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Abstract

Given a transition system M and a speci�cation formula φ, the problem of

model checking is to determine if M satis�es ϕ. An extended problem of

model checking is that of model repair. In the case that M violates ϕ, the

problem of model repair is to obtain a new model M ′, such that M ′ satis�es

ϕ. Moreover, the changes made to M to derive M ′ should be minimum with

respect to all such M ′. As in model checking, state explosion can make it

virtually impossible to carry out model repair on models with in�nite or even

large state spaces.

This thesis examines the problem of model repair for (i) Kripke structures

and Computation Tree Logic and, (ii) probabilistic systems and reachabil-

ity temporal logic properties. For Kripke structures, this thesis presents a

framework for model repair that uses abstraction re�nement to tackle state

space explosion. The proposed framework aims to repair Kripke Structure

models based on a Kripke Modal Transition System abstraction and a 3-

valued semantics for CTL. An abstract-model-repair algorithm is introduced

for which soundness and semi-completeness are proven, and its complexity
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class is studied. Moreover, a prototype implementation is presented to il-

lustrate the practical utility of abstract model repair on an Automatic Door

Opener system model and a model of the Andrew File System 1 protocol.

For probabilistic systems, this thesis presents a framework based on ab-

straction and re�nement, which reduces the state space of the probabilistic

system to repair at the price of obtaining an approximate solution. A metric

space is de�ned over the set of DTMCs, in order to measure the di�erences

between the initial and the repaired models. For the repair, this thesis intro-

duces an algorithm and discusses its important properties, such as soundness

and complexity. As a proof of concept, experimental results are provided for

probabilistic systems with diverse structures of state spaces, including the

well-known Craps game, the IPv4 Zeroconf protocol, a message authentica-

tion protocol and the gambler's ruin model.
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9

Στη σύχρονη εποχή, τα συστήματα υπολογιστών είναι ενσωματωμένα σχε-

δόν σε όλες τις μηχανικές κατασκευές και εμφανίζονται σε κάποιες από τις πιο

δημοφιλείς βιομηχανίες της εποχής μας, όπως στην αυτοκινητοβιομηχανία, στην

αεροπορική βιομηχανία, στην υγεία, στις μεταφορές, στην ενέργεια κ.α.. Αυτά

τα συστήματα πολλές φορές χρειάζεται να προσαρμοζονται σε μεταβαλλόμενες

προδιαγραφες και σε διαφορετικές λειτουργικές απαιτήσεις.

Τα συστήματα υπολογιστών ακόμη σχεδιάζονται και υλοποιούνται με βάση

την ανθρώπινη διαίσθηση και αυτό το γεγονός τα καθιστά ευάλωτα σε λάθη.

Αυτό μπορεί να προκαλέσει σημαντικά προβλήματα σε αρκετές οικονομικές και

κοινωνικές δραστηριότητες και ακόμα σε κάποιες περιπτώσεις να κοστίσει και

ανθρώπινες ζωές. Για παράδειγμα, μια ελαττωματικη σχεδίαση ενός αυτόματου

συστήματος οδήγησης ενός αυτοκινήτου μπορεί να προκαλέσει την σύγκρου-

ση του αυτοκινήτου ή ακόμη και την παράσυρση κάποιου πεζού. Πολλές προ-

σπάθειες έχουν γίνει τα τελευταία 30 χρόνια τόσο από την ακαδημαική πλευρά

όσο και από την πλευρά της βιομηχανίας για την υιοθέτηση τεχνικών οι οποίες

θα επαληθεύσουν αν το σύστημα ικανοποιεί όλες τις προδιαγραφές. Η συνήθης

πρακτική είναι η δοκιμή των συστημάτων μέσω συγκεκριμένων τιμών εισόδου

και ο έλεγχος αν θα καταλήξουν σε μια κατάσταση αποτυχίας. Αυτή η μέθοδος

είναι εκ θεμελίων ανεπαρκής, υπό την έννοια ότι το σύνολο των μονοπατιών ε-

κτέλεσης είναι άπειρο. Τα τελευταία χρόνια, ένα μεγάλο τμήμα της κοινότητας

της επιστήμης των υπολογιστών αντιλήφθηκε ότι ο στόχος της απάλειψης των

σφαλμάτων των υπολογιστικών συστημάτων μπορεί να επιτευχθεί με τη χρήση

τεχνικών επαλήθευσης θεμελιωμένων σε μαθηματικές μεθόδους. Το σύνολο
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τέτοιων τεχνικών είναι γνωστό ώς τυπικές μέθοδοι.

Η πιο υποσχόμενη τυπική μέθοδος των τελευταίων 20 χρόνων είναι ο έλεγ-

χος μοντέλου [32]. Στον έλεγχο μοντέλου, ένα υπολογιστικό σύστημα περι-

γράφεται από ένα σύστημα μεταβάσεων, και μια ιδιότητα διατυπώνεται ως μια

φόρμουλα χρονικής λογικής. Δοθέντος ενός συστήματος μεταβάσεων M και

μιας ιδιότητας ϕ, το πρόβλημα του ελέγχου μοντέλου είναι να βρεθεί αν η ι-

διότητα ικανοποιείται απο το μοντέλο. Στις μέρες μας, ένας μεγάλος αριθμός

δοκιμασμένων αλγορίθμων ελέγχου μοντέλου υπάρχει, τόσο για πιθανοκρατι-

κά όσο και για μη πιθανοκρατικά μοντέλα. Αν μια ιδιότητα δεν ικανοποιείται,

κάποιοι αλγόριθμοι επιστρέφουν μια αιτία για την μη επαλήθευση της ιδιότητας

η οποία είναι γνωστή ως αντιπαράδειγμα.

Το πρόβλημα της επιδιόρθωσης μοντέλου είναι μια επέκταση του προβλήμα-

τος του ελέγχου μοντέλου για την περίπτωση στην οποία η ιδιότητα δεν επα-

ληθεύεται. Πιο συγκεκριμένα, ο σκοπός της επιδιόρθωσης μοντέλου είναι να

βρεθούν οι ελάχιστες αλλαγές που απαιτούνται στο μοντέλο, ώστε η ιδιότητα

ϕ η οποία παραβιάζεται στο αρχικό μοντέλο να ικανοποιείται.

Η έκρηξη του χώρου των καταστάσεων είναι ένας πολύ γνωστός περιορισμός

των αυτοματοποιημένων τυπικών μεθόδων, όπως ο έλεγχος μοντέλου και η

επιδιόρθωση μοντέλου, η οποία εμποδίζει την εφαρμογή τους σε συστήματα με

μεγάλο χώρο καταστάσεων. Το πρόβλημα ενυπάρχει στον έλεγχο μοντέλων και

εμποδίζει την εφαρμογη του σε μεγάλα μοντέλα. Το πρόβλημα είναι παρόν σε

ακόμα μεγαλύτερο βαθμό στις υπάρχουσες τεχνικές επιδιόρθωσης μοντέλου,

οι οποίες στοχεύουν στην απευθείας αλλαγή του μοντέλου που πρόκειται να
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επιδιορθωθεί. Για παράδειγμα στο πλαίσιο των πιθανοκρατικών συστημάτων,

στο [13], οι συγγραφεις μετατρέπουν το πρόβλημα της επιδιόρθωσης σε ένα μη

γραμμικό πρόβλημα βελτιστοποίησης κάνοντας χρήση παραμετρικού ελεγχου

μοντέλου, και ο χρόνος που χρειάζεται για να υπολογιστεί ένα επιδιορθωμένο

μοντέλο αυξάνει ραγδαία σε σχέση με το μέγεθος του χώρου των καταστάσεων.

΄Ενα σύνολο διαφορετικών τεχνικών έχει αναπτυχθεί για την αντιμετώπι-

ση της έκρηξης του χώρου των καταστάσεων, αλλά η κύρια μέθοδος για τον

έλεγχο μοντέλου είναι η χρήση τεχνικών αφαίρεσης. Πιο συγκεκριμένα, στην

περίπτωση του ελέγχου μοντέλου, η αφαίρεση [34, 73, 55, 40, 53] χρησιμο-

ποιείται για να δημιουργθεί μία μικρότερη, πιο αφαιρετική έκδοση του αρχικού

πραγματικού μοντέλου, και ο έλεγχος μοντέλου πραγματοποιείται σε αυτό το

μικρότερο μοντέλο. Για να δουλέψει αυτή η τεχνική, πρέπει να ισχύει ότι αν

η ιδιότητα ικανοποιείται στο αφαιρετικό μοντέλο, τότε επίσης ικανοποιείται και

στο πραγματικό μοντέλο.

΄Εχοντας ως κίνητρο την επιτυχία του αφαιρετικού ελέγχου μοντέλου, πα-

ρουσιάζω σε αυτή τη διατριβή καινούρια πλαίσια επιδιόρθωσης συστημάτων με-

ταβάσεων, τα οποία κάνουν χρήση αφαίρεσης για την αντιμετώπιση της έκρηξης

του χώρου των καταστάσεων. Στο πρώτο μέρος της διατριβής, επικεντρώνομαι

στις δομές Κρίπκε και στην επιδιόρθωσή τους σε σχέση με ιδιότητες οι οποίες

εκφράζονται στην Λογική Υπολογιστικού Δέντρου (ΛΥΔ), ενόσω στο δεύτερο

μέρος, επικεντρώνομαι στα πιθανοκρατικά μοντέλα στη μορφή των Αλυσίδων

Μαρκοφ Διακριτού Χρόνου (ΑΜΔΧ) και στην επιδιόρθωσή τους σε σχέση με

ιδιότητες πρόσβασης χρονικής λογικής.
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Πιο αναλυτικά, το πλαίσιο επιδιόρθωσης μοντέλου για μη πιθανοκρατικά μο-

ντέλα το οποίο παρουσιάζεται στο πρώτο μέρος της διατριβής, βασίζεται στις

δομές Κριπκε, σε μια σημασιολογία τριών τιμών για την ΛΥΔ και στα Τροπικά

Συστήματα Μεταβάσεων Κριπκε (ΤΣΜΚ) τα οποία παίζουν το ρόλο του αφαι-

ρετικού μοντέλου. Το πλαίσιο περιλαμβάνει έναν αφαιρετικό αλγόριθμο επιδιόρ-

θωσης ο οποίος εφαρμόζεται πάνων στα ΤΣΜΚ. Αποδεικνύω ότι ο αλγόριθμος

είναι ορθός, έχει πολυωνυμική πολυπλοκότητα στο μέγεθος του αφαιρετικού

μοντέλου και είναι πλήρης για ένα μεγάλο υποσύνολο της ΛΥΔ. Για να δείξω

την πρακτική εφαρμογή του αλγορίθμου, εφήρμοσα το πλαίσιο σε ένα σύστη-

μα πόρτας αυτόματου ανοίγματος και στο πρωτόκολλο συστήματος αρχείων

Andrew.

Σχετικά με τα πιθανοκρατικά μοντέλα, παρουσιάζω ένα πλαίσιο βασισμένο

στην αφαίρεση για την επιδιόρθωση των ΑΜΔΧ σε σχέση με ιδιότητες πρόσβα-

σης χρονικής λογικής. Στόχος του πλαισίου είναι να αντιμετωπίσουν την έκρηξη

του χώρου των καταστάσεων και να προσφέρουν μιά λύση η οποία θα είναι ε-

φαρμόσιμη σε προβλήματα επιδιόρθωσης με πολύ μεγάλο χώρο καταστάσεων.

Μετά την αναλυτική περιγραφή του πλαισίου, η διατριβή παρουσιάζει τα οφέλη

απόδοσης που προκύπτουν από την συγκεκριμένη προσέγγιση σε σχέση με την

απευθείας επιδιόρθωση του πραγματικού μοντέλου, συμπεριλαμβανομένης και

της συζήτησης για ειδικές στρατηγικές επιδιόρθωσης βάσει συγκεκριμένων πε-

δίων εφαρμογής. Η πρακτική χρησιμότητα του πλαισίου επιδεικνύεται με την

επιδιόρθωση τεσσάρων διαφορετικών πιθανοκρατικών μοντέλων με ποικιλομορ-

φία στη δομή του χώρου των καταστάσεων.
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1.1. Model Repair 17

1.1 Model Repair

Nowadays, computer systems are incorporated in almost all engineering de-

signs and appear in some of the most mainstream industries of our era, such

as automotive, aerospace, healthcare, transportation, energy, etc.. These

systems may also need to adjust to modifying speci�cations and di�erent

functional requirements.

Computer systems are still designed and implemented based on human

intuition and this makes them vulnerable to errors. This could cause serious

problems in several economic and social activities and even cost human lives.

For example, a faulty design of a system controlling a drive-by-wire car may

lead the car to crash or even kill a pedestrian. Many e�orts have been done in

the last 30 years from both academia and industry to adopt techniques which

will verify if the system ful�ll all its speci�cations. The current practice is

to test the systems for speci�c inputs to check if it will end up with a failure

state. This method is fundamentally unsatisfactory, in the sense that all

the execution paths of a system are in�nite. In recent years, a large part of

the computer science community understood that the target for eliminating

faults in computer systems can be accomplished by the use of veri�cation

techniques formally grounded in mathematical methods. The set of such

techniques is known as formal methods.

The most promising formal method of the last 20 years is that of model

checking [32]. In model checking, the system is described by a transition
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system, and the property is formulated as a temporal logic formula. Given

a transition system M and a property ϕ, the problem of model checking is

to �nd if the property is satis�ed by the model. Today, a number of ma-

ture model checking algorithms exist, for probabilistic and non probabilistic

models. If the property is not satis�ed, some algorithms return a cause for

the refutation of the property known as counterexample.

The problem of model repair is an extension of the model checking prob-

lem for the case where the property is refuted. More speci�cally, the aim of

model repair is to �nd the minimal changes to the model, such that the prop-

erty ϕ that is violated in the original model will be satis�ed. The problem of

model repair for Kripke structures and Computation Tree Logic (CTL) [49]

properties was �rst introduced in [23], while it has been examined in the

probabilistic setting for the �rst time in [13].

In recent years, a number of interesting applications of the model repair

problem came in the limelight. Repair of concurrent programs is examined

in [8], while the addition of fault tolerance to distributed systems is studied

in [76]. Authors in [17] propose a framework for a knowledge-based auto-

mated repair of authentication protocols. Another interesting application

of the model repair problem is presented in [3], where the objective is the

automated �ne tuning of probabilistic self-stabilizing algorithms. Finally, a

repair application is discussed in [81] and refers to a least-violating control

synthesis for autonomous systems.
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1.2 Motivation and Contributions

The state space explosion is a well known limitation of automated formal

methods, such as model checking and model repair, which impedes their

application to systems having large or even in�nite state spaces. The problem

is inherent in model checking and makes its application infeasible to large

models. The problem is actually present to a greatest extent than model

checking in existing model repair techniques, which aim to directly change

the model under repair. For example, in the context of probabilistic systems,

in [13], the authors transform the repair problem to a non-linear optimization

problem using parametric model checking, and the time needed for computing

a repaired model increases rapidly with respect to the size of the state space.

Di�erent techniques have been developed to cope with the state space

explosion problem, but the main method for �ghting this problem in model

checking is the use of abstraction techniques. More speci�cally, in the case

of model checking abstraction [34, 73, 55, 40, 53] is used to create a smaller,

more abstract version of the initial concrete model, and model checking is

performed on this smaller model. For this technique to work as advertised, it

should be the case that if a property is satis�ed in the abstract model, then

it is also satis�ed in the concrete model too.

Motivated by the success of abstraction-based model checking, we present

in this thesis new frameworks for model repair of transition systems, which

use abstraction and re�nement to tackle the state space explosion problem.
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At the �rst part of the thesis, we focus on Kripke Structures and their repair

with respect to properties expressed in the Computational Tree Logic (CTL),

while on the second part, we focus on probabilistic models of Discrete Time

Markov Chains (DTMCs) and their repair regarding reachability temporal

logic properties.

The major contributions of this thesis related to the non-probabilistic

models are:

• The thesis provides an AMR framework that uses Kripke structures

(KSs) for the concrete model M , Kripke Modal Transition Systems

(KMTSs) for the abstract model M̂ , and a 3-valued semantics for in-

terpreting CTL over KMTSs [61]. An iterative re�nement of the ab-

stract KMTS model takes place whenever the result of the 3-valued

CTL model-checking problem is unde�ned. If the re�nement process

terminates with a KMTS that violates the CTL property, this property

is also falsi�ed by the concrete KS M . Then, the repair process for the

re�ned KMTS is initiated.

• The model repair problem is strengthened by additionally taking into

account the following minimality criterion (refer to the de�nition of

model repair above): the changes made to M to derive M ′ should be

minimum with respect to all M ′ satisfying φ. To handle the minimal-

ity constraint, a metric space is de�ned over KSs that quanti�es the

structural di�erences between them.
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• The thesis introduces an Abstract Model Repair algorithm for KMTSs,

which takes into account the aforementioned minimality criterion.

• The soundness of the Abstract Model Repair algorithm for the full CTL

and the completeness for a major fragment of it are proved. Moreover,

the algorithm's complexity is analyzed with respect to the model size

of the abstract KMTS, which can be much smaller than the concrete

KS.

• The utility of our approach is illustrated through a prototype imple-

mentation used to repair a �awed Automatic Door Opener system [11]

and the Andrew File System 1 protocol. The experimental results show

signi�cant improvement in e�ciency compared to a concrete model re-

pair solution.

The main contributions of this thesis regarding the repair of probabilistic

models are as follows:

• The thesis introduces a framework for the repair of a DTMC with

respect to a (not-nested) Probabilistic Computation Tree Logic (PCTL)

reachability formula, using an Abstract Discrete Time Markov Chain

(ADTMC) for the given DTMC and the 3-valued semantics of PCTL

over ADTMC

s. Based on a strong preservation theorem, if a PCTL property is

refuted or satis�ed in the ADTMC (abstract model), t hen the same

also holds for the concrete DTMC [64].



1.2. Motivation and Contributions 22

• A metric space is de�ned over the DTMCs with the same state labeling,

in order to measure the distance of repaired DTMCs from the original

DTMC.

• A Probabilistic Abstract Model Repair (PAMR) algorithm is intro-

duced that transforms the DTMC repair problem to a non-linear min-

imization problem for the state space of the abstract model, instead of

the concrete one. If a solution is found, the repaired DTMC is returned,

which corresponds to an approximate (not the optimal) solution; oth-

erwise, the algorithm is iteratively applied to re�ned ADTMCs until a

solution is found. The re�nement can be potentially adapted by the

analyst, for implementing alternative repair strategies.

• The thesis analyzes the PAMR computational gains and more specif-

ically the achieved reduction in the expensive non-linear optimization

and linear equation solving problems, which are involved respectively

in the concrete model repair and model checking techniques.

• As a proof of concept, experimental results are provided for the DTMCs

of extended versions of the Craps game, the IPv4 Zeroconf protocol, a

message authentication protocol and the gambler's ruin model.



1.3. Thesis structure 23

1.3 Thesis structure

The thesis is organized as follows. Chapter 2 introduces all the prelimi-

nary de�nitions and background information on which the thesis is grounded.

More speci�cally, Sections 2.1, 2.2 and 2.3 introduce KSs, KMTSs, as well

as abstraction and re�nement based on a 3-valued semantics for CTL. In

Section 2.4, the notion of DTMC is introduced which is the formalism for

the concrete model in our probabilistic framework. Section 2.5 discusses

how an ADTMC can serve as an abstraction of a DTMC and how a PCTL

reachability formula can be veri�ed in an ADTMC for CTL.

In Chapter 3, the abstract model repair framework for Kripke structures

is presented. In particular, Section 3.1 de�nes a metric space for KSs and

formally de�nes the problem of model repair. Section 3.2 presents our frame-

work for Abstract Model Repair, while Section 3.3 introduces the abstract-

model-repair algorithm for KMTSs and discusses its soundness, completeness

and complexity properties. Section 3.4 presents the experimental evaluation

of our method through its application to the Andrew File System 1 protocol

(AFS1). Section 3.5 compares our approach with the related work.

The abstract model repair framework for probabilistic systems is pre-

sented in Chapter 4. In Section 4.1, the model repair problem for probabilistic

systems is formulated together with a metric space for DTMCs. We present

the abstract model repair process for probabilistic systems in Section 4.2

together with the basic model repair operations. The PAMR algorithm is
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described in Section 4.3. The algorithm's steps are illustrated using an ap-

plication in Section 4.4, where we also elaborate on the method's e�ciency

gains, its cost in terms of the solution's optimality and its �exibility per-

spectives. In Section 4.5, we present the experimental results for extended

models with progressively larger state spaces of the Craps game, the IPv4

Zeroconf protocol, a message authentication protocol and the gambler's ruin

model. The related work is reviewed in Section 4.6.

The conclusions and the future prospects of the thesis are presented in

Chapter 5. Namely, Section 5.1 concludes with a review of the overall ap-

proach and a summary of contributions, while Section 5.2 pinpoints directions

for future work.



Chapter 2

Preliminaries

25
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2.1 Kripke structures

Let AP be a set of atomic propositions. Also, let Lit be the set of literals:

Lit = AP ∪ {¬p | p ∈ AP}

De�nition 1. A Kripke Structure (KS) is a quadruple M = (S, S0, R, L),

where:

1. S is a �nite set of states.

2. S0 ⊆ S is the set of initial states.

3. R ⊆ S × S is a transition relation that must be total, i.e.,

∀s ∈ S : ∃s′ ∈ S : R(s, s′).

4. L : S → 2Lit is a state labeling function, such that

∀s ∈ S : ∀p ∈ AP : p ∈ L(s)⇔ ¬p /∈ L(s).

The fourth condition in Def. 1 ensures that any atomic proposition p ∈ AP

has one and only one truth value at any state.

Example. We use the Automatic Door Opener system (ADO) of [11] as a

running example throughout the thesis for Kripke structures. The system,

given as a KS in Fig 2.1, requires a three-digit code (p0, p1, p2) to open a
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door, allowing for one and only one wrong digit to be entered at most twice.

Variable err counts the number of errors, and an alarm is rung if its value

exceeds two. For the purposes of the thesis, we use a simpler version of

the ADO system, given as the KS M in Fig. 2.3a, where the set of atomic

propositions is AP = {q} and q ≡ (open = true).

p0

err = 0

p0

err = 1

p0

err = 2

p1

err = 0

p1

err = 1

p1

err = 2

p2

err = 0

p2

err = 1

p2

err = 2

open

alarm

Figure 2.1: The Automatic Door Opener (ADO) System.

2.2 Kripke Modal Transition Systems

De�nition 2. A Kripke Modal Transition System (KMTS) is a 5-tuple M̂ =

(Ŝ, Ŝ0, Rmust, Rmay, L̂), where:
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1. Ŝ is a �nite set of states.

2. Ŝ0 ⊆ Ŝ is the set of initial states.

3. Rmust ⊆ Ŝ × Ŝ and Rmay ⊆ Ŝ × Ŝ are transition relations such that

Rmust ⊆ Rmay.

4. L̂ : Ŝ → 2Lit is a state-labeling such that ∀ŝ ∈ Ŝ, ∀p ∈ AP , ŝ is labeled

by at most one of p and ¬p.

A KMTS has two types of transitions: must-transitions, which exhibit

necessary behavior, and may-transitions, which exhibit possible behavior.

Must-transitions are also may-transitions. The �at most one� condition in

the fourth part of Def. 2 makes it possible for the truth value of an atomic

proposition at a given state to be unknown. This relaxation of truth values

in conjunction with the existence of may-transitions in a KMTS constitutes

a partial modeling formalism.

Verifying a CTL formula φ over a KMTS may result in an unde�ned

outcome (⊥). We use the 3-valued semantics [61] of a CTL formula φ at a

state ŝ of KMTS M̂ .

De�nition 3. [61] Let M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) be a KMTS. The 3-

valued semantics of a CTL formula φ at a state ŝ of M̂ , denoted as (M̂, ŝ) |=3

φ, is de�ned inductively as follows:

• If φ = false



2.2. Kripke Modal Transition Systems 29

� [(M̂, ŝ) |=3 φ] = false

• If φ = true

� [(M̂, ŝ) |=3 φ] = true

• If φ = p where p ∈ AP

� [(M̂, ŝ) |=3 φ] = true, i� p ∈ L̂(ŝ).

� [(M̂, ŝ) |=3 φ] = false, i� ¬p ∈ L̂(ŝ).

� [(M̂, ŝ) |=3 φ] = ⊥, otherwise.

• If φ = ¬φ1

� [(M̂, ŝ) |=3 φ] = true, i� [(M̂, ŝ) |=3 φ1] = false.

� [(M̂, ŝ) |=3 φ] = false, i� [(M̂, ŝ) |=3 φ1] = true.

� [(M̂, ŝ) |=3 φ] = ⊥, otherwise.

• If φ = φ1 ∨ φ2

� [(M̂, ŝ) |=3 φ] = true, i� [(M̂, ŝ) |=3 φ1] = true or [(M̂, ŝ) |=3

φ2] = true.

� [(M̂, ŝ) |=3 φ] = false, i� [(M̂, ŝ) |=3 φ1] = false and [(M̂, ŝ) |=3

φ2] = false.

� [(M̂, ŝ) |=3 φ] = ⊥, otherwise.

• If φ = φ1 ∧ φ2
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� [(M̂, ŝ) |=3 φ] = true, i� [(M̂, ŝ) |=3 φ1] = true and [(M̂, ŝ) |=3

φ2] = true.

� [(M̂, ŝ) |=3 φ] = false, i� [(M̂, ŝ) |=3 φ1] = false or [(M̂, ŝ) |=3

φ2] = false.

� [(M̂, ŝ) |=3 φ] = ⊥, otherwise.

• If φ = AXφ1

� [(M̂, ŝ) |=3 φ] = true, i� for all ŝi such that (ŝ, ŝi) ∈ Rmay,

[(M̂, ŝi) |=3 φ1] = true.

� [(M̂, ŝ) |=3 φ] = false, i� there exists some ŝi such that (ŝ, ŝi) ∈

Rmust and [(M̂, ŝi) |=3 φ1] = false.

� [(M̂, ŝ) |=3 φ] = ⊥, otherwise.

• If φ = EXφ1

� [(M̂, ŝ) |=3 φ] = true, i� there exists ŝi such that (ŝ, ŝi) ∈ Rmust

and [(M̂, ŝi) |=3 φ1] = true.

� [(M̂, ŝ) |=3 φ] = false, i� for all ŝi such that (ŝ, ŝi) ∈ Rmay,

[(M̂, ŝi) |=3 φ1] = false.

� [(M̂, ŝ) |=3 φ] = ⊥, otherwise.

• If φ = AGφ1

� [(M̂, ŝ) |=3 φ] = true, i� for all may-paths πmay = [ŝ, ŝ1, ŝ2, ...]

and for all ŝi ∈ πmay it holds that [(M̂, ŝi) |=3 φ1] = true.
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� [(M̂, ŝ) |=3 φ] = false, i� there exists some must-path πmust =

[ŝ, ŝ1, ŝ2, ...], such that for some ŝi ∈ πmust, [(M̂, ŝi) |=3 φ1] =

false.

� [(M̂, ŝ) |=3 φ] = ⊥, otherwise.

• If φ = EGφ1

� [(M̂, ŝ) |=3 φ] = true, i� there exists some must-path πmust =

[ŝ, ŝ1, ŝ2, ...], such that for all ŝi ∈ πmust, [(M̂, ŝi) |=3 φ1] = true.

� [(M̂, ŝ) |=3 φ] = false, i� for all may-paths πmay = [ŝ, ŝ1, ŝ2, ...],

there is some ŝi ∈ πmay such that [(M̂, ŝi) |=3 φ1] = false.

� [(M̂, ŝ) |=3 φ] = ⊥, otherwise.

• If φ = AFφ1

� [(M̂, ŝ) |=3 φ] = true, i� for all may-paths πmay = [ŝ, ŝ1, ŝ2, ...],

there is a ŝi ∈ πmay such that [(M̂, ŝi) |=3 φ1] = true.

� [(M̂, ŝ) |=3 φ] = false, i� there exists some must-path πmust =

[ŝ, ŝ1, ŝ2, ...], such that for all ŝi ∈ πmust, [(M̂, ŝi) |=3 φ1] = false.

� [(M̂, ŝ) |=3 φ] = ⊥, otherwise.

• If φ = EFφ1

� [(M̂, ŝ) |=3 φ] = true, i� there exists some must-path πmust =

[ŝ, ŝ1, ŝ2, ...], such that there is some ŝi ∈ πmust for which [(M̂, ŝi)

|=3 φ1] = true.
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� [(M̂, ŝ) |=3 φ] = false, i� for all may-paths πmay = [ŝ, ŝ1, ŝ2, ...]

and for all ŝi ∈ πmay, [(M̂, ŝi) |=3 φ1] = false.

� [(M̂, ŝ) |=3 φ] = ⊥, otherwise.

• If φ = A(φ1 U φ2)

� [(M̂, ŝ) |=3 φ] = true, i� for all may-paths πmay = [ŝ, ŝ1, ŝ2, ...],

there is ŝi ∈ πmay such that [(M̂, ŝi) |=3 φ2] = true and ∀j < i :

[(M̂, ŝj) |=3 φ1] = true.

� [(M̂, ŝ) |=3 φ] = false, i� there exists some must-path πmust =

[ŝ, ŝ1, ŝ2, ...], such that

i. for all 0 ≤ k < |πmust| :

(∀j < k : [(M̂, ŝj) |=3 φ1] 6= false) ⇒ ([(M̂, ŝk) |=3 φ2] =

false)

ii. (for all 0 ≤ k < |πmust| : [(M̂, ŝk) |=3 φ2] 6= false) ⇒ |πmust|

=∞

� [(M̂, ŝ) |=3 φ] = ⊥, otherwise.

• If φ = E(φ1Uφ2)

� [(M̂, ŝ) |=3 φ] = true, i� there exists some must-path πmust =

[ŝ, ŝ1, ŝ2, ...] such that there is a ŝi ∈ πmust with [(M̂, ŝi) |=3 φ2] =

true and for all j < i, [(M̂, ŝj) |=3 φ1] = true.

� [(M̂, ŝ) |=3 φ] = false, i� for all may-paths πmay = [ŝ, ŝ1, ŝ2, ...]



2.3. Abstraction and Re�nement for 3-Valued CTL 33

i. for all 0 ≤ k < |πmay| :

(∀j < k : [(M̂, ŝj) |=3 φ1] 6= false) ⇒ ([(M̂, ŝk) |=3 φ2] =

false)

ii. (for all 0 ≤ k < |πmay| : [(M̂, ŝk) |=3 φ2] 6= false) ⇒ |πmay| =

∞

� [(M̂, ŝ) |=3 φ] = ⊥, otherwise.

From the 3-valued CTL semantics, it follows that must-transitions are

used to check the truth of existential CTL properties, while may-transitions

are used to check the truth of universal CTL properties. This works inversely

for checking the refutation of CTL properties. In what follows, we use |=

instead of |=3 in order to refer to the 3-valued satisfaction relation.

2.3 Abstraction and Re�nement for 3-Valued

CTL

2.3.1 Abstraction

Abstraction is a state-space reduction technique that produces a smaller ab-

stract model from an initial concrete model, so that the result of model

checking a property φ in the abstract model is preserved in the concrete

model. This can be achieved if the abstract model is built with certain re-

quirements [34, 53].
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De�nition 4. Given a KS M = (S, S0, R, L) and a pair of total functions

(α : S → Ŝ, γ : Ŝ → 2S) such that

∀s ∈ S : ∀ŝ ∈ Ŝ : (α(s) = ŝ⇔ s ∈ γ(ŝ))

the KMTS α(M) = (Ŝ, Ŝ0, Rmust, Rmay, L̂) is de�ned as follows:

1. ŝ ∈ Ŝ0 i� ∃s ∈ γ(ŝ) such that s ∈ S0

2. lit ∈ L̂(ŝ) only if ∀s ∈ γ(ŝ) : lit ∈ L(s)

3. Rmust = {(ŝ1, ŝ2) | ∀s1 ∈ γ(ŝ1) : ∃s2 ∈ γ(ŝ2) : (s1, s2) ∈ R}

4. Rmay = {(ŝ1, ŝ2) | ∃s1 ∈ γ(ŝ1) : ∃s2 ∈ γ(ŝ2) : (s1, s2) ∈ R}

For a given KS M and a pair of abstraction and concretization functions

α and γ, Def. 4 introduces the KMTS α(M) de�ned over the set Ŝ of abstract

states. In our AMR framework, we view M as the concrete model and the

KMTS α(M) as the abstract model. Any two concrete states s1 and s2 of M

are abstracted by α to a state ŝ of α(M) if and only if s1, s2 are elements of

the set γ(ŝ) (see Fig 2.2). A state of α(M) is initial if and only if at least one

of its concrete states is initial as well. An atomic proposition in an abstract

state is true (respectively, false), only if it is also true (respectively, false) in

all of its concrete states. This means that the value of an atomic proposition

may be unknown at a state of α(M). A must-transition from ŝ1 to ŝ2 of

α(M) exists, if and only if there are transitions from all states of γ(ŝ1) to

at least one state of γ(ŝ2) (∀∃ − condition). Respectively, a may-transition
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s′
ŝ

α(s′)

γ(ŝ)

α(s)

s

Figure 2.2: Abstraction and Concretization.

from ŝ1 to ŝ2 of α(M) exists, if and only if there is at least one transition

from some state of γ(ŝ1) to some state of γ(ŝ2) (∃∃ − condition).

De�nition 5. Given a pair of total functions (α : S → Ŝ, γ : Ŝ → 2S) such

that

∀s ∈ S : ∀ŝ ∈ Ŝ : (α(s) = ŝ⇔ s ∈ γ(ŝ))

and a KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), the set of KSs γ(M̂) = {M |M =

(S, S0, R, L)} is de�ned such that for all M ∈ γ(M̂) the following conditions

hold:

1. s ∈ S0 i� α(s) ∈ Ŝ0

2. lit ∈ L(s) if lit ∈ L̂(α(s))

3. (s1, s2) ∈ R i�

• ∃s′1 ∈ γ(α(s1)) : ∃s′2 ∈ γ(α(s2)) : (α(s1), α(s2)) ∈ Rmay and,

• ∀s′1 ∈ γ(α(s1)) : ∃s′2 ∈ γ(α(s2)) : (α(s1), α(s2)) ∈ Rmust
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For a given KMTS M̂ and a pair of abstraction and concretization func-

tions α and γ, Def. 5 introduces a set γ(M̂) of concrete KSs. A state s of a

KS M ∈ γ(M̂) is initial if its abstract state α(s) is also initial. An atomic

proposition in a concrete state s is true (respectively, false) if it is also true

(respectively, false) in its abstract state α(s). A transition from a concrete

state s1 to another concrete state s2 exists, if and only if

• there are concrete states s′1 ∈ γ(α(s1)) and s′2 ∈ γ(α(s2)), where

(α(s1), α(s2)) ∈ Rmay, and

• there is at least one concrete state s′2 ∈ γ(α(s2)) such that for all

s′1 ∈ γ(α(s1)) it holds that (α(s1), α(s2)) ∈ Rmust.

Abstract Interpretation. A pair of abstraction and concretization func-

tions can be de�ned within an Abstract Interpretation [36, 37] framework.

Abstract interpretation is a theory for a set of abstraction techniques, for

which important properties for the model checking problem have been proved

[40, 41].

De�nition 6. [40, 54] Let M = (S, S0, R, L) be a concrete KS and M̂ =

(Ŝ, Ŝ0, Rmust, Rmay, L̂) be an abstract KMTS. A relation H ⊆ S × Ŝ for M

and M̂ is called a mixed simulation, when H(s, ŝ) implies:

• L̂(ŝ) ⊆ L(s)

• if r = (s, s′) ∈ R, then there is exists ŝ′ ∈ Ŝ such that rmay = (ŝ, ŝ′) ∈

Rmay and (s′, ŝ′) ∈ H.
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• if rmust = (ŝ, ŝ′) ∈ Rmust, then there exists s′ ∈ S such that r = (s, s′) ∈

R and (s′, ŝ′) ∈ H.

The abstraction function α of Def. 4 is a mixed simulation for the KSM and

its abstract KMTS α(M).

Theorem 1. [54] Let H ⊆ S × Ŝ be a mixed simulation from a KS M =

(S, S0, R, L) to a KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂). Then, for every CTL

formula φ and every (s, ŝ) ∈ H it holds that

[(M̂, ŝ) |= φ] 6= ⊥ ⇒ [(M, s) |= φ] = [(M̂, ŝ) |= φ]

Theorem 1 ensures that if a CTL formula φ has a de�nite truth value

(i.e., true or false) in the abstract KMTS, then it has the same truth value in

the concrete KS. When we get ⊥ from the 3-valued model checking of a CTL

formula φ, the result of model checking property φ on the corresponding KS

can be either true or false.

Example. An abstract KMTS M̂ is presented in Fig. 2.3a, where all the

states labeled by q are grouped together, as are all states labeled by ¬q.
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(a) The KS and initial KMTS.
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(b) The KS and re�ned KMTS.

Figure 2.3: The KS and KMTSs for the ADO system.
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2.3.2 Re�nement

When the outcome of verifying a CTL formula φ on an abstract model us-

ing the 3-valued semantics is ⊥, then a re�nement step is needed to acquire

a more precise abstract model. In the literature, there are re�nement ap-

proaches for the 2-valued CTL semantics [33, 35, 38], as well as a number

of techniques for the 3-valued CTL model checking [53, 78, 79, 57]. The

re�nement technique that we adopt is an automated two-step process based

on [33, 78]:

1. Identify a failure state in α(M) using the algorithms in [33, 78]; the

cause of failure for a state ŝ stems from an atomic proposition having

an unde�ned value in ŝ, or from an outgoing may-transition from ŝ.

2. Produce the abstract KMTS αRefined(M), where αRefined is a new ab-

straction function as in Def. 4, such that the identi�ed failure state is

re�ned into two states. If the cause of failure is an unde�ned value of

an atomic proposition in ŝ, then ŝ is split into states ŝ1 and ŝ2, such

that the atomic proposition is true in ŝ1 and false in ŝ2. Otherwise, if

the cause of failure is an outgoing may-transition from ŝ, then ŝ is split

into states ŝ1 and ŝ2, such that there is an outgoing must-transition

from ŝ1 and no outgoing may- or must-transition from ŝ2.

The described re�nement technique does not necessarily converge to an ab-

stract KMTS with a de�nite model checking result. A promising approach

in order to overcome this restriction is by using a di�erent type of abstract



2.3. Abstraction and Re�nement for 3-Valued CTL 40

model, as in [78], where the authors propose the use of Generalized KMTSs,

which ensure monotonicity of the re�nement process. GKMTSs introduce

a new type of must-transitions which are called hyper-must transitions and

their re�nement process ensures that if a property is satis�ed from a GKMTS

produced at a re�nement step it will also be satis�ed in any GKMTS pro-

duced at any succeeding re�nement step.

Example. Consider the case where the ADO system requires a mecha-

nism for opening the door from any state with a direct action. This could

be an action done by an expert if an immediate opening of the door is re-

quired. This property can be expressed in CTL as φ = AGEXq. Observe

that in α(M) of Fig. 2.3a, the absence of a must-transition from ŝ0 to ŝ1,

where [(α(M), ŝ1) |= q] = true, in conjunction with the existence of a may-

transition from ŝ0 to ŝ1, i.e. to a state where [(α(M), ŝ1) |= q] = true,

results in an unde�ned model-checking outcome for [(α(M), ŝ0) |= φ]. No-

tice that state ŝ0 is the failure state, and the may-transition from ŝ0 to ŝ1

is the cause of the failure. Consequently, ŝ0 is re�ned into two states, ŝ01

and ŝ02, such that the former has no transition to ŝ1 and the latter has an

outgoing must-transition to ŝ1. Thus, the may-transition which caused the

unde�ned outcome is eliminated and for the re�ned KMTS αRefined(M) it

holds that [αRefined(M), ŝ1) |= φ] = false. The initial KS and the re�ned

KMTS αRefined(M) are shown in Fig. 2.3b.
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Figure 2.4: A Discrete Time Markov Chain.

2.4 Probabilistic systems

De�nition 7. A (labeled) Discrete Time Markov Chain (DTMC) is a 4-tuple

M = (S, sinit, P, L), where:

1. S is a �nite set of states;

2. sinit ∈ S is the initial state;

3. P : S×S → [0, 1] is a transition probability function with
∑

s′∈S P (s, s′)

= 1 for all s ∈ S;

4. L : S → 2Lit is a state labeling function such that ∀s ∈ S, ∀p ∈ AP ,

p ∈ L(s)⇔ ¬p /∈ L(s).

A DTMC is a transition system with labelled states and probabilities

assigned to its transitions.

Example. (ROBOT) We use a robot system as a running example for

probabilistic systems. The DTMC for the robot system is shown in Fig. 2.4.
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The robot moves among states with di�erent color and tries to reach a state,

where the color will be green. The robot is �fair�, in the sense that for each

state the transition probabilities to the directly accessible states are equal(
1
3

)
. The set of atomic propositions for the robot DTMC is AP = {q} with

q ≡ (color = green).

De�nition 8. A path π in a DTMC M = (S, sinit, P, L) is an (in�nite)

sequence π = [s0, s1.s2, ...]; we denote by π[i] the (i+1)-th state of π. A path

fragment ρ = [s0, s1.s2, ..., sn] is a �nite pre�x of a path.

De�nition 9. Let PathMs be the set of all paths starting from state s. Let Ω

be the set PathM =
⋃
s∈S Path

M
s and Cyl(s0, ..., sk) be the (cylinder) set of

states s0, ..., sk, i.e. the set of all paths in PathM with pre�x s0, ..., sk. For

any such Cyl, a probability measure x is de�ned such that:

x(Cyl(s0, ..., sk)) =
k−1∏
i=0

P (si, si+1)

The cylinder sets include paths in DTMCs, and their probability measure

is used to evaluate the probability of reachability properties, which can be

expressed in Probabilistic Computation Tree Logic (PCTL).

De�nition 10. The syntax of the reachability fragment of PCTL over a set

of atomic propositions AP is given by the following grammar:

ϕ ::= P./p[Fψ] |P./p[F≤kψ]
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ψ ::= true|q|¬ψ|ψ ∨ ψ|ψ ∧ ψ

where q ∈ AP , p ∈ [0, 1], k ∈ N and, ./∈ {<,≤,≥, >}

Def. 10 is focused on reachability properties of PCTL without nested

probabilistic quanti�ers. The model checking problem for reachability prop-

erties is reduced to the solution of a system of equations, as it is shown in

Def. 11 for unbounded properties and in Def. 12 for bounded properties .

De�nition 11. Let M = (S, sinit, P, L) be a DTMC. The probability measure

xs of a state s ∈ S to satisfy the property Fψ is de�ned as:

xs =



1 if (M, s) |= ψ

0 if there is no path from s to a state satisfying ψ∑
t∈S

P (s, t) · xt otherwise

De�nition 12. Let M = (S, sinit, P, L) be a DTMC. The probability measure

xks of a state s ∈ S to satisfy the property F≤kψ with k ∈ N is de�ned as:

xks =



1 if (M, s) |= ψ

0 if there is no path from s to a state satisfying ψ

or there is a path from s to a state satisfying ψ

and k = 0∑
t∈S

P(s, t) · xk−1
t otherwise
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2.5 Abstract Discrete Time Markov Chains

De�nition 13. Given a transition probability function P : S × S → [0, 1]

de�ned over a �nite set of states S, the extended transition probability func-

tion P̂ : S × 2S → [0, 1] is de�ned, such that ∀s ∈ S, S ′ ⊆ S, P̂ (s, S ′) =∑
s′∈S′ P (s, s′).

De�nition 14 ([64]). An Abstract Discrete Time Markov Chain (ADTMC)

is a 5-tuple M̂ = (Ŝ, ŝinit, P
`, P u, L̂), where:

1. Ŝ is a �nite set of states;

2. ŝinit ∈ Ŝ is an initial state;

3. P ` : Ŝ × Ŝ → [0, 1] and P u : Ŝ × Ŝ → [0, 1] are two transition proba-

bility functions, such that for all ŝ ∈ Ŝ: P̂ `(ŝ, Ŝ) ≤ 1 ≤ P̂ u(ŝ, Ŝ) and

P `(ŝ, ŝ′) ≤ P u(ŝ, ŝ′) for all ŝ′ ∈ Ŝ;

4. L̂ : Ŝ → 2Lit is a state-labeling, such that ∀ŝ ∈ Ŝ, ∀p ∈ AP , ŝ is labeled

by at most one of p and ¬p.

In an ADTMC, the exact transition probability between any two states

is not de�ned explicitly, but instead an upper and a lower bound for this

probability is given. We therefore call the P ` and P u as lower and upper

transition probability functions. Consequently, the veri�cation of a PCTL

formula ϕ over an ADTMC may yield an inde�nite answer (⊥). The seman-

tics of a reachability PCTL formula ϕ at a state ŝ of an ADTMC M̂ is given

in Def. 15.
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De�nition 15 ([64]). Let M̂ = (Ŝ, ŝinit, P
`, P u, L̂) be a ADTMC. The se-

mantics of a reachability PCTL formula ϕ = P./p[Fψ] at a state ŝ of M̂ ,

denoted as [[(M̂, ŝ) |=3 ϕ]], is de�ned as follows:

• If ϕ = P≤p[Fψ]

� [[(M̂, ŝ) |=3 ϕ]] = true, if xu({π ∈ PathM̂ŝ | ∃i ≥ 0.π[i] |= ψ}) ≤ p.

� [[(M̂, ŝ) |=3 ϕ]] = false, if x`({π ∈ PathM̂ŝ | ∃i ≥ 0.π[i] |= ψ}) > p.

� [[(M̂, ŝ) |=3 ϕ]] = ⊥, otherwise.

• If ϕ = P≥p[Fψ]

� [[(M̂, ŝ) |=3 ϕ]] = true, if x`({π ∈ PathM̂ŝ | ∃i ≥ 0.π[i] |= ψ}) ≥ p.

� [[(M̂, ŝ) |=3 ϕ]] = false, if xu({π ∈ PathM̂ŝ | ∃i ≥ 0.π[i] |= ψ}) < p.

� [[(M̂, ŝ) |=3 ϕ]] = ⊥, otherwise.

where x`, xu are the probability measures for the lower and upper tran-

sition probability functions.

From the 3-valued PCTL semantics over ADTMCs, it follows that the

truth of P≥p[Fψ] is checked based on the paths with lower bound proba-

bilities, as opposed to P≤p[Fψ], for which the paths with the upper bound

probabilities are used. For checking the refutation of P≥p[Fψ], the upper

bound probabilities are used, whereas for the refutation of P≤p[Fψ] the

check is based on the lower bound probabilities. The 3-valued semantics
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for a bounded reachability property in the form P./p[F
≤kψ] di�er only in

that only the �nite paths with length k are taken into account.

In Def. 16, given a DTMCM and a pair of total functions α (abstraction)

and γ (concretization), an ADTMC α(M) is de�ned with state space the set

Ŝ, derived by abstracting the concrete state space S of M . The ADTMC

α(M) serves as the abstract model and the DTMC M as the concrete model

in our framework.

De�nition 16 ([64]). Given a DTMC M = (S, sinit, P, L) and a pair of total

functions (α : S → Ŝ, γ : Ŝ → 2S) such that

∀s ∈ S,∀ŝ ∈ Ŝ : α(s) = ŝ⇔ s ∈ γ(ŝ)

the ADTMC α(M) = (Ŝ, ŝinit, P
`, P u, L̂) is de�ned as follows:

1. ŝinit = α(sinit);

2. for all ŝ, lit ∈ L̂(ŝ) only if for all s ∈ γ(ŝ), lit ∈ L(s);

3. for all ŝ1, ŝ2, P
`(ŝ1, ŝ2) = infs∈γ(ŝ1) P̂ (s, γ(ŝ2));

4. for all ŝ1, ŝ2, P
u(ŝ1, ŝ2) = min(1, sups∈γ(ŝ1) P̂ (s, γ(ŝ2)).

A state ŝ of α(M) is an abstract state of some s ∈ S, if and only if ŝ = α(s)

(equivalently s ∈ γ(α(s))). The abstract state ŝinit of the concrete state sinit

of the DTMC is initial in α(M). Proposition q ∈ AP is true (resp. false)

in ŝ = α(s), if and only if q is true (resp. false) in all s ∈ γ(ŝ). Otherwise,
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q is unknown (⊥) at ŝ. P `(ŝ1, ŝ2) for two abstract ŝ1, ŝ2 is de�ned as the

in�num of the transition probabilities from each si ∈ γ(ŝ1) to all sj ∈ γ(ŝ2).

On the other hand, P u(ŝ1, ŝ2) for ŝ1, ŝ2 is de�ned as the minimum of 1

and the supremum of the transition probabilities from each si ∈ γ(ŝ1) to all

sj ∈ γ(ŝ2).
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Figure 2.5: The abstraction of a Discrete Time Markov Chain.

Example. (ROBOT) In Fig. 2.5, an abstract DTMC of the robot system

is presented where the green state (labeled with q) and the non-green states

(labeled with ¬q) are abstracted using one abstract state for each case. The

lower bound of the outgoing transition from the non-green abstract state

A0 to A1 is 0, because there are no concrete non-green states with outgoing

transition of probability greater than 0 to the concrete green state. The

upper bound for the same transition is
(

1
3

)
, because the greatest transition

probability from a concrete non-green state to the concrete green state is(
1
3

)
. All other lower and upper bound probabilities in Fig. 2.5 are calculated

in the same way.
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Theorem 2 ([64]). Let M = (S, sinit, P, L) a DTMC and α(M) = (Ŝ, ŝinit

P `, P u, L̂) the ADTMC as in Def. 16. Then for every PCTL formula ϕ and

every s ∈ S, ŝ ∈ Ŝ with ŝ = α(s) we have:

[[(α(M), ŝ) |= ϕ]] 6= ⊥ ⇒ [[(M, s) |= ϕ]] = [[(α(M), ŝ) |= ϕ]]

From Theorem 2, it follows that if a PCTL formula is satis�ed (or vio-

lated) in the ADTMC, then it is also satis�ed (or violated) in the DTMC. If

the answer of model checking a PCTL formula over the ADTMC is unknown,

then there is no de�nite conclusion for the same formula over the DTMC. To

be concise, in the rest of the thesis we will denote [[(α(M), ŝ) |= ϕ]] = false

by just writing (α(M), ŝ) 6|= ϕ.



Chapter 3

Abstract Model Repair of Kripke

structures

3.1 The Model Repair Problem for Kripke

Structures

In this section, we formulate the problem of Model Repair. A metric space

over Kripke structures is de�ned to quantify their structural di�erences. This

allows us taking into account the minimality of changes criterion in Model

Repair.

Let π be a function on the set of all functions f : X → Y such that:

π(f) = {(x, f(x)) | x ∈ X}

49
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A restriction operator (denoted by �) for the domain of function f is de�ned

such that for X1 ⊆ X,

f �X1= {(x, f(x)) | x ∈ X1}

By SC , we denote the complement of a set S.

De�nition 17. For any two M = (S, S0, R, L) and M ′ = (S ′, S ′0, R
′, L′) in

the set KM of all KSs, where

S ′ = (S ∪ SIN )− SOUT for some SIN ⊆ SC, SOUT ⊆ S,

R′ = (R ∪RIN )−ROUT for some RIN ⊆ RC, ROUT ⊆ R,

L′ = S ′ → 2LIT ,

the distance function d over KM is de�ned as follows:

d(M,M ′) = |S∆S ′|+ |R∆R′|+ |π(L �S∩S′) ∆π(L′ �S∩S′)|
2

with A∆B representing the symmetric di�erence (A−B) ∪ (B − A).

For any two KSs de�ned over the same set of atomic propositions AP , func-

tion d counts the number of di�erences |S∆S ′| in the state spaces, the num-

ber of di�erences |R∆R′| in their transition relation and the number of

common states with altered labeling.

Proposition 3. The ordered pair (KM , d) is a metric space.
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Proof. We use the fact that the cardinality of the symmetric di�erence be-

tween any two sets is a distance metric. It holds that:

1. |S∆S ′| ≥ 0, |R∆R′| ≥ 0 and |π(L �S∩S′)∆π(L′ �S∩S′)| ≥ 0 (non-

negativity)

2. |S∆S ′| = 0 i� S = S ′, |R∆R′| = 0 i� R = R′ and |π(L �S∩S′

)|∆|π(L′ �S∩S′)| = 0 i� π(L �S∩S′) = π(L′ �S∩S′) (identity of indis-

cernibles)

3. |S∆S ′| = |S ′∆S|, |R∆R′| = |R′∆R| and |π(L �S∩S′)∆π(L′ �S∩S′)| =

|π(L′ �S∩S′)∆π(L �S∩S′)|(symmetry)

4. |S ′∆S ′′| ≤ |S ′∆S|+ |S∆S ′′|, |R′∆R′′| ≤ |R′∆R|+ |R∆R′′|,

|π(L′ �S′∩S′′)∆π(L′′|S′∩S′′)| ≤ |π(L′ �S′∩S)∆π(L �S′∩S)|+

|π(L �S∩S′′)∆π(L′′|S∩S′′)|

(triangle inequality)

We will prove that d is a metric on KM . Suppose M,M ′,M ′′ ∈ KM

• It easily follows from (1) that d(M,M ′) ≥ 0 (non-negativity)

• From (2), d(M,M ′) = 0 i� M = M ′ (identity of indiscernibles)

• Adding the equations in (3), results in d(M,M ′) = d(M ′,M) (symme-

try)

• If we add the inequalities in (4), then we get d(M ′,M ′′) ≤ d(M ′,M) +

d(M,M ′′) (triangle inequality)



3.1. The Model Repair Problem for Kripke Structures 52

So, the proposition is true.

De�nition 18. For any two M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) and M̂ ′ = (Ŝ ′, Ŝ0
′
,

R′must, R
′
may, L̂

′) in the set KM̂ of all KMTSs, where

Ŝ ′ = (Ŝ ∪ ŜIN )− ŜOUT for some ŜIN ⊆ ŜC, ŜOUT ⊆ Ŝ,

R̂′must = (R̂must ∪ R̂IN )− R̂OUT for some R̂IN ⊆ R̂C
must, R̂OUT ⊆ R̂must,

R̂′may = (R̂may ∪ R̂′IN )− R̂′OUT for some R̂′IN ⊆ R̂C
may, R̂

′
OUT ⊆ R̂may,

L̂′ = Ŝ ′ → 2LIT ,

the distance function d̂ over KM̂ is de�ned as follows:

d̂(M̂, M̂ ′) = |Ŝ∆ Ŝ ′|+ |R̂must ∆ R̂′must|+ |(R̂may − R̂must)

∆ (R̂′may − R̂′must)|+
|π(L̂ �Ŝ∩Ŝ′) ∆π(L̂′ �Ŝ∩Ŝ′)|

2

with A∆B representing the symmetric di�erence (A−B) ∪ (B − A).

We note that d̂ counts the di�erences between R̂′may and R̂may, and those

between R̂′must and R̂must separately, while avoiding to count the di�erences

in the latter case twice (we remind that must-transitions are also included in

R̂may).

Proposition 4. The ordered pair (KM̂ , d̂) is a metric space.

Proof. The proof is done in the same way as in Prop. 3.
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De�nition 19. Given a KS M and a CTL formula φ where M 6|= φ, the

Model Repair problem is to �nd a KS M ′, such that M ′ |= φ and d(M,M ′)

is minimum with respect to all such M ′.

The Model Repair problem aims at modifying a KS such that the resulting

KS satis�es a CTL formula that was violated before. The distance function

d of Def. 17 features all the attractive properties of a distance metric. Given

that no quantitative interpretation exists for predicates and logical operators

in CTL, d can be used in a model repair solution towards selecting minimum

changes to the modi�ed KS.

3.2 The Abstract Model Repair Framework

Our AMR framework integrates 3-valued model checking, model re�nement,

and a new algorithm for selecting the repair operations applied to the abstract

model. The goal of this algorithm is to apply the repair operations in a way,

such that the number of structural changes to the corresponding concrete

model is minimized. The algorithm works based on a partial order relation

over a set of basic repair operations for KMTSs. This section describes the

steps involved in our AMR framework, the basic repair operations, and the

algorithm.
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3.2.1 The Abstract Model Repair Process
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αRefined(M)

Figure 3.1: Abstract Model Repair Framework.

The process steps shown in Fig. 3.1 rely on the KMTS abstraction of Def. 4.

These are the following:

Step 1. Given a KS M , a state s of M , and a CTL property φ, let us call

M̂ the KMTS obtained as in Def. 4.

Step 2. For state ŝ = α(s) of M̂ , we check whether (M̂, ŝ) |= φ by 3-valued

model checking.

Case 1. If the result is true, then, according to Theorem 1, (M, s) |= φ

and there is no need to repair M .
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Case 2. If the result is unde�ned, then a re�nement of M̂ takes place,

and:

Case 2.1. If an M̂Refined is found, the control is transferred to

Step 2.

Case 2.2. If a re�ned KMTS cannot be retrieved, the repair pro-

cess terminates with a failure.

Case 3. If the result is false, then, from Theorem 1, (M, s) 6|= φ and

the repair process is enacted; the control is transferred to Step 3.

Step 3. The AbstractRepair algorithm is called for the abstract KMTS

(M̂Refined or M̂ if no re�nement has occurred), the state ŝ and the

property φ.

Case 1. AbstractRepair returns an M̂ ′ for which (M̂ ′, ŝ) |= φ.

Case 2. AbstractRepair fails to �nd an M̂ ′ for which the property

holds true.

Step 4. If AbstractRepair returns an M̂ ′, then the process ends with select-

ing the subset of KSs from γ(M̂ ′), with elements whose distance d from

the KS M is minimum with respect to all the KSs in γ(M̂ ′).

3.2.2 Basic Repair Operations

We decompose the ADTMC repair process into two basic repair operations:

AddMust Adding a must-transition
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AddMay Adding a may-transition

RemoveMust Removing a must-transition

RemoveMay Removing a may-transition

ChangeLabel Changing the labeling of a KMTS state

AddState Adding a new KMTS state

RemoveState Removing a disconnected KMTS state

Adding a must-transition

De�nition 20 (AddMust). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay,

L̂) and r̂n = (ŝ1, ŝ2) /∈ Rmust, AddMust(M̂, r̂n) is the KMTS M̂ ′ = (Ŝ, Ŝ0,

R′must, R
′
may, L̂) such that R′must = Rmust∪{r̂n} and R′may = Rmay∪{r̂n}.

Since Rmust ⊆ Rmay, r̂n must also be added to Rmay, resulting in a new

may-transition if r̂n /∈ Rmay. Fig. 3.2 shows how the basic repair operation

AddMust modi�es a given KMTS. The newly added transitions are in bold.
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Figure 3.2: AddMust : Adding a new must-transition

Proposition 5. For any M̂ ′ = AddMust(M̂, r̂n), it holds that d̂(M̂, M̂ ′) =

1.

De�nition 21. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust,
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Rmay, L̂) be the abstract KMTS derived from M as in Def. 4. Also, let M̂ ′ =

AddMust(α(M), r̂n) for some r̂n = (ŝ1, ŝ2) /∈ Rmust. The set Kmin ⊆ γ(M̂ ′)

with all KSs, whose distance d from M is minimized is:

Kmin = {M ′ |M ′ = (S, S0, R ∪Rn, L)} (3.1)

where Rn is given for one s2 ∈ γ(ŝ2) as follows:

Rn =
⋃

s1∈γ(ŝ1)

{(s1, s2) | @s ∈ γ(ŝ2) : (s1, s) ∈ R}

Def. 21 implies that when the AbstractRepair algorithm applies AddMust

on the abstract KMTS M̂ , then a set of KSs is retrieved from the con-

cretization of M̂ ′. The same holds for all other basic repair operations and

consequently, when AbstractRepair �nds a repaired KMTS, one or more KSs

can be obtained for which property φ holds.

Proposition 6. For all M ′ ∈ Kmin, it holds that 1 ≤ d(M,M ′) ≤ |S|.

Proof. Recall that

d(M,M ′) = |S∆S ′|+ |R∆R′|+ |π(L �S∩S′)∆π(L′ �S∩S′)|
2

Since |S∆S ′| = 0 and |π(L �S∩S′)∆π(L′ �S∩S′)| = 0, d(M,M ′) = |R∆R′| =

|R − R′| + |R′ − R| = 0 + |Rn|. Since |Rn| ≥ 1 and |Rn| ≤ |S|, it is proved
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that 1 ≤ d(M,M ′) ≤ |S|.

From Prop. 6, we conclude that a lower and upper bound exists for the

distance between M and any M ′ ∈ Kmin.

Adding a may-transition

De�nition 22 (AddMay). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂)

and r̂n = (ŝ1, ŝ2) /∈ Rmay, AddMay(M̂, r̂n) is the KMTS M̂ ′ = (Ŝ, Ŝ0, R
′
must,

R′may, L̂) such that R′must = Rmust ∪ {r̂n} if |S1| = 1 or R′must = Rmust if

|S1| > 1 for S1 = {s1 | s1 ∈ γ(ŝ1)} and R′may = Rmay ∪ {r̂n}.

From Def. 22, we conclude that there are two di�erent cases in adding

a new may-transition r̂n; adding also a must-transition or not. In fact, r̂n

is also a must-transition if and only if the set of the corresponding concrete

states of ŝ1 is a singleton. Fig. 3.3 displays the two di�erent cases of applying

basic repair operation AddMay to a KMTS.
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(b) Must-transition is also added

Figure 3.3: AddMay : Adding a new must-transition

Proposition 7. For any M̂ ′ = AddMay(M̂, r̂n), it holds that d̂(M̂, M̂ ′) =

1.
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De�nition 23. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust,

Rmay, L̂) be the abstract KMTS derived from M as in Def. 4. Also, let M̂ ′ =

AddMay (α(M), r̂n) for some r̂n = (ŝ1, ŝ2) /∈ Rmay. The set Kmin ⊆ γ(M̂ ′)

with all KSs, whose structural distance d from M is minimized is given by:

Kmin = {M ′ |M ′ = (S, S0, R ∪ {rn}, L)} (3.2)

where rn ∈ Rn and Rn = {rn = (s1, s2) | s1 ∈ γ(ŝ1), s2 ∈ γ(ŝ2) and rn /∈

R}.

Proposition 8. For all M ′ ∈ Kmin, it holds that d(M,M ′) = 1.

Proof. d(M,M ′) = |S∆S ′|+ |R∆R′|+ |π(L�S∩S′ )∆π(L′�S∩S′ )|
2

. Because |S∆S ′| =

0 and |π(L �S∩S′)∆π(L′ �S∩S′)| = 0, d(M,M ′) = |R∆R′| = |R − R′| + |R′ −

R| = 0 + |{rn}| = 1. So, we prove that d(M,M ′) = 1.

Removing a must-transition

De�nition 24 (RemoveMust). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay,

L̂) and r̂m = (ŝ1, ŝ2) ∈ Rmust, RemoveMust(M̂, r̂m) is the KMTS M̂ ′ =

(Ŝ, Ŝ0, R
′
must, R

′
may, L̂) such that R′must = Rmust−{r̂m} and R′may = Rmay −

{r̂m} if |S1| = 1 or R′may = Rmay if |S1| > 1 for S1 = {s1 | s1 ∈ γ(ŝ1)}.

Removing a must-transition r̂m, in some special and maybe rare cases,

could also result in the deletion of the may-transition r̂m as well. In fact,

this occurs if transitions to the concrete states of ŝ2 exist only from one
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concrete state of the corresponding ones of ŝ1. These two cases for function

RemoveMust are presented graphically in Fig. 3.4.
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(b) May-transition is also removed

Figure 3.4: RemoveMust : Removing an existing must-transition
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Proposition 9. For any M̂ ′ = RemoveMust(M̂, r̂m), it holds that d̂(M̂, M̂ ′)

= 1.

De�nition 25. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust,

Rmay, L̂) be the abstract KMTS derived from M as in Def. 4. Also, let M̂ ′ =

RemoveMust(α(M), r̂m) for some r̂m = (ŝ1, ŝ2) ∈ Rmust. The set Kmin ⊆

γ(M̂ ′) with all KSs, whose structural distance d fromM is minimized is given

by:

Kmin = {M ′ |M ′ = (S, S0, R− {Rm}, L)} (3.3)

where Rm is given for one s1 ∈ γ(ŝ1) as follows:

Rm =
⋃

s2∈γ(ŝ2)

{(s1, s2) ∈ R}

Proposition 10. For M ′, it holds that 1 ≤ d(M,M ′) ≤ |S|.

Proof. d(M,M ′) = |S∆S ′|+ |R∆R′|+ |π(L�S∩S′ )∆π(L′�S∩S′ )|
2

. Because |S∆S ′| =

0 and |π(L �S∩S′)∆π(L′ �S∩S′)| = 0, d(M,M ′) = |R∆R′| = |R − R′| + |R′ −

R| = |Rm|+ 0 = |Rm|. It holds that |Rm| ≥ 1 and |Rm| ≤ |S|. So, we proved

that 1 ≤ d(M,M ′) ≤ |S|.

Removing a may-transition

De�nition 26 (RemoveMay). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay,

L̂) and r̂m = (ŝ1, ŝ2) ∈ Rmay, RemoveMay(M̂, r̂m) is the KMTS M̂ ′ =
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(Ŝ, Ŝ0, R
′
must, R

′
may, L̂) such that R′must = Rmust−{r̂m} and R′may = Rmay −

{r̂m}.

Def. 26 ensures that removing a may-transition r̂m implies the removal of

a must-transition, if r̂m is also a must-transition. Otherwise, there are not

any changes in the set of must-transitions Rmust. Fig. 3.5 shows how function

RemoveMay works in both cases.
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(b) May-transition is not a must-transition

Figure 3.5: RemoveMay : Removing an existing may-transition

Proposition 11. For any M̂ ′ = RemoveMay(M̂, r̂m), it holds that d̂(M̂,

M̂ ′) = 1.

De�nition 27. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust,
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Rmay, L̂) be the abstract KMTS derived from M as in Def. 4. Also, let M̂ ′ =

RemoveMay(α(M), r̂m) for some r̂m = (ŝ1, ŝ2) ∈ Rmay with ŝ1, ŝ2 ∈ Ŝ. The

KS M ′ ∈ γ(M̂ ′), whose structural distance d from M is minimized is given

by:

M ′ = (S, S0, R−Rm, L} (3.4)

where Rm = {rm = (s1, s2) | s1 ∈ γ(ŝ1), s2 ∈ γ(ŝ2) and rm ∈ R}.

Proposition 12. For M ′, it holds that 1 ≤ d(M,M ′) ≤ |S|2.

Proof. d(M,M ′) = |S∆S ′|+ |R∆R′|+ |π(L�S∩S′ )∆π(L′�S∩S′ )|
2

. Because |S∆S ′| =

0 and |π(L �S∩S′)∆π(L′ �S∩S′)| = 0, d(M,M ′) = |R∆R′| = |R − R′| + |R′ −

R| = 0 + |Rm| = |Rm|. It holds that |Rm| ≥ 1 and |Rm| ≤ |S|2. So, we

proved that 1 ≤ d(M,M ′) ≤ |S|2.

Changing the labeling of a KMTS state

De�nition 28 (ChangeLabel). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay,

L̂), a state ŝ ∈ Ŝ and an atomic CTL formula φ with φ ∈ 2LIT , ChangeLabel

(M̂, ŝ, φ) is the KMTS M̂ ′ = (Ŝ, Ŝ0, Rmust, Rmay, L̂′) such that L̂′ = (L̂ −

{l̂old}) ∪ {l̂new} for l̂old = (ŝ, litold) and l̂new = (ŝ, litnew) where litnew =

L̂(ŝ) ∪ {lit | lit ∈ φ} − {¬lit | lit ∈ φ}.

Basic repair operation ChangeLabel gives the possibility of repairing a

model by changing the labeling of a state, thus without inducing any changes

in the structure of the model (number of states or transitions). Fig. 3.6

presents the application of ChangeLabel in a graphical manner.
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Figure 3.6: ChangeLabel : Changing the labeling of a KMTS state

Proposition 13. For any M̂ ′ = ChangeLabel(M̂, ŝ, φ), it holds that d̂(M̂,

M̂ ′) = 1.

De�nition 29. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust,

Rmay, L̂) be the abstract KMTS derived from M as in Def. 4. Also, let M̂ ′ =

ChangeLabel(α(M), ŝ, φ) for some ŝ ∈ Ŝ and φ ∈ 2LIT . The KS M ′ ∈

γ(M̂ ′), whose structural distance d from M is minimized, is given by:

M ′ = (S, S0, R, L− Lold ∪ Lnew} (3.5)

where

Lold = {lold = (s, litold) | s ∈ γ(ŝ), s ∈ S,¬litold 6∈ φ and lold ∈ L}



3.2. The Abstract Model Repair Framework 68

Lnew = {lnew = (s, litnew) | s ∈ γ(ŝ), s ∈ S, litnew ∈ φ and lnew /∈ L}

Proposition 14. For M ′, it holds that 1 ≤ d(M,M ′) ≤ |S|.

Proof. d(M,M ′) = |S∆S ′|+|R∆R′|+ |π(L�S∩S′ )∆π(L′�S∩S′ )|
2

. Because |R∆R′| =

0 and |R∆R′| = 0, d(M,M ′) =
|π(L�S∩S′ )∆π(L′�S∩S′ )|

2
= |Lold|+|Lnew|

2
= |Lold| =

|Lnew|. It holds that Lnew ≥ 1 and Lnew ≤ |S|. So, we prove that 1 ≤

d(M,M ′) ≤ |S|.

Adding a new KMTS state

De�nition 30 (AddState). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂)

and a state ŝn /∈ Ŝ, AddState(M̂, ŝn) is the KMTS M̂ ′ = (Ŝ ′, Ŝ0, Rmust, Rmay,

L̂′) such that Ŝ ′ = Ŝ ∪ {ŝn} and L̂′ = L̂ ∪ {l̂n}, where l̂n = (ŝn,⊥).

The most important issues for functionAddState is that the newly created

abstract state ŝn is isolated, thus there are no ingoing or outgoing transitions

for this state, and additionally, the labeling of this new state is ⊥. Another

conclusion from Def. 30 is the fact that the inserted stated is not permitted

to be initial. Application of function AddState is presented graphically in

Fig. 3.7.
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Figure 3.7: AddState: Adding a new KMTS state

Proposition 15. For any M̂ ′ = AddState(M̂, ŝn), it holds that d̂(M̂, M̂ ′) =

1.

De�nition 31. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust,

Rmay, L̂) be the abstract KMTS derived from M as in Def. 4. Also, let M̂ ′ =

AddState(α(M), ŝn) for some ŝn /∈ Ŝ. The KSM ′ ∈ γ(M̂ ′), whose structural

distance d from M is minimized is given by:

M ′ = (S ∪ {sn}, S0, R, L ∪ {ln}) (3.6)

where sn ∈ γ(ŝn) and ln = (sn,⊥).

Proposition 16. For M ′, it holds that d(M,M ′) = 1.

Proof. d(M,M ′) = |S∆S ′| + |R∆R′| + |π(L�S∩S′ )∆π(L′�S∩S′ )|
2

. Because |R∆R′|
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= 0 and |π(L �S∩S′)∆π(L′ �S∩S′)| = 0, d(M,M ′) = |S∆S ′| = |S−S ′|+ |S ′−

S| = 0 + |{sn}| = 1. So, we proved that d(M,M ′) = 1.

Removing a disconnected KMTS state

De�nition 32 (RemoveState). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay,

L̂) and a state ŝr ∈ Ŝ such that ∀ŝ ∈ Ŝ : (ŝ, ŝr) 6∈ Rmay ∧ (ŝr, ŝ) 6∈ Rmay,

RemoveState(M̂, ŝr) is the KMTS M̂ ′ = (Ŝ ′, Ŝ ′0, Rmust, Rmay, L̂′) such that

Ŝ ′ = Ŝ−{ŝr}, Ŝ ′0 = Ŝ0−{ŝr} and L̂′ = L̂−{l̂r}, where l̂r = (ŝr, lit) ∈ L̂.

From Def. 32, it is clear that the state being removed should be isolated,

thus there are not any may- or must-transitions from and to this state. This

means that before using RemoveState to an abstract state, all its ingoing

or outgoing must have been removed by using other basic repair operations.

RemoveState are also used for the elimination of dead-end states, when such

states arise during the repair process. Fig. 3.8 presents the application of

RemoveState in a graphical manner.
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Figure 3.8: RemoveState: Removing a disconnected KMTS state

Proposition 17. For any M̂ ′ = RemoveState(M̂, ŝr), it holds that d̂(M̂,

M̂ ′) = 1.

De�nition 33. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust,

Rmay, L̂) be the abstract KMTS derived from M as in Def. 4. Also, let M̂ ′ =

RemoveState(α(M), ŝr) for some ŝr ∈ Ŝ with l̂r = (ŝr, lit) ∈ L̂. The KS

M ′ ∈ γ(M̂ ′), whose structural distance d from M is minimized, is given by:

M ′ = (S ′, S ′0, R
′, L′) s.t. S ′ = S−Sr, S ′0 = S0−Sr, R′ = R,L′ = L−Lr (3.7)

where Sr = {sr | sr ∈ S and sr ∈ γ(ŝr)} and Lr = {lr = (sr, lit) | lr ∈

L}.

Proposition 18. For M ′, it holds that 1 ≤ d(M,M ′) ≤ |S|.
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Proof. d(M,M ′) = |S∆S ′|+|R∆R′|+ |π(L�S∩S′ )∆π(L′�S∩S′ )|
2

. Because |R∆R′| =

0 and |π(L �S∩S′)∆π(L′ �S∩S′)| = 0, d(M,M ′) = |S∆S ′| = |S−S ′|+|S ′−S| =

|Sr| + 0 = |Sr|. It holds that |Sr| ≥ 1 and |Sr| ≤ |S|. So, we proved that

1 ≤ d(M,M ′) ≤ |S|.

Minimality Of Changes Ordering For Basic Repair Operations

The distance metric d of Def. 17 re�ects the need to quantify structural

changes in the concrete model that are attributed to model repair steps ap-

plied to the abstract KMTS. Every such repair step implies multiple struc-

tural changes in the concrete KSs, due to the use of abstraction. In this

context, our distance metric is an essential means for the e�ective applica-

tion of the abstraction in the repair process.

Based on the upper bound given by Prop. 6 and all the respective re-

sults for the other basic repair operations, we introduce the partial ordering

shown in Fig. 3.9. This ordering is used in our AbstractRepair algorithm to

heuristically select at each step the basic repair operation that generates the

KSs with the least changes. When it is possible to apply more than one basic

repair operation with the same upper bound, our algorithm successively uses

them until a repair solution is found, in an order based on the computational

complexity of their application.

If instead of our approach, all possible repaired KSs were checked to

identify the basic repair operation with the minimum changes, this would

defeat the purpose of using abstraction. The reason is that such a check
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inevitably would depend on the size of concrete KSs.
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Figure 3.9: Minimality of changes ordering of the set of basic repair opera-
tions

3.3 The Abstract Model Repair Algorithm

The AbstractRepair algorithm used in Step 3 of our repair process is a re-

cursive, syntax-directed algorithm, where the syntax for the property φ in

question is that of CTL. The same approach is followed by the SAT model

checking algorithm in [62] and a number of model repair solutions applied

to concrete KSs [89, 26]. In our case, we aim to the repair of an abstract

KMTS by successively calling primitive repair functions that handle atomic

formulas, logical connectives and CTL operators. At each step, the repair

with the least changes for the concrete model among all the possible repairs

is applied �rst.

The main routine of AbstractRepair is presented in Algorithm 1. If the
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Algorithm 1 AbstractRepair

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ

in PNF for which (M̂, ŝ) 6|= φ, and a set of constraints C =
{(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ Ŝ and φci is CTL formula.

Output: M̂ ′ = (Ŝ ′, Ŝ ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.
1: if φ is false then
2: return FAILURE
3: else if φ ∈ LIT then
4: return AbstractRepairATOMIC(M̂, ŝ, φ, C)
5: else if φ is φ1 ∧ φ2 then
6: return AbstractRepairAND(M̂, ŝ, φ, C)
7: else if φ is φ1 ∨ φ2 then
8: return AbstractRepairOR(M̂, ŝ, φ, C)
9: else if φ is OPERφ1 then
10: return AbstractRepairOPER(M̂, ŝ, φ, C)
11: where OPER ∈ {AX,EX,AU,EU,AF,EF,AG,EG}

property φ is not in Positive Normal Form, i.e. negations are applied only to

atomic propositions, then we transform it into such a form before applying

Algorithm 1.

An initially empty set of constraints C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn ,

φcn)} is passed as an argument in the successive recursive calls of AbstractRe-

pair. We note that these constraints can also specify existing properties that

should be preserved during repair. If C is not empty, then for the returned

KMTS M̂ ′, it holds that (M̂ ′, ŝci) |= φci for all (ŝci , φci) ∈ C. For brevity, we

denote this with M̂ ′ |= C. We use C in order to handle conjunctive formulas

of the form φ = φ1 ∧ φ2 for some state ŝ. In this case, AbstractRepair is

called for the KMTS M̂ and property φ1 with C = {(ŝ, φ2)}. The same is

repeated for property φ2 with C = {(ŝ, φ1)} and the two results are combined
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Algorithm 2 AbstractRepairATOMIC

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ where φ
is an atomic formula for which (M̂, ŝ) 6|= φ, and a set of constraints
C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ Ŝ and φci is a CTL
formula.

Output: M̂ ′ = (Ŝ ′, Ŝ ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.
1: M̂ ′ := ChangeLabel(M̂, ŝ, φ)
2: if M̂ ′ |= C then
3: return M̂ ′

4: else
5: return FAILURE

appropriately.

For any CTL formula φ and KMTS state ŝ, AbstractRepair either outputs

a KMTS M̂ ′ for which (M̂ ′, ŝ) |= φ or else returns FAILURE, if such a model

cannot be found. This is the case when the algorithm handles conjunctive

formulas and a KMTS that simultaneously satis�es all conjuncts cannot be

found.
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Algorithm 3 AbstractRepairAND

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ =

φ1 ∧ φ2 for which (M̂, ŝ) 6|= φ, and a set of constraints C =
((ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)) where ŝci ∈ Ŝ and φci is a CTL for-
mula.

Output: M̂ ′ = (Ŝ ′, Ŝ ′0, R
′
must, R

′
may, L̂

′), ŝ ∈ Ŝ ′ and (M̂ ′, ŝ) |= φ or FAIL-
URE.

1: RET1 := AbstractRepair(M̂, ŝ, φ1, C)
2: RET2 := AbstractRepair(M̂, ŝ, φ2, C)
3: C1 := C ∪ {(ŝ, φ1)}, C2 := C ∪ {(ŝ, φ2)}
4: RET ′1 := FAIURE, RET ′2 := FAIURE
5: if RET1 6= FAILURE then
6: M̂1 := RET1

7: RET ′1 := AbstractRepair(M̂1, ŝ, φ2, C1)
8: if RET ′1 6= FAILURE then
9: M̂ ′

1 := RET ′1
10: if RET2 6= FAILURE then
11: M̂2 := RET2

12: RET ′2 := AbstractRepair(M̂2, ŝ, φ1, C2)
13: if RET ′2 6= FAILURE then
14: M̂ ′

2 := RET ′2
15: if RET ′1 6= FAILURE && RET ′2 6= FAILURE then
16: M̂ ′ := MinimallyChanged(M̂, M̂ ′

1, M̂
′
2)

17: else if RET ′1 6= FAILURE then
18: M̂ ′ := RET ′1
19: else if RET ′2 6= FAILURE then
20: M̂ ′ := RET ′2
21: else
22: return FAILURE
23: return M̂ ′
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Algorithm 4 AbstractRepairAG

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ =

AGφ1 for which (M̂, ŝ) 6|= φ, and a set of constraints C =
{(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ Ŝ and φci is a CTL for-
mula.

Output: M̂ ′ = (Ŝ ′, Ŝ ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.
1: if (M̂, ŝ) 6|= φ1 then
2: RET := AbstractRepair(M̂, ŝ, φ1, C)
3: if RET == FAILURE then
4: return FAILURE
5: else
6: M̂ ′ := RET
7: else
8: M̂ ′ := M̂
9: for all reachable states ŝk through may-transitions from ŝ such that

(M̂ ′, ŝk) 6|= φ1 do
10: RET := AbstractRepair(M̂ ′, ŝk, φ1, C)
11: if RET == FAILURE then
12: return FAILURE
13: else
14: M̂ ′ := RET
15: if M̂ ′ |= C then
16: return M̂ ′

17: return FAILURE

3.3.1 Primitive Functions

Algorithm 2 describes AbstractRepairATOMIC , which for a simple atomic for-

mula, updates the labeling of the input state with the given atomic propo-

sition. Disjunctive formulas are handled by repairing the disjunct leading to

the minimum change (Algorithm 5), while conjunctive formulas are handled

by the algorithm with the use of constraints (Algorithm 3).
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Algorithm 5 AbstractRepairOR

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ =

φ1 ∨ φ2 for which (M̂, ŝ) 6|= φ, and a set of constraints C =
((ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)) where ŝci ∈ Ŝ and φci is a CTL for-
mula.

Output: M̂ ′ = (Ŝ ′, Ŝ ′0, R
′
must, R

′
may, L̂

′), ŝ ∈ Ŝ ′ and (M̂ ′, ŝ) |= φ or FAIL-
URE.

1: RET1 := AbstractRepair(M̂, ŝ, φ1, C)
2: RET2 := AbstractRepair(M̂, ŝ, φ2, C)
3: if RET1 6= FAILURE && RET2 6= FAILURE then
4: M̂1 := RET1

5: M̂2 := RET2

6: M̂ ′ := MinimallyChanged(M̂, M̂1, M̂2)
7: else if RET1 6= FAILURE then
8: M̂ ′ := RET1

9: else if RET2 6= FAILURE then
10: M̂ ′ := RET2

11: else
12: return FAILURE
13: return M̂ ′

Algorithm 4 describes the primitive function AbstractRepairAG which

is called when φ = AGφ1. If AbstractRepairAG is called for a state ŝ, it

recursively calls AbstractRepair for ŝ and for all reachable states through

may-transitions from ŝ which do not satisfy φ1. The resulting KMTS M̂ ′ is

returned, if it does not violate any constraint in C.
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Algorithm 6 AbstractRepairEX

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ =

EXφ1 for which (M̂, ŝ) 6|= φ, and a set of constraints C =
{(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ M̂ and φci is a CTL for-
mula.

Output: M̂ ′ = (Ŝ ′, Ŝ ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.
1: if there exists ŝ1 ∈ Ŝ such that (M̂, ŝ1) |= φ1 then
2: for all ŝi ∈ Ŝ such that (M̂, ŝi) |= φ1 do
3: r̂i := (ŝ, ŝi), M̂ ′ := AddMust(M̂, r̂i)
4: if M̂ ′ |= C then
5: return M̂ ′

6: else
7: for all direct must-reachable states ŝi from ŝ such that (M̂, ŝi) 6|= φ1

do
8: RET := AbstractRepair(M̂, ŝi, φ1, C)
9: if RET 6= FAILURE then
10: M̂ ′ := RET
11: return M̂ ′

12: M̂ ′ := AddState(M̂, ŝn), r̂n := (ŝ, ŝn), M̂ ′ := AddMust(M̂ ′, r̂n)
13: r̂n := (ŝn, ŝn)
14: M̂ ′ := AddMay(M̂ ′, r̂n)
15: RET := AbstractRepair(M̂ ′, ŝn, φ1, C)
16: if RET 6= FAILURE then
17: M̂ ′ := RET
18: return M̂ ′

19: return FAILURE

AbstractRepairEX presented in Algorithm 6 is the primitive function for

handling properties of the form EXφ1 for some state ŝ. At �rst, the KMTS is

attempted to be repaired by AbstractRepairEX by adding a must-transition

from ŝ to a state that satis�es property φ1. If a repaired KMTS is not

found, then AbstractRepair is recursively called for an immediate successor

of ŝ through a must-transition, such that φ1 is not satis�ed. If a constraint
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in C is violated, then (i) a new state is added, (ii) AbstractRepair is called

for the new state and (iii) a must-transition from ŝ to the new state is added.

The resulting KMTS is returned by the algorithm if all constraints of C are

satis�ed.
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Algorithm 7 AbstractRepairAX

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ =

AXφ1 for which (M̂, ŝ) 6|= φ, and a set of constraints C =
{(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ M̂ and φci is a CTL for-
mula.

Output: M̂ ′ = (Ŝ ′, Ŝ ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.
1: M̂ ′ := M̂
2: RET := FAILURE
3: for all direct may-reachable states ŝi from ŝ with (ŝ, ŝi) ∈ Rmay do

4: if (M̂ ′, ŝi) 6|= φ1 then
5: RET := AbstractRepair(M̂ ′, ŝi, φ1, C)
6: if RET == FAILURE then
7: BREAK
8: M̂ ′ := RET
9: if RET 6= FAILURE then
10: return M̂ ′

11: M̂ ′ := M̂
12: for all direct may-reachable states ŝi from ŝ with r̂i := (ŝ, ŝi) ∈ Rmay

do
13: if (M̂ ′, ŝi) 6|= φ1 then
14: M̂ ′ := RemoveMay(M̂ ′, r̂i)
15: if there exists direct may-reachable state ŝ1 from ŝ such that (ŝ, ŝ1) ∈

Rmay then

16: if M̂ ′ |= C then
17: return M̂ ′

18: else
19: for all ŝj ∈ Ŝ such that (M̂ ′, ŝj) |= φ1 do

20: r̂j := (ŝ, ŝj), M̂ ′ := AddMay(M̂ ′, r̂j)

21: if M̂ ′ |= C then
22: return M̂ ′

23: M̂ ′ := AddState(M̂, ŝn)
24: if ŝn is a dead-end state then
25: r̂n := (ŝn, ŝn), M̂ ′ := AddMay(M̂ ′, r̂n)
26: RET := AbstractRepair(M̂ ′, ŝn, φ1, C)
27: if RET 6= FAILURE then
28: M̂ ′ := RET , r̂n := (ŝ, ŝn), M̂ ′ := AddMay(M̂ ′, r̂n)
29: if M̂ ′ |= C then
30: return M̂ ′

31: return FAILURE
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Algorithm 7 presents primitive function AbstractRepairAX which is used

when φ = AXφ1. Firstly, AbstractRepairAX tries to repair the KMTS by ap-

plying AbstractRepair for all direct may-successors ŝi of ŝ which do not sat-

isfy property φ1, and in the case that all the constraints are satis�ed the new

KMTS is returned by the function. If such states do not exist or a constraint

is violated, all may-transitions (ŝ, ŝi) for which (M̂, ŝi) 6|= φ1, are removed.

If there are states ŝi such that rm := (ŝ, ŝi) ∈ Rmay and all constraints are

satis�ed then a repaired KMTS has been produced and it is returned by the

function. Otherwise, a repaired KMTS results by the application of AddMay

from ŝ to all states ŝj which satisfy φ1. If any constraint is violated, then the

KMTS is repaired by adding a new state, applying AbstractRepair to this

state for property φ1 and adding a may-transition from ŝ to this state. If all

constraints are satis�ed, the repaired KMTS is returned.
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Algorithm 8 AbstractRepairEG

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ =

EGφ1 for which (M̂, ŝ) 6|= φ, and a set of constraints C =
{(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ Ŝ and φci is a CTL for-
mula.

Output: M̂ ′ = (Ŝ ′, Ŝ ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.
1: M̂1 := M̂
2: if (M̂, ŝ) 6|= φ1 then
3: RET := AbstractRepair(M̂, ŝ, φ1, C)
4: if RET == FAILURE then
5: return FAILURE
6: M̂1 := RET
7: while there exists maximal path πmust := [ŝ1, ŝ2, ...] such that ∀ŝi ∈ πmust

it holds that (M̂1, ŝi) |= φ1 do
8: r̂1 := (ŝ, ŝ1), M̂ ′ := AddMust(M̂1, r̂1)
9: if M̂ ′ |= C then
10: return M̂ ′

11: while there exists maximal path πmust := [ŝ, ŝ1, ŝ2, ...] such that ∀ŝi 6=
ŝ ∈ πmust it holds that (M̂1, ŝi) 6|= φ1 do

12: M̂ ′ := M̂1

13: for all ŝi ∈ πmust do
14: if (M̂1, ŝi) 6|= φ1 then
15: RET := AbstractRepair(M̂ ′, ŝi, φ1, C)
16: if RET 6= FAILURE then
17: M̂ ′ := RET
18: else
19: continue to next path
20: return M̂ ′

21: M̂ ′ := AddState(M̂1, ŝn)
22: RET := AbstractRepair(M̂ ′, ŝn, φ1, C)
23: if RET 6= FAILURE then
24: M̂ ′ := RET
25: r̂n := (ŝ, ŝn), M̂ ′ := AddMust(M̂ ′, r̂n)
26: if ŝn is a dead-end state then
27: r̂n := (ŝn, ŝn), M̂ ′ := AddMust(M̂ ′, r̂n)
28: if M̂ ′ |= C then
29: return M̂ ′

30: return FAILURE
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AbstractRepairEG which is presented in Algorithm 8 is the primitive func-

tion which is called when input CTL property is in the form of EGφ1. Ini-

tially, if φ1 is not satis�ed at ŝ AbstractRepair is called for ŝ and φ1, and a

KMTS M̂1 is produced. At �rst, a must-transition is added from ŝ to a state

ŝ1 of a maximal must-path (i.e. a must-path in which each transition ap-

pears at most once) πmust := [ŝ1, ŝ2, ...] such that ∀ŝi ∈ πmust, (M̂1, ŝi) |= φ1.

If all constraints are satis�ed, then the repaired KMTS is returned. Oth-

erwise, a KMTS is produced by recursively calling AbstractRepair to all

states ŝi 6= ŝ of any maximal must-path πmust := [ŝ1, ŝ2, ...] with ∀ŝi ∈ πmust,

(M̂1, ŝi) 6|= φ1. If there are violated constraints in C, then a repaired KMTS

is produced by adding a new state, calling AbstractRepair for this state

and property φ1 and calling AddMust to insert a must-transition from ŝ

to the new state. The resulting KMTS is returned by the algorithm, if all

constraints in C are satis�ed.
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Algorithm 9 AbstractRepairAF

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ =

AFφ1 for which (M̂, ŝ) 6|= φ, and a set of constraints C =
{(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ Ŝ and φci is a CTL for-
mula.

Output: M̂ ′ = (Ŝ ′, Ŝ ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.
1: M̂ ′ := M̂
2: while there exists maximal path πmay := [ŝ, ŝ1, ...] such that ∀ŝi ∈ πmay

it holds that (M̂ ′, ŝi) 6|= φ1 do
3: for all ŝi ∈ πmay do
4: RET := AbstractRepair(M̂ ′, ŝi, φ1, C)
5: if RET 6= FAILURE then
6: M̂ ′ := RET
7: continue to next path
8: return FAILURE
9: return M̂ ′

AbstractRepairAF shown in Algorithm 9 is called when the CTL formula

φ is in the form of AFφ1. While there is maximal may-path πmay := [ŝ, ŝ1, ...]

such that ∀ŝi ∈ πmay, (M̂ ′, ŝi) 6|= φ1, AbstractRepairAF tries to obtain a

repaired KMTS by recursively calling AbstractRepair to some state ŝi ∈

πmay. If all constraints are satis�ed to the new KMTS, then it is returned as

the repaired model.
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Algorithm 10 AbstractRepairEF

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ =

EFφ1 for which (M̂, ŝ) 6|= φ, and a set of constraints C =
{(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ Ŝ and φci is a CTL for-
mula.

Output: M̂ ′ = (Ŝ ′, Ŝ ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.
1: for all must-reachable states ŝi from ŝ with (M̂, ŝi) 6|= φ1 or ŝi := ŝ do
2: for all ŝk ∈ Ŝ such that (M̂, ŝk) |= φ1 do
3: r̂k := (ŝi, ŝk), M̂ ′ := AddMust(M̂, r̂k)
4: if M̂ ′ |= C then
5: return M̂ ′

6: for all must-reachable states ŝi from ŝ with (M̂, ŝi) 6|= φ1 do
7: RET := AbstractRepair(M̂, ŝi, φ1, C)
8: if RET 6= FAILURE then
9: M̂ ′ := RET
10: return M̂ ′

11: M̂1 := AddState(M̂ ′, ŝn), RET := AbstractRepair(M̂1, ŝn, φ1, C)
12: if RET 6= FAILURE then
13: M̂1 := RET
14: for all must-reachable states ŝi from ŝ with (M̂, ŝi) 6|= φ1 or ŝi := ŝ

do
15: r̂i := (ŝi, ŝn), M̂ ′ := AddMust(M̂1, r̂i)
16: if ŝn is a dead-end state then
17: r̂n := (ŝn, ŝn), M̂ ′ := AddMust(M̂ ′, r̂n)
18: if M̂ ′ |= C then
19: return M̂ ′

20: return FAILURE

AbstractRepairEF shown in Algorithm 10 is called when the CTL prop-

erty φ is in the form EFφ1. Initially, a KMTS is acquired by adding a

must-transition from a must-reachable state ŝi from ŝ to a state ŝk ∈ Ŝ such

that (M̂, ŝk) |= φ1. If all constraints are satis�ed then this KMTS is re-

turned. Otherwise, a KMTS is produced by applying AbstractRepair to a



3.3. The Abstract Model Repair Algorithm 87

must-reachable state ŝi from ŝ for φ1. If none of the constraints is violated

then this KMTS is returned. At any other case, a new KMTS is produced by

adding a new state ŝn, recursively calling AbstractRepair for this state and

φ1 and adding a must-transition from ŝ or from a must-reachable ŝi from ŝ to

ŝn. If all constraints are satis�ed, then this KMTS is returned as a repaired

model by the algorithm.

Algorithm 11 AbstractRepairAU

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ =

A(φ1Uφ2) for which (M̂, ŝ) 6|= φ, and a set of constraints C =
{(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ Ŝ and φci is a CTL for-
mula.

Output: M̂ ′ = (Ŝ ′, Ŝ ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.
1: M̂1 := M̂
2: if (M̂, ŝ) 6|= φ1 then
3: RET := AbstractRepair(M̂, ŝ, φ1, C)
4: if RET == FAILURE then
5: return FAILURE
6: else
7: M̂1 := RET
8: while there exists path πmay := [ŝ1, ..., ŝm] such that ∀ŝi ∈ πmay it holds

that (M̂1, ŝi) |= φ1 and there does not exist r̂m := (ŝm, ŝn) ∈ Rmay such
that (M̂1, ŝn) |= φ2 do

9: for all ŝj ∈ πmay for which (M̂1, ŝj) 6|= φ2 with ŝj 6= ŝ1 do

10: RET := AbstractRepair(M̂1, ŝj, φ2, C)
11: if RET 6= FAILURE then
12: M̂ ′ := RET
13: continue to next path
14: return FAILURE
15: return M̂ ′

AbstractRepairAU is presented in Algorithm 11 and is called when φ =
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A(φ1Uφ2). If φ1 is not satis�ed at ŝ, then a KMTS M̂1 is produced by

applying AbstractRepair to ŝ for φ1. Otherwise, M̂1 is same to M̂ . A new

KMTS is produced as follows: for all may-paths πmay := [ŝ1, ..., ŝm] such that

∀ŝi ∈ πmay, (M̂1, ŝi) |= φ1 and for which there does not r̂m := (ŝm, ŝn) ∈ Rmay

with (M̂1, ŝn) |= φ2, AbstractRepair is called for property φ2 for some state

ŝj ∈ πmay with (M̂1, ŝj) 6|= φ2. If the resulting KMTS satis�es all constraints,

then it is returned as a repair solution.
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Algorithm 12 AbstractRepairEU

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ =

E(φ1Uφ2) for which (M̂, ŝ) 6|= φ, and a set of constraints C =
{(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ Ŝ and φci is a CTL for-
mula.

Output: M̂ ′ = (Ŝ ′, Ŝ ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.
1: M̂1 := M̂
2: if (M̂, ŝ) 6|= φ1 then
3: RET := AbstractRepair(M̂, ŝ, φ1, C)
4: if RET == FAILURE then
5: return FAILURE
6: else
7: M̂1 := RET
8: while there exists path πmust := [ŝ1, ..., ŝm] such that ∀ŝi ∈ πmust,

(M̂1, ŝi) |= φ1 do
9: for all ŝj ∈ Ŝ with (M̂1, ŝj) |= φ2 do

10: r̂j := (ŝm, ŝj), M̂ ′ := AddMust(M̂1, r̂j)

11: if M̂ ′ |= C then
12: return M̂ ′

13: M̂ ′ := AddState(M̂1, ŝk)
14: RET := AbstractRepair(M̂ ′, ŝk, φ2, C)
15: if RET 6= FAILURE then
16: M̂ ′ := RET
17: r̂n := (ŝ, ŝk), M̂ ′ := AddMust(M̂ ′, r̂n)
18: if ŝk is a dead-end state then
19: r̂k := (ŝk, ŝk), M̂ ′ := AddMust(M̂ ′, r̂k)
20: if M̂ ′ |= C then
21: return M̂ ′

22: return FAILURE

AbstractRepairEU is called if for input CTL formula φ it holds that φ =

E(φ1Uφ2). AbstractRepairEU is presented in Algorithm 12. Firstly, if φ1 is

not satis�ed at ŝ, then AbstractRepair is called for ŝ and φ1 and a KMTS

M̂1 is produced for which (M̂1, ŝ) |= φ1. Otherwise, M̂1 is same to M̂ . A



3.3. The Abstract Model Repair Algorithm 90

new KMTS is produced as follows: for a must-path πmust := [ŝ1, ..., ŝm] such

that ∀ŝi ∈ πmust, (M̂1, ŝi) |= φ1 and for a ŝj ∈ Ŝ with (M̂1, ŝj) |= φ2, a

must-transition is added from ŝm to ŝj. If all constraints are satis�ed then

the new KMTS is returned. Alternatively, a KMTS is produced by adding a

new state ŝn, recursively calling AbstractRepair for φ2 and ŝn and adding a

must-transition from ŝ to ŝn. In the case that no constraint is violated then

this is a repaired KMTS and it is returned from the function.

3.3.2 Properties of the Algorithm

AbstractRepair is well-de�ned [82], in the sense that the algorithm always

proceeds and eventually returns a result M̂ ′ or FAILURE such that (M̂ ′, ŝ) |=

φ, for any input M̂ , φ and C, with (M̂, ŝ) 6|= φ. Moreover, the algorithm steps

are well-ordered, as opposed to existing concrete model repair solutions [25,

89] that entail nondeterministic behavior.

Soundness

Lemma 19. Let a KMTS M̂ , a CTL formula φ with (M̂, ŝ) 6|= φ for some

ŝ of M̂ , and a set C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} with (M̂, ŝci) |= φci

for all (ŝcn , φcn) ∈ C. If AbstractRepair(M̂, ŝ, φ, C) returns a KMTS M̂ ′,

then (M̂ ′, ŝ) |= φ and (M̂ ′, ŝci) |= φci for all (ŝci , φci) ∈ C.

Proof. We use structural induction on φ. For brevity, we write M̂ |= C to

denote that (M̂, ŝci) |= φci , for all (ŝci , φci) ∈ C.
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Base Case:

• if φ = >, the lemma is trivially true, because (M̂, ŝ) |= φ

• if φ = ⊥, then AbstractRepair(M̂, ŝ, φ, C) returns FAILURE at line 2

of Algorithm 1 and the lemma is also trivially true.

• if φ = p ∈ AP , AbstractRepairATOMIC(M̂, ŝ, p, C) is called at line 4 of

Algorithm 1 and an M̂ ′ = ChangeLabel(M̂, ŝ, p) is computed at line 1

of Algorithm 2. Since p ∈ L̂′(ŝ) in M̂ ′, from 3-valued semantics of CTL

over KMTSs we have (M̂ ′, ŝ) |= φ. Algorithm 2 returns M̂ ′ at line 3, if

and only if M̂ ′ |= C and the lemma is true.

Induction Hypothesis: For CTL formulae φ1, φ2, the lemma is true.

Thus, for φ1 (resp. φ2), if AbstractRepair(M̂, ŝ, φ1, C) returns a KMTS

M̂ ′, then (M̂ ′, ŝ) |= φ1 and M̂ ′ |= C.

Inductive Step:

• if φ = φ1∨φ2, then AbstractRepair(M̂, ŝ, φ, C) calls AbstractRepairOR

(M̂, ŝ, φ1∨φ2, C) at line 8 of Algorithm 1. From the induction hypothe-

sis, if a KMTS M̂1 is returned by AbstractRepair(M̂, ŝ, φ1, C) at line 1

of Algorithm 5 and a KMTS M̂2 is returned by AbstractRepair(M̂, ŝ, φ2

, C) respectively, then (M̂1, ŝ) |= φ1, M̂1 |= C and (M̂2, ŝ) |= φ1,

M̂2 |= C. AbstractRepairOR(M̂, ŝ, φ1 ∨ φ2, C) returns at line 8 of Al-

gorithm 1 the KMTS M̂ ′, which can be either M̂1 or M̂2. Therefore,
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(M̂ ′, ŝ) |= φ1 or (M̂ ′, ŝ) |= φ2 and M̂ ′ |= C in both cases. From 3-valued

semantics of CTL, (M̂ ′, ŝ) |= φ1 ∨ φ2 and the lemma is true.

• if φ = φ1∧φ2, then AbstractRepairAND (M̂, ŝ, φ1∧φ2, C) is called from

AbstractRepair(M̂, ŝ, φ, C) at line 6 of Algorithm 1. From the induc-

tion hypothesis, if at line 1 of Algorithm 3 AbstractRepair(M̂, ŝ, φ1, C)

returns a KMTS M̂1, then (M̂1, ŝ) |= φ1 and M̂1 |= C. Consequently,

M̂1 |= C1, where C1 = C ∪ (ŝ, φ1). At line 7, if AbstractRepair(M̂1, ŝ,

φ2, C1) returns a KMTS M̂ ′
1, then from the induction hypothesis (M̂ ′

1, ŝ)

|= φ2 and M̂ ′
1 |= C1.

In the same manner, if the calls at lines 2 and 12 of Algorithm 3 return

the KMTSs M̂2 and M̂ ′
2, then from the induction hypothesis (M̂2, ŝ) |=

φ2, M̂2 |= C and (M̂ ′
2, ŝ) |= φ1, M̂ ′

2 |= C2 with C2 = C ∪ (ŝ, φ2).

The KMTS M̂ ′ at line 6 of Algorithm 1 can be either M̂ ′
1 or M̂ ′

2 and

therefore, (M̂ ′, ŝ) |= φ1, (M̂ ′, ŝ) |= φ2 and M̂ ′ |= C. From 3-valued

semantics of CTL it holds that (M̂ ′, ŝ) |= φ1 ∧ φ2 and the lemma is

true.

• if φ = EXφ1, AbstractRepairEX(M̂, ŝ, EXφ1, C) is called at line 10 of

Algorithm 1.

If a KMTS M̂ ′ is returned at line 5 of Algorithm 6, there is a state ŝ1

with (M̂, ŝ1) |= φ1 such that M̂ ′ = AddMust(M̂, (ŝ, ŝ1)) and M̂ ′ |= C.

From 3-valued semantics of CTL, we conclude that (M̂ ′, ŝ) |= EXφ1.
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If a M̂ ′ is returned at line 11, there is (ŝ, ŝ1) ∈ Rmust such that

(M̂ ′, ŝ1) |= φ1 and M̂ ′ |= C from the induction hypothesis, since

M̂ ′ = AbstractRepair(M̂, ŝ1, φ1, C). From 3-valued semantics of CTL,

we conclude that (M̂ ′, ŝ) |= EXφ1.

If a M̂ ′ is returned at line 18, a must transition (ŝ, ŝn) to a new state has

been added and M̂ ′ = AbstractRepair(AddMust(M̂, (ŝ, ŝn)), ŝn, φ1, C).

Then, from the induction hypothesis (M̂ ′, ŝn) |= φ1, M̂ ′ |= C and from

3-valued semantics of CTL, we also conclude that (M̂ ′, ŝ) |= EXφ1.

• if φ = AGφ1, AbstractRepair(M̂, ŝ, φ, C) calls AbstractRepairAG(M̂,

ŝ, AGφ1, C) at line 10 of Algorithm 1. If (M̂, ŝ) 6|= φ1 and Abstract

Repair(M̂, ŝ, φ1, C) returns a KMTS M̂0 at line 2 of Algorithm 4, then

from the induction hypothesis (M̂0, ŝ) |= φ1 and M̂0 |= C. Otherwise,

M̂0 = M̂ and (M̂0, ŝ) |= φ1 also hold true.

If Algorithm 4 returns a M̂ ′ at line 16, then M̂ ′ |= C and M̂ ′ is

the result of successive AbstractRepair(M̂i, ŝk, φ1, C) calls with M̂i =

AbstractRepair(M̂i−1, ŝk, φ1, C) and i = 1, ..., for all may-reachable

states ŝk from ŝ such that (M̂0, ŝk) 6|= φ1. From the induction hypoth-

esis, (M̂ ′, ŝk) |= φ1 and M̂ ′ |= C for all such ŝk and from 3-valued

semantics of CTL we conclude that (M̂ ′, ŝ) |= AGφ1.

We prove the lemma for all other cases in a similar manner.

Corrolary 1 (Soundness). Let a KMTS M̂ , a CTL formula φ with (M̂, ŝ) 6|=

φ, for some ŝ of M̂ . If AbstractRepair(M̂, ŝ, φ, ∅) returns a KMTS M̂ ′, then
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(M̂ ′, ŝ) |= φ.

Proof. We use structural induction on φ and Lemma 19 in the inductive step

for φ1 ∧ φ2.

Base Case:

• if φ = >, Theorem 1 is trivially true, because (M̂, ŝ) |= φ.

• if φ = ⊥, then AbstractRepair(M̂, ŝ,⊥, ∅) returns FAILURE at line 2

of Algorithm 1 and the theorem is also trivially true.

• if φ = p ∈ AP , AbstractRepairATOMIC(M̂, ŝ, p, ∅) is called at line 4 of

Algorithm 1 and an M̂ ′ = ChangeLabel(M̂, ŝ, p) is computed at line

1. Because of the fact that p ∈ L̂′(ŝ) in M̂ ′, from 3-valued semantics

of CTL over KMTSs we have (M̂ ′, ŝ) |= φ. Algorithm 2 returns M̂ ′ at

line 3 because C is empty, and the theorem is true.

Induction Hypothesis: For CTL formulae φ1, φ2, the theorem is true.

Thus, for φ1 (resp. φ2), if AbstractRepair(M̂, ŝ, φ, ∅) returns a KMTS M̂ ′,

then (M̂ ′, ŝ) |= φ1.

Inductive Step:

• if φ = φ1∨φ2, then AbstractRepair(M̂, ŝ, φ, ∅) calls AbstractRepairOR
(M̂, ŝ, φ1 ∨ φ2, ∅) at line 8 of Algorithm 1.
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From the induction hypothesis, if AbstractRepair(M̂, ŝ, φ1, ∅) returns

a KMTS M̂1 at line 1 of Algorithm 5 and AbstractRepair(M̂, ŝ, φ2, ∅)

returns a KMTS M̂2 respectively, then (M̂1, ŝ) |= φ1 and (M̂2, ŝ) |= φ1.

AbstractRepairOR(M̂, ŝ, φ1∨φ2, ∅) returns at line 8 of Algorithm 1 the

KMTS M̂ ′, which can be either M̂1 or M̂2. Therefore, (M̂ ′, ŝ) |= φ1 or

(M̂ ′, ŝ) |= φ2. From 3-valued semantics of CTL, (M̂ ′, ŝ) |= φ1 ∨ φ2 and

the theorem is true.

• if φ = φ1 ∧φ2, then AbstractRepairAND(M̂, ŝ, φ1 ∧φ2, ∅) is called from

AbstractRepair(M̂, ŝ, φ, ∅) at line 6 of Algorithm 1. From the induction

hypothesis, if at line 1 of Algorithm 3 AbstractRepair(M̂, ŝ, φ1, ∅) re-

turns a KMTS M̂1, then (M̂1, ŝ) |= φ1. Consequently, M̂1 |= C1, where

C1 = ∅ ∪ (ŝ, φ1). At line 7, if AbstractRepair(M̂1, ŝ, φ2, C1) returns a

KMTS M̂ ′
1, then from Lemma 19 (M̂ ′

1, ŝ) |= φ2 and M̂ ′
1 |= C1.

Likewise, if the calls at lines 2 and 12 of Algorithm 3 return the KMTSs

M̂2 and M̂ ′
2, then from the induction hypothesis (M̂2, ŝ) |= φ2 and from

Lemma 19 (M̂ ′
2, ŝ) |= φ1, M̂ ′

2 |= C2 with C2 = ∅ ∪ (ŝ, φ2).

The KMTS M̂ ′ at line 7 of Algorithm 1 can be either M̂ ′
1 or M̂ ′

2 and

therefore, (M̂ ′, ŝ) |= φ1 and (M̂ ′, ŝ) |= φ2. From 3-valued semantics of

CTL it holds that (M̂ ′, ŝ) |= φ1 ∧ φ2 and the lemma is true.

• if φ = EXφ1, AbstractRepair(M̂, ŝ, φ, ∅) calls AbstractRepairEX(M̂,

ŝ, EXφ1, ∅) at line 10 of Algorithm 1.

If a KMTS M̂ ′ is returned at line 5 of Algorithm 6, there is a state
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ŝ1 with (M̂, ŝ1) |= φ1 such that M̂ ′ = AddMust(M̂, (ŝ, ŝ1)). From

3-valued semantics of CTL, we conclude that (M̂ ′, ŝ) |= EXφ1.

If a M̂ ′ is returned at line 11, there is (ŝ, ŝ1) ∈ Rmust such that

(M̂ ′, ŝ1) |= φ1 from the induction hypothesis, since M̂ ′ = Abstract

Repair(M̂, ŝ1, φ1, ∅). From 3-valued semantics of CTL, we conclude

that (M̂ ′, ŝ) |= EXφ1.

If a M̂ ′ is returned at line 18, a must transition (ŝ, ŝn) to a new state has

been added and M̂ ′ = AbstractRepair(AddMust(M̂, (ŝ, ŝn)), ŝn, φ1, ∅).

Then, from the induction hypothesis (M̂ ′, ŝn) |= φ1 and from 3-valued

semantics of CTL, we also conclude that (M̂ ′, ŝ) |= EXφ1.

• if φ = AGφ1, AbstractRepair(M̂, ŝ, φ, ∅) calls AbstractRepairAG(M̂, ŝ,

AGφ1, ∅) at line 10 of Algorithm 1. If (M̂, ŝ) 6|= φ1 and AbstractRepair

(M̂, ŝ, φ1, ∅) returns a KMTS M̂0 at line 2 of Algorithm 4, then from the

induction hypothesis (M̂0, ŝ) |= φ1. Otherwise, M̂0 = M̂ and (M̂0, ŝ) |=

φ1, M̂0 |= C also hold true.

If Algorithm 4 returns a M̂ ′ at line 16, this KMTS is the result of succes-

sive calls of AbstractRepair(M̂i, ŝk, φ1, ∅) with M̂i = AbstractRepair

(M̂i−1, ŝk, φ1, ∅) and i = 1, ..., for all may-reachable states ŝk from ŝ

such that (M̂0, ŝk) 6|= φ1. From the induction hypothesis, (M̂ ′, ŝk) |= φ1

for all such ŝk and from 3-valued semantics of CTL we conclude that

(M̂ ′, ŝ) |= AGφ1.

We prove the theorem for all other cases in the same way.
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Theorem 1 shows that AbstractRepair is sound in the sense that if it

returns a KMTS M̂ ′, then M̂ ′ satis�es property φ. In this case, from the

de�nitions of the basic repair operations, it follows that one or more KSs can

be obtained for which φ holds true.

Semi-completeness

De�nition 34 (mr -CTL). Given a set AP of atomic propositions, we de�ne

the syntax of a CTL fragment inductively via a Backus Naur Form:

φ ::==⊥ |> | p | (¬p) | (φ ∨ φ) |AXp |EXp |AFp

|EFp |AGp |EGp |A[pU p] |E[pU p]

where p ranges over AP .

mr -CTL includes most of the CTL formulae apart from those with nested

path quanti�ers or conjunction.

Theorem 20 (Completeness). Given a KMTS M̂ , an mr-CTL formula φ

with (M̂, ŝ) 6|= φ, for some ŝ of M̂ , if there exists a KMTS M̂ ′′ over the same

set AP of atomic propositions with (M̂ ′′, ŝ) |= φ, AbstractRepair(M̂, ŝ, φ, ∅)

returns a KMTS M̂ ′ such that (M̂ ′, ŝ) |= φ.

Proof. We prove the theorem using structural induction on φ.
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Base Case:

• if φ = >, Theorem 20 is trivially true, because for any KMTS M̂ it

holds that (M̂, ŝ) |= φ.

• if φ = ⊥, then the theorem is trivially true, because there does not

exist a KMTS M̂ ′′ such that (M̂ ′′, ŝ) |= φ.

• if φ = p ∈ AP , there is a KMTS M̂ ′′ with p ∈ L̂′′(ŝ) and therefore

(M̂ ′′, ŝ) |= φ. Algorithm 1 calls AbstractRepairATOMIC(M̂, ŝ, p, ∅) at

line 4 and an M̂ ′ = ChangeLabel(M̂, ŝ, p) is computed at line 1 of

Algorithm 2. Since C is empty, M̂ ′ is returned at line 3 and (M̂ ′, ŝ) |= φ

from 3-valued semantics of CTL. Therefore, the theorem is true.

Induction Hypothesis: Formr -CTL formulae φ1, φ2, the theorem is true.

Thus, for φ1 (resp. φ2), if there is a KMTS M̂ ′′ over the same set AP of

atomic propositions with (M̂ ′′, ŝ) |= φ1, AbstractRepair(M̂, ŝ, φ1, ∅) returns

a KMTS M̂ ′ such that (M̂ ′, ŝ) |= φ1.

Inductive Step:

• if φ = φ1 ∨ φ2, from the 3-valued semantics of CTL a KMTS that

satis�es φ exists if and only if there is a KMTS satisfying any of the

φ1, φ2. From the induction hypothesis, if there is a KMTS M̂ ′′
1 with

(M̂ ′′
1 , ŝ) |= φ1, AbstractRepair(M̂, ŝ, φ1, ∅) at line 1 of Algorithm 5

returns a KMTS M̂ ′
1 such that (M̂ ′

1, ŝ) |= φ1. Respectively, Abstract
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Repair(M̂, ŝ, φ2, ∅) at line 2 of Algorithm 5 can return a KMTS M̂ ′
2 with

(M̂ ′
2, ŝ) |= φ2. In any case, if either M̂ ′

1 or M̂ ′
2 exists, for the KMTS

M̂ ′ that is returned at line 13 of Algorithm 5 we have (M̂ ′, ŝ) |= φ1 or

(M̂ ′, ŝ) |= φ2 and therefore (M̂ ′, ŝ) |= φ.

• if φ = EXφ1, from the 3-valued semantics of CTL a KMTS that sat-

is�es φ at ŝ exists if and only if there is KMTS satisfying φ1 at some

direct must-successor of ŝ.

If in the KMTS M̂ there is a state ŝ1 with (M̂, ŝ1) |= φ1, then the

new KMTS M̂ ′ = AddMust(M̂, (ŝ, ŝ1)) is computed at line 3 of Algo-

rithm 6. Since C is empty M̂ ′ is returned at line 5 and (M̂ ′, ŝ) |= EXφ1.

Otherwise, if there is a direct must-successor ŝi of ŝ, AbstractRepair

(M̂, ŝi, φ1, ∅) is called at line 8. From the induction hypothesis, if there

is a KMTS M̂ ′′ with (M̂ ′′, ŝi) |= φ1, then a KMTS M̂ ′ is computed such

that (M̂ ′, ŝi) |= φ1 and therefore the theorem is true.

If there are no must-successors of ŝ, a new state ŝn is added and sub-

sequently connected with a must-transition from ŝ. AbstractRepair is

then called for φ1 and ŝn as previously and the theorem holds also true.

• if φ = AGφ1, from the 3-valued semantics of CTL a KMTS that satis�es

φ at ŝ exists, if and only if there is KMTS satisfying φ1 at ŝ and at

each may-reachable state from ŝ.

AbstractRepair(M̂, ŝ, φ1, ∅) is called at line 2 of Algorithm 4 and from

the induction hypothesis if there is KMTS M̂ ′
0 with (M̂ ′

0, ŝ) |= φ1, then
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a KMTS M̂0 is computed such that (M̂0, ŝ) |= φ1. AbstractRepair is

subsequently called for φ1 and for all may-reachable ŝk from ŝ with

(M̂0, ŝk) 6|= φ1 one-by-one. From the induction hypothesis, if there

is KMTS M̂ ′
i that satis�es φ1 at each such ŝk, then all M̂i = Abstract

Repair(M̂i−1, ŝk, φ1, ∅), i = 1, ..., satisfy φ1 at ŝk and the theorem holds

true.

We prove the theorem for all other cases in the same way.

Theorem 20 shows that AbstractRepair is semi-complete with respect to

full CTL: if there is a KMTS that satis�es a mr -CTL formula φ, then the

algorithm �nds one such KMTS.

3.3.3 Complexity Issues

AMR's complexity analysis is restricted to mr -CTL, for which the algorithm

has been proved complete. For these formulas, we show that AMR is upper

bounded by a polynomial expression in the state space size and the number

of may-transitions of the abstract KMTS, and depends also on the length of

the mr -CTL formula.

For CTL formulas with nested path quanti�ers and/or conjunction, AMR

is looking for a repaired model satisfying all conjunctives (constraints), which

increases the worst-case execution time exponentially to the state space size of

the abstract KMTS. In general, as shown in [19], the complexity of all model
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repair algorithms gets worse when raising the level of their completeness, but

AMR has the advantage of working exclusively over an abstract model with

a reduced state space compared to its concrete counterpart.

Our complexity analysis for mr -CTL is based on the following results.

For an abstract KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) and a mr -CTL property

φ, (i) 3-valued CTL model checking is performed in O(|φ|·(|Ŝ|+|Rmay|)) [53],

(ii) Depth First Search (DFS) of states reachable from ŝ ∈ Ŝ is performed in

O(|Ŝ| + |Rmay|) in the worst case or in O(|Ŝ| + |Rmust|) when only must-

transitions are accessed, (iii) �nding a maximal path from ŝ ∈ Ŝ using

Breadth First Search (BFS) is performed in O(|Ŝ| + |Rmay|) for may-paths

and in O(|Ŝ|+ |Rmust|) for must-paths.

We analyze the computational cost for each of the AMR's primitive func-

tions:

• if φ = p ∈ AP , AbstractRepairATOMIC is called and the operation

ChangeLabel is applied, which is in O(1).

• if φ = EXφ1, then AbstractRepairEX is called and the applied op-

erations with the highest cost are: (1) �nding a state satisfying φ1,

which depends on the cost of 3-valued CTL model checking and is

in O(|Ŝ| · |φ1| · (|Ŝ| + |Rmay|)), (2) �nding a must-reachable state,

which is in O(|Ŝ|+ |Rmust|). These operations are called at most once

and the overall complexity for this primitive functions is therefore in

O(|Ŝ| · |φ1| · (|Ŝ|+ |Rmay|)).
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• if φ = AXφ1, then AbstractRepairAX is called and the most costly

operations are: (1) �nding a may-reachable state, which is in O(|Ŝ| +

|Rmay|), and (2) checking if a state satis�es φ1, which is in O(|φ1|·(|Ŝ|+

|Rmay|)). These operations are called at most |Ŝ| times and the overall

bound class is O(|Ŝ| · |φ1| · (|Ŝ|+ |Rmay|)).

• if φ = EFφ1, AbstractRepairEF is called and the operations with the

highest cost are: (1) �nding a must-reachable state, which is in O(|Ŝ|+

|Rmust|), (2) checking if a state satis�es φ1 with its bound class being

O(|φ1| · (|Ŝ| + |Rmay|)) and (3) �nding a state that satis�es φ1, which

is in O(|Ŝ| · |φ1| · (|Ŝ| + |Rmay|)). These three operations are called at

most |Ŝ| times and consequently, the overall bound class is O(|Ŝ|2 · |φ1| ·

(|Ŝ|+ |Rmay|)).

• if φ = AFφ1, AbstractRepairAF is called and the most costly operation

is: �nding a maximal may-path violating φ1 in all states, which is in

O(|Ŝ| · |φ1| · (|Ŝ| + |Rmay|). This operation is called at most |Ŝ| times

and therefore, the overall bound class is O(|Ŝ|2 · |φ1| · (|Ŝ|+ |Rmay|)).

In the same way, it is easy to show that: (i) if φ = EGφ1, then Abstract

RepairEG is in O(|Ŝ| · |φ1| · (|Ŝ| + |Rmust|), (ii) if φ = AGφ1, then Abstract

RepairAG is in O(|Ŝ| · |φ1| · (|Ŝ| + |Rmay|)), (iii) if φ = E(φ1Uφ2), then

the bound class of AbstractRepairEU is O(|Ŝ| · |φ1| · (|Ŝ| + |Rmust|), (iv) if

φ = A(φ1Uφ2) then AbstractRepairAU is in O(|Ŝ|2 · |φ1| · (|Ŝ|+ |Rmay|)).

For a mr -CTL property φ, the main body of the algorithm is called at
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most |φ| times and the overall bound class of the AMR algorithm is O(|Ŝ|2 ·

|φ|2 · (|Ŝ|+ |Rmay|)).

3.3.4 Application

We present the application of AbstractRepair on the ADO system from Sec-

tion 2.1. After the �rst two steps of our repair process, AbstractRepair is

called for the KMTS αRefined(M) that is shown in Fig. 2.3b, the state ŝ01 and

the CTL property φ = AGEXq.

AbstractRepair calls AbstractRepairAG with arguments αRefined(M), ŝ01

and AGEXq. The AbstractRepairAG algorithm at line 10 triggers a recur-

sive call of AbstractRepair with the same arguments. Eventually, Abstract

RepairEX is called with arguments αRefined(M), ŝ01 and EXq, that in turn

calls AddMust at line 3, thus adding a must-transition from ŝ01 to ŝ1. Ab-

stractRepair terminates by returning a KMTS M̂ ′ that satis�es φ = AGEXq.

The repaired KS M ′ is the single element in the set of KSs derived by the

concretization of M̂ ′ (cf. Def. 21). The execution steps of AbstractRepair and

the obtained repaired KMTS and KS are shown in Fig. 3.10a and Fig. 3.10b

respectively.
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(a) Application of AbstractRepair.
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(b) The repaired KMTS and KS.

Figure 3.10: Repair of ADO system using abstraction.

Although the ADO is not a system with a large state space, it is shown

that the repair process is accelerated by the proposed use of abstraction. If on

the other hand model repair was applied directly to the concrete model, new

transitions would have have been inserted from all the states labeled with
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¬open to the one labeled with open. In the ADO, we have seven such states,

but in a system with a large state space this number can be signi�cantly

higher. The repair of such a model without the use of abstraction would be

impractical.

3.3.5 Discussion

AMR algorithm has a strong e�ciency upper hand with respect to other con-

crete model repair methods, because all the operations needed to acquire the

repaired solution take place on the abstract model which may be signi�cantly

smaller than the state space of the concrete model.

The re�nement process which is a main part of the AMR framework

always tries to �nd a bigger and potentially more precise KMTS, in the case

that a repair solution cannot be retrieved from the current abstract KMTS.

Despite the fact that the current re�nement method is not monotonic, i.e. it

does not ensure that it will always terminate with an abstract model which

will give a de�nite answer to the model checking problem, it will always

converge to the initial concrete model. Consequently, our AMR framework

does not reduce the possibility of obtaining a repaired KS compared to the

direct concrete model repair method. All cases, having in mind that the use

of GKMTSs [78] as the abstract model can lead to monotonic re�nement

method, it makes the potential of creating an AMR framework based on

GKMTSs far more intriguing.

The distance of the repair solution found from the AMR framework from
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the initial concrete model may be greater than the distance of the repair

solution found from a direct concrete model repair method to the initial

concrete model. This is the price we should pay for the use of abstraction

though in practice the price is a bene�t in the sense that direct concrete

model repair algorithms cannot terminate due to the state space explosion

problem for models with large state spaces.

In this thesis, the use of constraints in our AMR algorithm is used only as

a means of repairing nested or conjunctive CTL formulas. These constraints

can be used in the future in order to ensure that the repair solution returned

from the algorithm satis�es a number of major CTL formulas which are also

satis�ed in the initial concrete model, thus ensuring that crucial properties

of the model are not violated in the �nal repaired KS.

3.4 Experimental Results: The Andrew File

System 1 (AFS1) Protocol

In this section, we provide experimental results for the relative performance

of a prototype implementation of our AMR algorithm in comparison with

a prototype implementation of a concrete model repair solution [89]. The

results serve as a proof of concept for the use of abstraction in model repair

and demonstrate the practical utility of our approach.

As a model we use a KS for the Andrew File System Protocol 1 (AFS1)

[88], which has been repaired for a speci�c property in [89]. AFS1 is a client-
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server cache coherence protocol for a distributed �le system. Four values are

used for the client's belief about a �le (no�le, valid, invalid, suspect) and

three values for the server's belief (valid, invalid, none).

A property which is not satis�ed in the AFS1 protocol in the form of

CTL is:

AG((Server.belief = valid)→ (Client.belief = valid))
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Figure 3.11: The KS and the KMTS of the AFS1 protocol after the 2nd
re�nement step.
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Figure 3.12: The repaired KMTS and KS of the AFS1 protocol.
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We de�ne the atomic proposition p as Server.belief = valid and q as

Client.belief = valid, and the property is thus written as AG(p→ q). The

KS for the AFS1 protocol is depicted in Fig. 3.11a. State colors show how

they are abstracted in the KMTS of Fig. 3.11b, which is derived after the

2nd re�nement step of our AMR framework (Fig. 3.1). The shown KMTS

and the CTL property of interest are given as input in our prototype AMR

implementation.

To obtain larger models of AFS1 we have extended the original model by

adding one more possible value for three model variables. Three new models

are obtained with gradually increasing size of state space.

The results of our experiments are presented in Table 3.1. The time

needed for the AMR prototype to repair the original AFS1 model and its

extensions is from 124 to even 836 times less than the needed time for concrete

model repair. The repaired KMTS and KS for the original AFS1 model are

shown in Fig. 3.12.

An interesting observation from the application of the AMR algorithm on

the repair of the AFS1 KS is that the distance d (cf. Def. 17) of the repaired

KS from the original KS is less than the corresponding distance obtained

from the concrete model repair algorithm in [89]. This result demonstrates

in practice the e�ect of the minimality of changes ordering, on which the

AMR algorithm is based on (cf. Fig. 3.9).
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Models Concrete
States
(thou-
sands)

Concr. Re-
pair (Time
in sec.)

AMR
(Time in
sec.)

Improvement
(%)

AFS1 26 17.4 0.14 124
AFS1(Extension1) 30 24.9 0.14 178
AFS1(Extension2) 34 35.0 0.14 250
AFS1(Extension3) 38 117.0 0.14 836

Table 3.1: Experimental results of AMR with respect to concrete repair

3.5 Related Work

To the best of our knowledge this is the �rst work that suggests the use

of abstraction as a means to counter the state space explosion in search

of a model repair solution. However, abstraction and in particular abstract

interpretation has been used in program synthesis [84], a di�erent but related

problem to the model repair. Program synthesis refers to the automatic

generation of a program based on a given speci�cation. Another related

problem where abstraction has been used is that of trigger querying [9]:

given a system M and a formula φ, �nd the set of scenarios that trigger φ in

M .

The related work in the area of program repair do not consider KSs as the

program model. In this context, abstraction has been previously used in the

repair of data structures [74]. The problem of repairing a Boolean program

has been formulated in [80, 63, 56, 85] as the �nding of a winning strategy

for a game between two players. The only exception is the work reported

in [77].
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Another line of research on program repair treats the repair as a search

problem and applies innovative evolutionary algorithms [6], behavioral pro-

gramming techniques [59] or other informal heuristics [86, 2, 87].

Focusing exclusively on the area of model repair without the use of ab-

straction, it is worth to mention the following approaches. The �rst work

on model repair with respect to CTL formulas was presented in [5]. The

authors used only the removal of transitions and showed that the problem

is NP-complete. Another interesting early attempt to introduce the model

repair problem for CTL properties is the work in [23]. The authors are based

on the AI techniques of abductive reasoning and theory revision and propose

a repair algorithm with relatively high computational cost. A formal algo-

rithm for model repair in the context of KSs and CTL is presented in [89].

The authors admit that their repair process strongly depends on the model's

size and they do not attempt to provide a solution for handling conjunctive

CTL formulas.

In [26], the authors try to render model repair applicable to large KSs by

using �table systems�, a concise representation of KSs that is implemented

in the NuSMV model checker. A limitation of their approach is that table

systems cannot represent all possible KSs. In [90], tree-like local model up-

dates are introduced with the aim of making the repair process applicable to

large-scale domains. However, the proposed approach is only applicable to

the universal fragment of the CTL.

A number of works attempt to ensure completeness for increasingly larger
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fragments of the CTL by introducing ways of handling the constraints as-

sociated with conjunctive formulas. In [67], the authors propose the use of

constraint automata for ACTL formulas, while in [25] the authors introduce

the use of protected models for an extension of the CTL. Both of the two

methods are not directly applicable to formulas of the full CTL.

The model repair problem has been also addressed in many other contexts.

In [48], the author uses a distributed algorithm and the processing power of

computing clusters to �ght the time and space complexity of the repair pro-

cess. In [42], an extension of the model repair problem has been studied

for Labeled Transition Systems. In [13], we have provided a solution for the

model repair problem in probabilistic systems. Another recent e�ort for re-

pairing discrete-time probabilistic models has been proposed in [75]. In [15],

model repair is applied to the fault recovery of component-based models.

Finally, a slightly di�erent but also related problem is that of Model Revi-

sion, which has been studied for UNITY properties in [16, 18] and for CTL

in [58]. Other methods in the area of fault-tolerance include the work in [52],

which uses discrete controller synthesis and [50], which employs SMT solv-

ing. Another interesting work in this direction is in [47], where the authors

present a repair algorithm for fault-tolerance in a fully connected topology,

with respect to a temporal speci�cation.



Chapter 4

Abstract Model Repair for

Probabilistic systems

4.1 The Model Repair problem for probabilis-

tic systems

In this section, we de�ne a metric space for measuring the distance between

DTMCs with the same state labeling, and then the Model Repair problem

for DTMCs [13].

De�nition 35. For any two vectors A = (a1, ..., an) and B = (b1, ..., bn) with

length n, the Manhattan distance dm is de�ned as follows:

dm(A,B) =
n∑
i=1

|ai − bi|

114
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.

De�nition 36. For any two M = (S, sinit, P, L) and M ′ = (S, sinit, P
′, L) in

the set DM of all DTMCs with the same state space S and the same labeling

function L, the distance function d over DM is de�ned as follows:

d(M,M ′) = dm(A,B)

with A = (P (s0, s0), P (s0, s1), . . . , P (si, sj) . . . P (sn, sn))

and B = (P ′(s0, s0), P ′(s0, s1), . . . , P ′(si, sj) . . . P
′(sn, sn)) for all si, sj ∈ S.

For any two DTMCs with the same state space S and the same labeling

function L, the function dmeasures the di�erences between the corresponding

transition probabilities.

Proposition 21. The ordered pair (DM , d) is a metric space.

Proof 1. This is inferred from the fact that the Manhattan distance between

any two vectors is a distance metric.

De�nition 37. Given a DTMC M and a PCTL formula ϕ where M 6|= ϕ,

the Model Repair problem is to �nd a DTMC M ′, such that M ′ |= ϕ and

d(M,M ′) is minimum with respect to all such M ′.

The objective of the Model Repair problem in the context of probabilistic

systems is to modify the given DTMC, in order to satisfy a PCTL property ϕ,

which is not satis�ed. The repair solution should have the smallest possible
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distance from the initial model compared to all other models satisfying ϕ.

In next sections we show how the model repair problem is transformed into

a minimization problem for the changes of the transition probabilities in the

DTMC.

4.2 The PAMR framework

The PAMR framework uses 3-valued abstract probabilistic models for the

repair of DTMCs with respect to given probabilistic reachability properties

(ADTMCs) . The goal of our framework is to provide a method that looks for

the repair solution with the smallest possible distance from a given DTMC.

This method should be feasible and e�cient for models with large state

spaces.

The process consists of the following steps, which are shown in Fig. 4.1.

Step 1. For a DTMC M , a state s and a property ϕ = P≤p[Fψ] or ϕ =

P≥p[Fψ], such that (M, s) 6|= ϕ, an ADTMC M̂ = α(M) is acquired as

in Def. 16.

Step 2. The PAMR algorithm is called with inputs M , M̂ , ŝ = α(s) and

the property ϕ.

Case 1. If the result is FAILURE, i.e. a repair solution is not found,

then a re�nement step takes place for M̂ , and:
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Abstract Model 
(ADTMC) α(Μ)

Abstraction

Repair
Algorithm

Repaired Concrete Model
(DTMC) MRepaired

Failure

Infeasible

Refinement

Initial Conrete Model 
(DTMC) M

Figure 4.1: Probabilistic Abstract Model Repair Framework.

Case 1.1. If an ADTMC M̂Refined is found, then the control is

transfered to Step 2 with M̂Refined as input.

Case 1.2. If it is not feasible to retrieve a new re�ned ADTMC,

the repair process terminates with a FAILURE.

Case 2. A repaired DTMC MRepaired is found.

Example. (ROBOT) The initial abstraction for the DTMC of the robot

system is shown in Fig. 2.5. In this case, a predicate abstraction is used where

the concrete state s12, which is the only one where q is true, is abstracted

to one state, while all the other states which are not labeled with q are



4.2. The PAMR framework 118

abstracted to a di�erent state. Thus, a two-state ADTMC is constructed

which is the �rst abstract model arising from the concrete DTMC M .

4.2.1 Re�nement

The re�nement step plays a fundamental role in the PAMR process, since

it is the means to obtain a repair solution, if possible, when the PAMR

algorithm terminates with a FAILURE result in a previous step. Moreover,

even if a repair solution has been already found, it may be possible to apply

a re�nement step in order to �nd a more �ne-grained repair solution.

In the related bibliography, there are various proposals for the re�nement

of models for probabilistic systems [60, 65, 66, 39, 68, 28]. The ultimate

goal of such a technique is to get an optimally re�ned model with respect

to some criteria, which di�er in each work. We adopt a simple, yet e�ective

re�nement technique, which ful�lls the following objective: the re�nement

procedure monotonically converges to the concrete DTMC with respect to the

size of the model's state space. To this end, at each re�nement step we split

the abstract states invalidating the atomic propositions of the reachability

property.

Nevertheless, the PAMR process can be adapted through the adoption of

alternative re�nement methods according to di�erent criteria (the so-called

repair strategies [13]).

Example. (ROBOT) From the ADTMC in Fig. 2.5 for the robot system,
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a re�ned model can be derived by splitting the abstract state not satisfying

q in two states, thus getting a three-state ADTMC. The re�ned ADTMC

and the corresponding partitioning of the DTMC's state space are shown in

Fig. 4.2.
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Figure 4.2: DTMC and ADTMC after the �rst re�nement step.

The ADTMC of Fig. 4.2 can be further re�ned by splitting both abstract

states that do not satisfy q in two states. This second re�nement and the

corresponding partitioning of the DTMC's state space are shown in Fig. 4.3.

The result obtained from the third re�nement step is shown in Fig. 4.4, from

which a subsequent re�nement yields the concrete DTMC.

The impact of the re�nement method on the PAMR process is better

illustrated if we consider the ADTMC obtained from Fig. 2.5 using an al-

ternative re�nement. The result is shown in Fig. 4.5, which di�ers from the

ADTMC in Fig. 4.2 and will eventually lead to a di�erent repair solution.
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Figure 4.3: DTMC and ADTMC after the second re�nement step.

4.2.2 Repair operations for ADTMCs

In the PAMR process, the model repair problem is reduced to a problem

addressed through a smaller state space, i.e. that of the abstract ADTMC.

Every change to the transition probabilities of the ADTMC by the PAMR

algorithm is mapped to the concrete DTMC through the pair of functions

(α, γ) in Def. 16.

Repairing the DTMC with respect to the reachability property ϕ =

P≥p[Fψ] means, according to the 3-valued semantics of PCTL in Def. 15,

that speci�c lower bound transition probabilities of the ADTMC should be

increased (similarly in the case of P≥p[F≤kψ]). When the DTMC is repaired

with respect to ϕ = P≤p[Fψ], speci�c upper bound transition probabilities

should be decreased. We hereby introduce two distinct repair operations

applicable to ADTMCs, the IncreaseLowerBound and DecreaseUpperBound.

De�nition 38 (IncreaseLowerBound). Let M = (S, sinit, P, L) a DTMC and
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Figure 4.4: DTMC and ADTMC after the third re�nement step.

the ADTMC derived from M as in Def. 16 be α(M) = (Ŝ, ŝinit, P
`, P u, L̂).

For a given v0 ∈ R+ and a pair ŝi, ŝj ∈ Ŝ, let probmin = P `(ŝi, ŝj) + v0.

Then, ∀sm ∈ S \ γ(ŝi), sn ∈ S, P ′(sm, sn) = P (sm, sn), whereas for all si ∈

γ(ŝi), sj ∈ γ(ŝj), sk ∈ S \ γ(ŝj):

P ′(si, sj) =


P (si, sj) + diff /cardj if diff = probmin − probout > 0

P (si, sj) otherwise

P ′(si, sk) =


P (si, sk)− diff /cardk if diff = probmin − probout > 0

P (si, sk) otherwise

with probout =
∑

si∈γ(ŝi),sj∈γ(ŝj) P (si, sj), cardj = |{(si, sj)}| and cardk =

|{(si, sk)}|.

If P ′ ful�lls the stochastic conditions, thus P ′(si, sj), P
′(si, sk) ∈ [0, 1] for
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Figure 4.5: DTMC and ADTMC for a di�erent re�nement from Fig. 4.2.

all si, sj, sk, then the DTMC M ′ = (S, sinit, P
′, L) = IncreaseLowerBound

(M,α(M), (ŝi, ŝj), v0) is de�ned.
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Figure 4.6: Increasing the lower bound of an ADTMC and the resulting
concrete DTMC. (The lower bound probabilities of the ADTMC are only
shown.)

The IncreaseLowerBound operation, which is illustrated in Fig. 4.6, increases

the lower bound probability of a transition (ŝi, ŝj) of the ADTMC (yellow
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to red transition of M̂) by some given value v0 ∈ R+ through modifying the

DTMC M ; this is feasible for the given v0, if and only if:

P̂ (si, Sj) + v0 ≤ 1, for all si ∈ γ(ŝi), with Sj = {sj : sj ∈ γŝj} (4.1)

P̂ (si, Sk)− v0 ≥ 0, for all si ∈ γ(ŝi), with Sk = {sk : sk ∈ S \ γ(ŝj)} (4.2)

i.e. there is a concretization strategy for the given v0, such that a DTMC

exists (stochastic constraints are satis�ed). Def. 38 proposes a particular

concretization strategy: from all concrete si (yellow states of M) of the

abstract ŝi, their outgoing transition probabilities to sj (red states of M) of

the abstract ŝj are increased uniformly to ful�ll Def. 16 for the ADTMC with

the increased lower bound probability. All other probabilities for outgoing

transitions from si to sk (blue state of M) are decreased uniformly, in order

to preserve the stochastic conditions; if this is not feasible for the given v0,

then the IncreaseLowerBound operation fails to return a DTMC M ′.

In fact, the ADTMC entails multiple DTMCs, and thus, in our case a

repaired ADTMC allows for a multitude of ways to repair the DTMC. Apart

from the concretization strategy of Def. 38, other strategies could be applied

either, (i) interactively by the user, or (ii) automatically, in order to �nd a

DTMC, i.e. the stochastic conditions to be satis�ed.

De�nition 39 (DecreaseUpperBound). Let M = (S, sinit, P, L) a DTMC

and the ADTMC derived from M as in Def. 16 be α(M) = (Ŝ, ŝinit, P
`, P u,

L̂). For a given v0 ∈ R+ and a pair ŝi, ŝj ∈ Ŝ, let probmax = P u(ŝi, ŝj)− v0.
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Figure 4.7: Decreasing the upper bound of an ADTMC and the resulting
concrete DTMC. (The upper bound probabilities of the ADTMC are only
shown.)

Then, ∀sm ∈ S \ γ(ŝi), sn ∈ S, P ′(sm, sn) = P (sm, sn), whereas for all si ∈

γ(ŝi), sj ∈ γ(ŝj), sk ∈ S \ γ(ŝj):

P ′(si, sj) =


P (si, sj)− diff /cardj if diff = probout − probmax > 0

P (si, sj) otherwise

P ′(si, sk) =


P (si, sk) + diff /cardk if diff = probout − probmax > 0

P (si, sk) otherwise

with probout =
∑

si∈γ(ŝi),sj∈γ(ŝj) P (si, sj), cardj = |{(si, sj)}| and cardk =

|{(si, sk)}|.

If P ′ ful�lls the stochastic conditions, thus P ′(si, sj), P
′(si, sk) ∈ [0, 1] for
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all si, sj, sk, then the DTMC M ′ = (S, sinit, P
′, L) = DecreaseUpperBound

(M,α(M), (ŝi, ŝj), v0) is de�ned.

The DecreaseUpperBound operation, which is illustrated in Fig. 4.7, decreases

the upper bound probability of a transition (ŝi, ŝj) of the ADTMC (yellow to

red transition of M̂) by some given value v0 ∈ R+ by modifying the DTMC

M ; this is feasible for the given v0 if and only if equations (4.1) and (4.2)

hold.

4.3 The PAMR algorithm

Algorithm 13 PAMR

Input: M = (S, sinit, P, L), M̂ = α(M) = (Ŝ, ŝinit, P
`, P u, L̂), ŝ ∈ Ŝ and a

property ϕ = P≥p[Fψ] or ϕ = P≤p[Fψ] such that (M̂, ŝ) 6|= ϕ.
Output: M ′ = (S, sinit, P

′, L) such that (M ′, s) |= ϕ or FAILURE.
1: if ϕ = P≥p[Fψ] then

2: P `
v0

:= AddV0LowerToADTMC(M, M̂, ŝ, ϕ)

3: eq_setv0 := LowerReachabilityEquations(M̂, P `
v0
, ŝ, ϕ)

4: v0 := NLPSolve(min(v0), eq_setv0 , x ≥ p, v0 > 0)
5: return ConcretizeLowerRepairedModel(M, M̂, P `

v0
, ŝ, ϕ, v0)

6: else if ϕ = P≤p[Fψ] then

7: P u
v0

:= SubtractV0UpperToADTMC(M̂, ŝ, ϕ)

8: eq_setv0 := UpperReachabilityEquations(M̂, P u
v0
, ŝ, ϕ)

9: v0 := NLPSolve(min(v0), eq_setv0 , x ≤ p, v0 > 0)
10: return ConcretizeUpperRepairedModel(M, M̂, P u

v0
, ŝ, ϕ, v0)

The algorithm is executed at Step 2 of the PAMR process. For brevity, we

present the PAMR algorithm for the case of unbounded properties, whereas

for the bounded properties there are minor di�erences that we discuss at the
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end. The algorithm accepts as input the concrete DTMC M , the abstract

ADTMC M̂ = α(M), a state ŝ = α(s) and a reachability property ϕ =

P≥p[Fψ] or ϕ = P≤p[Fψ] such that (M, s) 6|= ϕ. The main body of the

algorithm with two possible execution paths, one for ϕ = P≥p[Fψ] and the

other for ϕ = P≤p[Fψ], is shown in Algorithm 13.

Algorithm 14 AddV0LowerToADTMC

Input: M = (S, sinit, P, L), M̂ = (Ŝ, ŝinit, P
`, P u, L̂), ŝ ∈ Ŝ and a property

ϕ = P≥p[Fψ].
Output: P `

v0

1: for all ŝk such that (M̂, ŝk) |= ψ do
2: for all (ŝi, ŝj) in shortest maximal paths of the form

π = [ŝ, ..., ŝi, ŝj, ..., ŝk] where for all (ŝi, ŝj) of π, P (si, sj) > 0 for some
si, sj ∈ S with ŝi = α(si), ŝj = α(sj) do

3: P `
v0

(ŝi, ŝj) := P `(ŝi, ŝj) + v0 with v0 > 0

Algorithm 15 LowerReachabilityEquations

Input: M̂ = (Ŝ, ŝinit, P
`, P u, L̂), P `

v0
, ŝ ∈ Ŝ and a property ϕ = P≥p[Fψ].

Output: The equations for the probability measure of ϕ = P≥p[Fψ].
1: Generate the equations for ϕ from the probabilities in P `

v0
as in Def. 11.

If ϕ = P≥p[Fψ], then AddV0LowerToADTMC is initially called withM , M̂ ,

ŝ and ϕ as arguments and returns a transition probability function P `
v0
. This

function modi�es M̂ 's lower bound transition probabilities according to a

repair strategy de�ning with a parameter v0 which transition probabilities are

increased, in order for LowerReachabilityEquations to subsequently generate

the nonlinear equations for the probability measure of ϕ. These equations,

together with the objective function, the inequality constraints for v0 and
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the probability measure of ϕ are then passed to NLPSolve. If a solution is

returned for v0, then ConcretizeLowerRepairedModel is called with arguments

M , M̂ , P `
v0
, ŝ, ϕ and v0, and either a repaired model M ′ is found or else

it returns FAILURE. The returned value is eventually reported as the �nal

result of the main PAMR algorithm.

More speci�cally, the body of AddV0LowerToADTMC is described in Al-

gorithm 14. The P ` is modi�ed as follows. For the shortest maximal paths

(i.e. paths with transitions that appear at most once) from ŝ to a state ŝk

which satis�es ψ, in all transitions (ŝi, ŝj) for which there is transition be-

tween corresponding concrete states with non-zero probability, the P `(ŝi, ŝj)

is increased by adding the parameter v0.

The function LowerReachabilityEquations is described in Algorithm 15,

where the equations for the probability measure x of ϕ being true in the

ADTMC are generated as in Def. 11. We note here that the number of

generated equations is equal to the number of states of the ADTMC.

Algorithm 16 NLPSolve

Input: An objective function obj(v0), a set of equations eq_setv0 , an in-
equality constraint for an unknown in eq_setv0 and the v0's range.

Output: The value v0 for which obj is optimized or FAILURE.
1: Use the Sequential Quadratic Programming (SQP) method to solve the

non-linear optimization problem for v0.

The function NLPSolve is described in Algorithm 16. This function is

called in line 4 of Algorithm 13 with min(v0) as the objective function, the

equations eq_setv0 generated by LowerReachabilityEquations, the inequality
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constraint x ≥ p, where p is the given probability bound, and the inequality

constraint which ensures positive solution for v0.

For NLPSolve, the exact solution of constrained nonlinear optimization

problems has been proved to be NP-Hard in the worst case [83]. We adopt

the Sequential Quadratic Programming (SQP) [14] method, which looks for

a local solution instead of a global one. The complexity of SQP algorithms

is bound to the number of equations, which in NLPSolve is equal to the

number of the abstract states, and can be exponential in the worst case [72].

By applying SQP to the state-space of the ADTMC we achieve signi�cant

e�ciency gains compared to applying it to the state-space of the concrete

model M (Table 4.1).

Algorithm 17 ConcretizeLowerRepairedModel

Input: M = (S, sinit, P, L), M̂ = (Ŝ, ŝinit, P
`, P u, L̂), P `

v0
, ŝ ∈ Ŝ, a property

ϕ = P≥p[Fψ] and a c ∈ R+.
Output: MRepaired = (S, sinit, P

′, L) or FAILURE.
1: M ′ := M
2: for all (ŝi, ŝj) ∈ Ŝ × Ŝ with P `

v0
(ŝi, ŝj) = P `(ŝi, ŝj) + v0 do

3: RET := IncreaseLowerBound(M ′, M̂ , (ŝi, ŝj), c)
4: if RET == FAILURE then
5: return FAILURE
6: else
7: M ′ := RET
8: M̂ ′ := α(M ′)
9: if AbstractModelCheck(M̂ ′, ϕ) == TRUE then
10: return M ′

11: return FAILURE

The function ConcretizeLowerRepairedModel in Algorithm 17, which �nds

the repaired DTMCM ′, is called if NLPSolve computes a solution for v0 that
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is passed as argument. The IncreaseLowerBound repair operation is invoked

for all (ŝi, ŝj), for which the transition probability in P `
v0

includes v0. Each

invocation of IncreaseLowerBound produces a modi�ed DTMC or a FAILURE

result, if the computed value for v0 cannot yield a valid DTMC because the

stochastic conditions are not ful�lled. For the M ′ produced by the �nal call

of IncreaseLowerBound, the algorithm veri�es if it really satis�es ϕ. This

check is essential because IncreaseLowerBound operation alters the transition

probabilities of the DTMC in order to preserve the stochastic conditions and

these changes might a�ect the probability measure for ϕ. As opposed to

other model repair approaches [75], which validate the solution by model

checking the concrete model, we model check ϕ over the abstract ADTMC

M̂ ′. If the model checking result is true, then M ′ is returned by the PAMR

algorithm as the repair solution.

Algorithm 18 SubtractV0UpperToADTMC

Input: M̂ = (Ŝ, ŝinit, P
`, P u, L̂), ŝ ∈ Ŝ and a property ϕ = P≤p[Fψ].

Output: P u
v0

1: for all ŝk such that (M̂, ŝk) |= ψ do
2: for all (ŝi, ŝj) in shortest maximal paths of the form

π = [ŝ, ..., ŝi, ŝj, ..., ŝk] with P u(ŝi, ŝj) > 0 for all (ŝi, ŝj) of π do
3: P u

v0
(ŝi, ŝj) := P u(ŝi, ŝj)− v0 with v0 > 0

Algorithm 19 UpperReachabilityEquations

Input: M̂ = (Ŝ, ŝinit, P
`, P u, L̂), P u

v0
, ŝ ∈ Ŝ and a property ϕ = P≤p[Fψ].

Output: The equations for the probability measure of ϕ = P≤p[Fψ].
1: Generate the equations for ϕ from the probabilities in P u

v0
as in Def. 11.

The execution path of PAMR in Algorithm 13 for ϕ = P≤p[Fψ] is im-
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plemented in an analogous way, with the only di�erence that instead of in-

creasing the lower bounds, the upper bounds are decreased. The main body

of the functions called in this execution path of PAMR are presented in

Algorithms 18, 19 and 20.

Algorithm 20 ConcretizeUpperRepairedModel

Input: M = (S, sinit, P, L), M̂ = (Ŝ, ŝinit, P
`, P u, L̂), P u

v0
, ŝ ∈ Ŝ, a property

ϕ = P≤p[Fψ] and a c ∈ R+.
Output: MRepaired = (S, sinit, P

′, L) or FAILURE
1: M ′ := M
2: for all (ŝi, ŝj) ∈ Ŝ × Ŝ with P u

v0
(ŝi, ŝj) = P u(ŝi, ŝj)− v0 do

3: RET := DecreaseUpperBound(M ′, M̂ , (ŝi, ŝj), c)
4: if RET == FAILURE then
5: return FAILURE
6: else
7: M ′ := RET
8: M̂ ′ := α(M ′)
9: if AbstractModelCheck(M̂ ′, ϕ) == TRUE then
10: return M ′

11: return FAILURE

The PAMR algorithm can be easily shown to be sound in the sense that if

a DTMCM ′ is returned for the property ϕ being true at state s, then we have

(M ′, s) |= ϕ. The proof is straightforward as a consequence of Theorem 2

and the fact that a DTMC is returned if and only if the result of model

checking the ADTMC M̂ ′ that is derived from M ′ is true.

For bounded properties of the form P./p[F
≤kψ], the AddV0LowerToADTMC

and SubtractV0UpperToADTMC are modi�ed, such that they work only for

the paths of �nite length k, whereas LowerReachabilityEquations is modi�ed

together with UpperReachabilityEquations, in order to produce the equations
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of Def. 12 instead of Def. 11.

4.4 Application and discusssion

We present the results of the repair of the DTMC in Fig. 2.4 for the robot

system. In the illustrated scenario we are interested to achieving a probability

level of at least 0.325 for the robot to reach the green state. The PCTL

property for the mentioned goal is ϕ = P≥0.325[Fq], where q is the atomic

proposition for color = green. This property is not satis�ed in the model M

of Fig. 2.4.
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Figure 4.8: Repaired DTMC after the �rst re�nement step.

When the PAMR algorithm is applied to the ADTMC of Fig. 2.5 (initial

abstract model) the NLPSolve fails to compute a solution for the parameter v0

(Case 1 of Step 2 in the PAMR process of Section 4.2). The process continues

with a re�nement step (Case 1.1 of Step 2 in the PAMR process) and the

re�ned ADTMC of Fig. 4.2 is obtained. The PAMR algorithm generates the
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following equations for the re�ned ADTMC and ϕ:

x0 = 0x0 + (0 + v0)x1

x1 =

(
2

3

)
x1 + (0 + v0)x2

x2 = 1

The NLPSolve function is eventually called for the above equations and

the inequality constraint x0 ≥ 0.325. In this case, a solution is returned for

the parameter v0, which is 0.329. The execution of the PAMR algorithm is

completed with the computation of the repaired DTMC shown in Fig. 4.8.

Thus, a solution is obtained by reducing the repair problem for a model with

16 states to that for an abstract model with only 3 states.

4.4.1 Discussion

The e�ciency advantage of the PAMR algorithm is based on the fact that the

non-linear optimization problem is solved over the state space of the abstract

ADTMC, which may be orders of magnitude smaller than the state space of

the concrete DTMC.

The PAMR process of Section 4.2 does not deteriorate the possibility to

obtain a repair solution compared to the concrete model repair case. This

happens due to the fact that the re�nement process always converges to the
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concrete DTMC, if in the meantime a repair solution is not found.

If a repair solutionM ′ is found, the distance ofM ′ from the initial DTMC

M (Def. 36) may be greater than the distance of a solution derived by directly

applying the repair to the concrete model. This happens because minimizing

v0 only represents the best we can do regarding the Manhattan distance

minimality at the granularity of precision o�ered by the speci�c ADTMC.

In essence, this is the price to pay for using abstraction though in practice

this may be the only way to obtain a repair solution for models with large or

even medium size state space. In our application, the di�erences between the

�rst PAMR repair solution shown in Fig. 4.8 and the direct repair solution

in Fig. 4.9 are noticeable.
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Figure 4.9: Repaired DTMC after applying repair directly to the concrete
model.

Whatever the solution is, it is still possible for the re�nement process to

continue, such that the PAMR algorithm can be applied to ADTMCs with

larger state spaces, in which case a more �ne grained repair solution could be
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obtained. This is illustrated through applying the PAMR algorithm in the

ADTMCs of Fig. 4.3 and Fig. 4.4, which depict respectively the ADTMCs

after the second and the third re�nement steps in the model for the robot

system. The corresponding repaired DTMCs for these two cases are shown

in Fig. 4.10 and Fig. 4.11.
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Figure 4.10: Repaired DTMC after the second re�nement step.
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Figure 4.11: Repaired DTMC after the third re�nement step.

The PAMR process can be e�ectively controlled through the re�nement

method, as well as through specifying how the transition probabilities are
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modi�ed. These two provide the means to follow alternative repair strategies.

The re�nement method can be replaced by any other method which may be

considered as more adequate for a speci�c application domain [60, 65, 66, 39,

68, 28]. The solution from applying the PAMR algorithm to the �rst re�ned

ADTMC of Fig. 4.5 is shown in Fig. 4.12. It is clear that this solution di�ers

from the one in Fig. 4.8 that was obtained through the previous re�nement

approach.

AddV0ToLowerADTMC and SubtractV0ToUpperADTMC specify which of

the transition probabilities can be changed and how. The implementation of

these functions in our algorithm aims to �nd a repair solution that distributes

the changes to many transitions instead of localizing them to just a few, and

that the transition probabilities are evenly changed. This repair strategy, as

well as other strategies can result in sub-optimal solutions, i.e. the minimal

repair according to the distance of Def. 35 may be missed. However, in

practice it is not possible to adopt a single strategy for all domains where

the repair problem can arise. Therefore, the aforementioned functions can

be replaced by analogous user-de�ned functions, to specify the parameters

(v0, v1, ...) for modifying the transition probabilities, and which transition

probabilities can be modi�ed.

By using the same parameter v0 for all transitions to be modi�ed and

the same implementation of IncreaseLowerBound,DecreaseUpperBound for all

modi�ed transitions, we ensure that the same parameter can a�ect multiple

transitions in the same way. This is essential if the PAMR framework is to be



4.5. Experimental Results 136

  

¬q ¬q ¬q ¬q

¬q

¬q

q

¬q ¬q

¬q

¬q

¬q¬q

¬q

¬q¬q

s0 s1 s3s2

s4

s8

s12
s13 s15

s6s5 s7

s11s10s9

s14

.261

.261

.261
.261

.261

.261 .261

.261

1/3

1/3

1/3 1/3
1/3

1/3 1/3

1/3

.261 1/3

.261 1/3
1/3

1/31/3

1/3
1/3

1/3

1/3
1/3

1/3

1/3

1/3 1/3

1/3

1 1.7831

1/3

.261

.261

.217

.217

.217

.217

.217

Figure 4.12: Repaired DTMC after the alternative �rst re�nement step.

applied to a probabilistic model speci�ed in a high-level guarded command

language like the one used in widely used model checking tools [71, 45].

4.5 Experimental Results

We have implemented the PAMR algorithm using MAPLE [1]. In particular,

we utilized speci�c functions for model checking ADTMCs (the solve()

linear equations' solver) [70] and for the solution of the constrained non-

linear optimization problem (the NLPSolve() function called with the sqp

parameter).

Using these functions we compared the e�ciency of the PAMR algorithm

with that of the same algorithm when it is directly applied to the DTMC, i.e.

without abstraction. In particular, we experimented with four systems from

various domains, whose state spaces have signi�cantly di�erent structure.

These systems are the Craps game [11], the IPv4 Zeroconf protocol [13, 69],
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a message authentication protocol [51] and the gambler's ruin model, which

demonstrates the worst-case behaviour of the PAMR process in terms of its

e�ciency gains. The message authentication protocol is mentioned in [31],

as a model repair scenario, where the primary aim is not �nding the optimal

repair solution, but it is su�cient to �nd some repair solution rapidly (fast

model repair problem). Our PAMR framework �ts ideally to this context,

since a repair solution can be obtained even for very large model sizes, which

can be afterwards re�ned with respect to the needs of the user.

The Craps game model shown in Fig. 4.13 refers to a dice game, where

the player wins or loses based on the outcome of the roll of two dice. The

outcomes 2, 3, 7, 11, 12 are �craps�, i.e. the player loses. On any other

outcome the dice are rolled again and the outcome of the come-out roll is

remembered (the �point�). The dice are rolled repeatedly until the outcome

is 7, in which case the player loses, or the outcome is the point, in which case

the player wins.
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Figure 4.13: The DTMC for a version of the Craps game.
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Figure 4.14: The ADTMC after the third re�nement step for the Craps game.

The probability for winning the Craps game, i.e. reaching the Win state

in Fig. 4.13 is approximately 0.27. In order to increase the probability to at

least 0.3 for the player to win the game, we would like to �nd how much the

dice should be biased each time they are rolled. Let us consider the atomic

proposition q as Win = true, in which case the PCTL property of interest is

ϕ = P≥0.3[Fq]. The DTMC of Fig. 4.13 was eventually repaired after three

re�nement steps, which resulted in the ADTMC shown in Fig. 4.14. The

repair solution given by the PAMR algorithm is shown in Fig. 4.15.

Zeroconf is a protocol for assigning IP addresses in a network of hosts.

When a new host joins the network it asks the other hosts if the newly

selected IP is already in use from any other host. There is a probability that

the new host will not get any answer and in this case the query is repeated.

The host will assume falsely that the chosen address is valid, if after n tries

no answer is received.

The DTMC for an instance of the Zeroconf protocol is shown in Fig. 4.16a,
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Figure 4.16: The IPv4 Zeroconf protocol

where the probability of not getting an answer is 0.99. We try to repair the

DTMC for n = 10 tries, in order to ensure that the probability for reaching

the OK state (which is 0.32) becomes at least 0.99. We consider the atomic

proposition q as OK = true, in which case the reachability PCTL property of

interest is ϕ = P≥0.99[Fq]. The application of our PAMR framework resulted,

after three re�nement steps, to the repair solution presented in Fig. 4.16b.

The DTMC of the message authentication protocol for n users is depicted

in Fig. 4.17a. An authentication process takes place for each user, which can

fail with a probability of 0.15. After the successful authentication, each user
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Figure 4.17: A message authentication protocol

can send a message with a failure probability of 0.25. The users log out from

the system after having successfully sent a message. We applied our PAMR

framework for n = 5 users, in order to get the repaired DTMC on which the

probability for the users to log out is at least 0.75. A repaired DTMC is

acquired after four re�nement steps and is shown in Fig. 4.17b.

For the gambler's ruin model, let us consider a gambler who starts playing

a game with initial wealth N coins and can bet at each time one coin. The

gambler can win the bet with a probability p and can lose the bet with

probability q. The game stops either when the gambler has no more money to

bet or when he has earned a speci�c amount W . The DTMC for a version of

the game with N = 20, W = N × 10% = 2, p = 0.3 and q = 0.7 is presented

in Fig. 4.18a. The gambler's ruin model belongs to a special category of

Markov Chains, called birth-death, where only a one-step transition to the

nearest neighbors is permitted.

The probability for the gambler to earn the amount W is 0.183. After
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applying our PAMR framework with the aim of �nding a repaired DTMC

where the probability of the gambler to earn the amount W will be at least

0.25, we acquire the DTMC in Fig 4.18b.

(a) The initial DTMC. (b) The repaired DTMC

Figure 4.18: The gambler's ruin model for initial wealth N = 20.

Our experiments include extended versions for all the four models. For

the Craps game, the model's state space is expanded by rolling more than two

dices and also adapting the conditions for wining/losing the game. For the

IPv4 Zeroconf protocol, for the message authentication protocol and for the

gambler's ruin model, the state space is expanded by increasing the number

of tries, the number of users and the initial wealth respectively. As shown

in the Table 4.1, the state space size varies between a few hundred of states

and transitions up to several tens of thousands states and transitions.

For all the models and for the same reachability properties, we applied our

model repair algorithm directly to the DTMC (concrete model) and we com-

pared its execution time and the repair solution's distance with that of the

PAMR algorithm for the ADTMC. For the Craps game and the IPv4 Zeroconf

protocol, we get a repair solution after three re�nement steps, whereas for

the message authentication protocol a solution is obtained after four re�ne-

ment steps. For the gambler's ruin model the number of needed re�nement
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Models Concr.
States

Concr.
Trans.

Concrete
Repair

PAMR Ref.
Steps

Abstr.
States

dconcr dPAMR

Craps (Ext.1) 123 483 0.8s 0.1s 3 6 7.4 10.4
Craps (Ext.2) 243 963 5.1s 0.1s 3 6 14.6 20.5
Craps (Ext.3) 483 1923 38.3s 0.1s 3 6 29 40.6
Craps (Ext.4) 963 3843 5m13s 0.1s 3 6 57.8 80.9
Craps (Ext.5) 1923 7683 49m43s 0.1s 3 6 115.4 161.6
Craps (Ext.6) 3843 15363 8h30m23s 0.1s 3 6 230.6 322.9
Craps (Ext.7) 7683 30723 time-out 0.1s 3 6 − 645.42
Craps (Ext.7) 7683 30723 time-out 1.2s 8 123 − 608.5
Craps (Ext.7) 7683 30723 time-out 19.1s 10 483 − 562.4
Craps (Ext.7) 7683 30723 time-out 2h4m34s 13 3843 − 488.7
Craps (Ext.7) 7683 30723 time-out time-out 14 7683 − −
Zconf (n=100) 103 204 0.5s 0.2s 3 5 10.1 82.8
Zconf (n=200) 203 404 2.7s 0.2s 3 5 17.7 164.8
Zconf (n=400) 403 804 18.1s 0.2s 3 5 28.9 328.8
Zconf (n=800) 803 1604 2m38s 0.2s 3 5 43.3 656.8
Zconf (n=1600) 1603 3204 15m29s 0.2s 3 5 51.2 1312.8
Zconf (n=3200) 3203 6404 2h36m12s 0.2s 3 5 57.6 2624.8
Zconf (n=6400) 6403 12804 time-out 0.2s 3 5 − 5248.2
Zconf (n=6400) 6403 12804 time-out 2.1s 10 104 − 4224.6
Zconf (n=6400) 6403 12804 time-out 14.9s 12 404 − 2048.3
Zconf (n=6400) 6403 12804 time-out 1h36m43s 15 3204 − 512.1
Zconf (n=6400) 6403 12804 time-out time-out 16 6403 − −
Auth.Prot.(n=30) 154 213 1.2s 0.2s 4 7 8.4 8.4
Auth.Prot.(n=60) 304 423 7.8s 0.2s 4 7 16.8 16.8
Auth.Prot.(n=120) 604 843 57.5s 0.2s 4 7 33.6 33.6
Auth.Prot.(n=240) 1204 1683 9m43s 0.2s 4 7 67.2 67.2
Auth.Prot.(n=480) 2404 3363 1h12m11s 0.2s 4 7 134.4 134.4
Auth.Prot.(n=960) 4804 6723 12h19m52s 0.2s 4 7 268.8 268.8
Auth.Prot.(n=1920) 9604 13443 time-out 0.2s 4 7 − 537.6
Auth.Prot.(n=1920) 9604 13443 time-out 2.2s 9 131 − 537.6
Auth.Prot.(n=1920) 9604 13443 time-out 20s 11 515 − 537.6
Auth.Prot.(n=1920) 9604 13443 time-out 1h54m32s 14 4099 − 537.6
Auth.Prot.(n=1920) 9604 13443 time-out time-out 15 9604 − −
Gambler(N=100) 111 220 0.8s 0.2s 4 58 0.38 2.93
Gambler(N=200) 221 440 4.6s 0.9s 5 113 0.84 5.94
Gambler(N=400) 441 880 33.3s 4.8s 6 223 2.48 12.28
Gambler(N=800) 881 1760 4m59s 32.7s 7 443 5.92 25.04
Gambler(N=1600) 1761 3520 45m12s 4m48s. 8 883 13.44 50.88
Gambler(N=3200) 3521 7040 8h2m41s 45m17s 9 1763 30.72 103.36
Gambler(n=7400) 7041 14080 time-out 6h58m36s 10 3523 − 207.36

Table 4.1: Experimental results of PAMR compared to concrete repair (in
fourth column the accumulated times are shown, for all iterated re�nement
steps)

steps varies from 4 to 10 according to the size of the model. The results in

Table 4.1 suggest that as the model's state space grows up, the needed time
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for the concrete model repair is increased dramatically or even a solution

cannot be obtained within a time-out period of 14 hours, while the PAMR

algorithm returns a repair solution e�ciently. It is worth mentioning that

the time for the PAMR algorithm remains constant for the Craps game, the

IPv4 Zeroconf protocol and the message authentication protocol, because in

all extended versions the repair solution was obtained from ADTMCs with

the same size of state space after three or four re�nement steps respectively.

This is not true for the gambler's ruin model, where the repair solution is al-

ways acquired in the �nal re�nement step, before converging to the concrete

DTMC. These results con�rm the fact that the e�ciency gains of abstraction

in model repair depends - as in model checking - on the model's state space

structure and the property.

For all models except for the gambler's ruin model, we continued the

application of our PAMR framework, after having found the �rst repair solu-

tion, until the PAMR converged to be applied to the initial concrete model,

in which case the ADTMC would be the same with the DTMC. From the re-

sults presented in Table 4.1, we deduce that for all the examined models, our

method gives a repair solution and it is signi�cantly more e�cient than the

direct repair even for the ADTMC produced in the penultimate re�nement

step.



4.6. Related Work 144

4.6 Related Work

The model repair problem for probabilistic systems has been �rst introduced

in [13]. The authors use parametric model checking and transform the model

repair problem to a non-linear optimization problem. The experimental re-

sults of their work indicates that their approach su�ers from the state space

explosion problem even for models with relatively small number of states. In

comparison with [13], beyond the e�ciency advantage of the PAMR frame-

work, it is true that we do not aim to a direct repair solution, if any, but to

gradually approach a suitable solution through a number of consecutive re-

�nements that depends on the available computational resources. In such an

iterative process, the designer can interactively develop his repair strategy,

as described in Section 4.4.1, whereas in [13] the repair strategy is speci�ed

at once through the de�nition of a so-called controllable DTMC over a set

of parameters that has to ful�ll the stochasticity condition. However, such a

parameterization approach is not easily applied in all state space topologies.

An e�ort for presenting a scalable method for the repair of DTMCs is also

presented in [75]. In that work, the authors present a greedy approach where,

starting from an initial parameter assignment, they apply local repair steps

by iteratively changing the parameter values. The execution time for the local

repairs is reduced with respect to the methods using non-linear optimization,

but the fact that this approach includes a model-checking phase eventually

increases the total execution time.
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Regarding the model repair of Markov Decision Processes (MDPs), there

are approximate solution techniques, which have been introduced in [31].

Several research projects consider the model repair problem as part of

a solution to the formal veri�cation and fault recovery of applications of

real-world domains, such as the aerospace systems [21]. The �rst works

on model repair in the context of temporal logics, for non-probabilistic sys-

tems, have been presented in [6] and [23]. In [4], the authors attempt three

di�erent model repair techniques to e�ciently compute the probability dis-

tribution for the minimum recovery time of an input randomized distributed

self-stabilizing protocol. The �rst approach is based on solving symbolic

linear algebraic equations, in order to identify the fastest state reachability

in parametric discrete-time Markov chains. Their second approach applies

parameter synthesis techniques to compute the rational function describing

the average recovery time, like in [13]. In their third approach, they focus on

�nding sub-otpimal solutions by computing over- and under-approximations

of the result for a given parameter region and iteratively re�ning the re-

gions with minimal recovery time up to the desired precision. Yet, all of the

proposed techniques still su�er from the state space explosion problem.

For the abstraction of probabilistic models, some more techniques have

been proposed apart from the adopted abstraction method with 3-valued

semantics. In [66], the authors present an abstraction method for Markov

Decision processes based on games. In [46], the authors propose a model ag-

gregation technique to construct e�ectively the lumping quotient of a Markov
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chain. In [10], the authors examine the minimal distance problem of Markov

chains using bisimulation metrics, i.e., given a �nite DTMC and a positive

integer k, they try to �nd the k-state DTMC with the minimal distance to

the original. We note that in our abstraction framework based on [64], the

abstract model is connected to the concrete model with a simulation � not

with a (more restrictive) bisimulation � relation. A thorough presentation

of the abstraction methods used for probabilistic systems is given in [43].

We are not aware of any other model repair approach, which exploits an

abstraction technique for probabilistic systems.

However, abstraction has been used in model repair for systems with large

state spaces, in the non-probabilistic setting [30]. In this work, the authors

present an abstraction-re�nement framework based on Kripke Structures as

the concrete models, Kripke Modal Transition Systems as the abstract mod-

els, CTL as the speci�cation language and 3-valued model checking. Their

aim is that of reducing the upper bound complexity class of the repair pro-

cess, such that it depends on the size of a much smaller abstract model. A

more complete journal version of this work is presented in [29].

Some related work exists regarding the parametric analysis of Markov

models. More speci�cally, an interesting and related to model repair prob-

lem is that of parameter synthesis, where the aim is to �nd ranges of param-

eter values such that a satisfaction probability of a formula meets a given

threshold, is maximized, or minimized. In [12], the authors address the sys-

tem design problem for Continuous Time Markov Chains (CTMCs), where
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their aim is to optimize some parameters of a stochastic model to maximize

robustness of some given speci�cations. The state space explosion problem

is also inherent in [27], where a tool is introduced using GPU-accelerated

parameter synthesis to make the approach scalable. This work addresses

the parallel implementation of the parameter space decomposition technique

of [22]. A recent work [24] deals with the synthesis problem for CTMCs

within the scope of optimizing speci�c quality criteria. Moreover, a tool

called PROPhESY has been presented in [44], for scalable, incremental, and

automatic parameter synthesis. Another tool called SEA-PARAM has been

presented in [7], where the authors propose a parameter synthesis method

for Parametric Markov Decision Processes (PMDPs).

Finally, the authors in [22] have proposed a method for parameter interval

decomposition for CSL formulas in CTMCs. This method is a means to

reduce the inaccuracy created from a min-max approximation. If this idea

could be lifted to DTMCs, it is a promising tool that could be adopted in

our abstraction-re�nement framework.
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5.1 Advancements in relation to the state of

the art

In this thesis, we have shown how abstraction can be used to cope with

the state explosion problem in model repair. Two frameworks regarding

Kripke structures and probabilistic systems have been presented which can

give solutions to the model repair problem for models with large state spaces.

The model-repair framework for the non-probabilistic models is based on

Kripke Structures, a 3-valued semantics for CTL, and Kripke Modal Transi-

tion Systems, and features an abstract-model-repair algorithm for KMTSs.

It is proved that our AMR algorithm is sound for the full CTL and com-

plete for a subset of CTL. It is also proved that our AMR algorithm is upper

bounded by a polynomial expression in the size of the abstract model for a

major fragment of CTL. To demonstrate its practical utility, the framework

framework has been applied to an Automatic Door Opener system and to

the Andrew File System 1 protocol.

Regarding the probabilistic models, this thesis has presented an abstrac-

tion re�nement framework and algorithms for the repair of DTMCs with

respect to reachability PCTL properties. The so-called PAMR framework

and its algorithm aim to confront the state space explosion problem and to

provide a solution that is applicable even in model repair problems with very

large state spaces. After having described the PAMR framework, this thesis

illustrates the e�ciency gains of the approach compared to the direct repair
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of the concrete model, including the discussion of custom repair strategies

depending on the particular application domain. The practical utility of the

PAMR framework was demonstrated in the repair of four DTMC models

with diverse structures of their state space.

The abstract model repair frameworks presented in this thesis outweigh

all the existing concrete model repair approaches in terms of e�ciency, in

the sense that all the repair operations take place in an abstract model with

signi�cantly smaller state space. Despite the fact that the main objective of

this thesis is to make repair feasible to models with large state spaces, there

also other contributions which can make the repair process in the future more

e�ective and �exible.

At �rst, our abstract model repair framework for probabilistic systems by-

passes the use of parametric model checking which has been used in existing

model repair approaches and introduced a large e�ciency blow-up together

with unnecessary complexity. All probabilistic methods can gain from this

general principle presented in this thesis.

Moreover, the use of abstraction and re�nement in model repair can

transform the process for searching of a repair solution from a monolithic

procedure to an interactive framework. This can happen because from a

repaired abstract model many concrete repaired models can be produced.

Additionally, di�erent re�nement methods can lead to a set of di�erent re-

paired models. Thus, the user can interact with the repair process before

getting a repair solution and being this way, the one who can choose the
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repaired model which �ts best to his design speci�cations.

Another contribution of this work which can be crucial in the future works

on the model repair problem, is the introduction of constraint properties in

the repair algorithm. Having in mind that a strong objective of the model

repair problem is the minimality of changes of the repair solution, we can

conclude that the support of constraint properties in repair algorithms will

guarantee that any repaired model should not violate properties that already

satis�ed in the initial model. That is to say, this thesis can be the �rst step

for introducing the logical minimality of changes instead of or together with

the structural minimality supported up to now from the distance metrics on

the concrete models.

5.2 Future research prospects

Many di�erent lines of research can be followed as future prospects of the

work presented in this thesis. These prospects contain improvements of the

current abstract model repair framework, applications to di�erent domains

and extensions to other contexts.

Firstly, I strongly consider that abstract model repair can gain a lot from

being implemented in a mainstream model checker such as SMV, PRISM or

STORM. This way, abstract model repair could be applied in larger, real-

world and industrial systems and the feedback from this application could

result in better understanding its performance and e�ectiveness. For exam-
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ple, a model repair application of high interest could be the design of fault-

tolerant systems. In [20], the authors present an approach for the repair of a

distributed algorithm such that the repaired one features fault-tolerance. The

input to this model repair problem does not include a set of uncontrollable

transitions including the faults in the system. The model repair algorithm

used works on concrete models and it can therefore solve the problem only

for a limited number of processes. With this respect, we believe that this

application could bene�t from the use of abstraction in our framework.

Another very interesting extension of this thesis could be the search for

�better" abstract models, in order to either restrict failures due to re�nement

or ensure completeness for a larger fragment of CTL or PCTL properties.

Currently, most of the abstraction frameworks are created for model checking

and not for model repair. It would be really interesting to search for abstract

models which will be optimized for being components of a repair process.

A very promising approach could be the exploit of the degrees of freedom

provided to the user from the PAMR framework, i.e. abstraction, re�nement,

constraint properties, to transform the model repair methods from monolithic

tools to an interactive design framework.

Finally, an attractive prospect for future research should include e�orts

for adopting abstraction in model repair frameworks for di�erent contexts

such as hybrid and real-time systems.
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