 7683 30723 | time-out 2h4m34s 13 3843 — 488.7
Craps (Ext.7) 7683 30723 | time-out time-out 14 7683 - -
Zconf (n=100) 103 204 0.5s 0.2s 3 5 10.1 82.8
Zconf (n=200) 203 404 2.7s 0.2s 3 5 17.7 164.8
Zconf (n—400) 403 804 18.1s 0.2s 3 5 28.9 328.8
Zconf (n=800) 803 1604 2m38s 0.2s 3 5 43.3 656.8
Zconf (n=1600) 1603 3204 15m29s 0.2s 3 5 51.2 1312.8
Zconf (n=3200) 3203 6404 2h36ml12s | 0.2s 3 5 57.6 2624.8
Zconf (n=6400) 6403 12804 | time-out 0.2s 3 5 — 5248.2
Zconf (n—6400) 6403 12804 | time-out 2.1s 10 104 — 4224.6
Zconf (n=6400) 6403 12804 | time-out 14.9s 12 404 — 2048.3
Zconf (n=6400) 6403 12804 | time-out 1h36m43s | 15 3204 — 512.1
Zconf (n=6400) 6403 12804 | time-out time-out 16 6403 — -
Auth.Prot.(n=30) 154 213 1.2s 0.2s 4 7 8.4 8.4
Auth.Prot.(n=60) 304 423 7.8s 0.2s 4 7 16.8 16.8
Auth.Prot.(n=120) | 604 843 57.55 0.2s 4 7 33.6 33.6
Auth.Prot.(n=240) | 1204 1683 9mA3s 0.2s 4 7 67.2 67.2
Auth.Prot.(n—480) | 2404 3363 1h12mlls | 0.2s 4 7 134.4 134.4
Auth.Prot.(n=960) | 4804 6723 12h19mb2s | 0.2s 4 7 268.8 268.8
Auth.Prot.(n=1920) | 9604 13443 | time-out 0.2s 4 7 — 537.6
Auth.Prot.(n=1920) | 9604 13443 | time-out 2.2s 9 131 — 537.6
Auth.Prot.(n=1920) | 9604 13443 | time-out 20s 11 515 — 537.6
Auth.Prot.(n—1920) | 9604 13443 | time-out 1h54m32s | 14 4099 - 537.6
Auth.Prot.(n=1920) | 9604 13443 | time-out time-out 15 9604
Gambler(N=100) 111 220 0.8s 0.2s 4 58 0.38 2.93
Gambler(N—200) 221 440 4.65 0.9s 5 113 0.84 5.94
Gambler(N=400) 441 880 33.3s 4.8s 6 223 2.48 12.28
Gambler(N=800) 881 1760 4mb9s 32.7s 7 443 5.92 25.04
Gambler(N=1600) 1761 3520 45m12s 4m48s. 8 883 13.44 50.88
Gambler(N=3200) 3521 7040 8h2m4ls 45m17s 9 1763 30.72 103.36
Gambler(n=7400) 7041 14080 | time-out 6h58m36s | 10 3523 - 207.36

Table 4.1: Experimental results of PAMR compared to concrete repair (in
fourth column the accumulated times are shown, for all iterated refinement
steps)

steps varies from 4 to 10 according to the size of the model. The results in

Table suggest that as the model’s state space grows up, the needed time



4.5. Experimental Results 143

for the concrete model repair is increased dramatically or even a solution
cannot be obtained within a time-out period of 14 hours, while the PAMR
algorithm returns a repair solution efficiently. It is worth mentioning that
the time for the PAMR algorithm remains constant for the Craps game, the
IPv4 Zeroconf protocol and the message authentication protocol, because in
all extended versions the repair solution was obtained from ADTMCs with
the same size of state space after three or four refinement steps respectively.
This is not true for the gambler’s ruin model, where the repair solution is al-
ways acquired in the final refinement step, before converging to the concrete
DTMC. These results confirm the fact that the efficiency gains of abstraction
in model repair depends - as in model checking - on the model’s state space
structure and the property.

For all models except for the gambler’s ruin model, we continued the
application of our PAMR framework, after having found the first repair solu-
tion, until the PAMR converged to be applied to the initial concrete model,
in which case the ADTMC would be the same with the DTMC. From the re-
sults presented in Table 4.1}, we deduce that for all the examined models, our
method gives a repair solution and it is significantly more efficient than the
direct repair even for the ADTMC produced in the penultimate refinement

step.
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4.6 Related Work

The model repair problem for probabilistic systems has been first introduced
in [13]. The authors use parametric model checking and transform the model
repair problem to a non-linear optimization problem. The experimental re-
sults of their work indicates that their approach suffers from the state space
explosion problem even for models with relatively small number of states. In
comparison with [I3], beyond the efficiency advantage of the PAMR, frame-
work, it is true that we do not aim to a direct repair solution, if any, but to
gradually approach a suitable solution through a number of consecutive re-
finements that depends on the available computational resources. In such an
iterative process, the designer can interactively develop his repair strategy,
as described in Section whereas in [13] the repair strategy is specified
at once through the definition of a so-called controllable DTMC over a set
of parameters that has to fulfill the stochasticity condition. However, such a
parameterization approach is not easily applied in all state space topologies.

An effort for presenting a scalable method for the repair of DTMCs is also
presented in [75]. In that work, the authors present a greedy approach where,
starting from an initial parameter assignment, they apply local repair steps
by iteratively changing the parameter values. The execution time for the local
repairs is reduced with respect to the methods using non-linear optimization,
but the fact that this approach includes a model-checking phase eventually

increases the total execution time.
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Regarding the model repair of Markov Decision Processes (MDPs), there
are approximate solution techniques, which have been introduced in [31].

Several research projects consider the model repair problem as part of
a solution to the formal verification and fault recovery of applications of
real-world domains, such as the aerospace systems [2I]. The first works
on model repair in the context of temporal logics, for non-probabilistic sys-
tems, have been presented in [6] and [23]. In [4], the authors attempt three
different model repair techniques to efficiently compute the probability dis-
tribution for the minimum recovery time of an input randomized distributed
self-stabilizing protocol. The first approach is based on solving symbolic
linear algebraic equations, in order to identify the fastest state reachability
in parametric discrete-time Markov chains. Their second approach applies
parameter synthesis techniques to compute the rational function describing
the average recovery time, like in [13]. In their third approach, they focus on
finding sub-otpimal solutions by computing over- and under-approximations
of the result for a given parameter region and iteratively refining the re-
gions with minimal recovery time up to the desired precision. Yet, all of the
proposed techniques still suffer from the state space explosion problem.

For the abstraction of probabilistic models, some more techniques have
been proposed apart from the adopted abstraction method with 3-valued
semantics. In [66], the authors present an abstraction method for Markov
Decision processes based on games. In [46], the authors propose a model ag-

gregation technique to construct effectively the lumping quotient of a Markov
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chain. In [I0], the authors examine the minimal distance problem of Markov
chains using bisimulation metrics, i.e., given a finite DTMC and a positive
integer k, they try to find the k-state DTMC with the minimal distance to
the original. We note that in our abstraction framework based on [64], the
abstract model is connected to the concrete model with a simulation — not
with a (more restrictive) bisimulation — relation. A thorough presentation
of the abstraction methods used for probabilistic systems is given in [43].
We are not aware of any other model repair approach, which exploits an
abstraction technique for probabilistic systems.

However, abstraction has been used in model repair for systems with large
state spaces, in the non-probabilistic setting [30]. In this work, the authors
present an abstraction-refinement framework based on Kripke Structures as
the concrete models, Kripke Modal Transition Systems as the abstract mod-
els, CTL as the specification language and 3-valued model checking. Their
aim is that of reducing the upper bound complexity class of the repair pro-
cess, such that it depends on the size of a much smaller abstract model. A
more complete journal version of this work is presented in [29].

Some related work exists regarding the parametric analysis of Markov
models. More specifically, an interesting and related to model repair prob-
lem is that of parameter synthesis, where the aim is to find ranges of param-
eter values such that a satisfaction probability of a formula meets a given
threshold, is maximized, or minimized. In [12], the authors address the sys-

tem design problem for Continuous Time Markov Chains (CTMCs), where
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their aim is to optimize some parameters of a stochastic model to maximize
robustness of some given specifications. The state space explosion problem
is also inherent in |27|, where a tool is introduced using GPU-accelerated
parameter synthesis to make the approach scalable. This work addresses
the parallel implementation of the parameter space decomposition technique
of [22]. A recent work [24] deals with the synthesis problem for CTMCs
within the scope of optimizing specific quality criteria. Moreover, a tool
called PROPhESY has been presented in [44], for scalable, incremental, and
automatic parameter synthesis. Another tool called SEA-PARAM has been
presented in [7], where the authors propose a parameter synthesis method
for Parametric Markov Decision Processes (PMDPs).

Finally, the authors in [22] have proposed a method for parameter interval
decomposition for CSL formulas in CTMCs. This method is a means to
reduce the inaccuracy created from a min-max approximation. If this idea
could be lifted to DTMCs, it is a promising tool that could be adopted in

our abstraction-refinement framework.
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5.1 Advancements in relation to the state of

the art

In this thesis, we have shown how abstraction can be used to cope with
the state explosion problem in model repair. Two frameworks regarding
Kripke structures and probabilistic systems have been presented which can
give solutions to the model repair problem for models with large state spaces.

The model-repair framework for the non-probabilistic models is based on
Kripke Structures, a 3-valued semantics for CTL, and Kripke Modal Transi-
tion Systems, and features an abstract-model-repair algorithm for KMTSs.
It is proved that our AMR algorithm is sound for the full CTL and com-
plete for a subset of CTL. It is also proved that our AMR algorithm is upper
bounded by a polynomial expression in the size of the abstract model for a
major fragment of CTL. To demonstrate its practical utility, the framework
framework has been applied to an Automatic Door Opener system and to
the Andrew File System 1 protocol.

Regarding the probabilistic models, this thesis has presented an abstrac-
tion refinement framework and algorithms for the repair of DTMCs with
respect to reachability PCTL properties. The so-called PAMR framework
and its algorithm aim to confront the state space explosion problem and to
provide a solution that is applicable even in model repair problems with very
large state spaces. After having described the PAMR framework, this thesis

illustrates the efficiency gains of the approach compared to the direct repair
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of the concrete model, including the discussion of custom repair strategies
depending on the particular application domain. The practical utility of the
PAMR framework was demonstrated in the repair of four DTMC models
with diverse structures of their state space.

The abstract model repair frameworks presented in this thesis outweigh
all the existing concrete model repair approaches in terms of efficiency, in
the sense that all the repair operations take place in an abstract model with
significantly smaller state space. Despite the fact that the main objective of
this thesis is to make repair feasible to models with large state spaces, there
also other contributions which can make the repair process in the future more
effective and flexible.

At first, our abstract model repair framework for probabilistic systems by-
passes the use of parametric model checking which has been used in existing
model repair approaches and introduced a large efficiency blow-up together
with unnecessary complexity. All probabilistic methods can gain from this
general principle presented in this thesis.

Moreover, the use of abstraction and refinement in model repair can
transform the process for searching of a repair solution from a monolithic
procedure to an interactive framework. This can happen because from a
repaired abstract model many concrete repaired models can be produced.
Additionally, different refinement methods can lead to a set of different re-
paired models. Thus, the user can interact with the repair process before

getting a repair solution and being this way, the one who can choose the
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repaired model which fits best to his design specifications.

Another contribution of this work which can be crucial in the future works
on the model repair problem, is the introduction of constraint properties in
the repair algorithm. Having in mind that a strong objective of the model
repair problem is the minimality of changes of the repair solution, we can
conclude that the support of constraint properties in repair algorithms will
guarantee that any repaired model should not violate properties that already
satisfied in the initial model. That is to say, this thesis can be the first step
for introducing the logical minimality of changes instead of or together with
the structural minimality supported up to now from the distance metrics on

the concrete models.

5.2 Future research prospects

Many different lines of research can be followed as future prospects of the
work presented in this thesis. These prospects contain improvements of the
current abstract model repair framework, applications to different domains
and extensions to other contexts.

Firstly, I strongly consider that abstract model repair can gain a lot from
being implemented in a mainstream model checker such as SMV, PRISM or
STORM. This way, abstract model repair could be applied in larger, real-
world and industrial systems and the feedback from this application could

result in better understanding its performance and effectiveness. For exam-
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ple, a model repair application of high interest could be the design of fault-
tolerant systems. In [20], the authors present an approach for the repair of a
distributed algorithm such that the repaired one features fault-tolerance. The
input to this model repair problem does not include a set of uncontrollable
transitions including the faults in the system. The model repair algorithm
used works on concrete models and it can therefore solve the problem only
for a limited number of processes. With this respect, we believe that this
application could benefit from the use of abstraction in our framework.

Another very interesting extension of this thesis could be the search for
“better" abstract models, in order to either restrict failures due to refinement
or ensure completeness for a larger fragment of CTL or PCTL properties.
Currently, most of the abstraction frameworks are created for model checking
and not for model repair. It would be really interesting to search for abstract
models which will be optimized for being components of a repair process.

A very promising approach could be the exploit of the degrees of freedom
provided to the user from the PAMR framework, i.e. abstraction, refinement,
constraint properties, to transform the model repair methods from monolithic
tools to an interactive design framework.

Finally, an attractive prospect for future research should include efforts
for adopting abstraction in model repair frameworks for different contexts

such as hybrid and real-time systems.
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