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Abstract: - In this paper, we present a comparison of the possible regenerative estimation variants of response 
times, in multivariate simulations of closed queuing networks. The underlying stochastic framework of the 
techniques under study is first described and the applicability of each one of them is discussed. An appropriate 
sequential control procedure has been selected, in order to produce confidence intervals of the same nominal 
level and similar width, for the response times of interest. The first experimental results exhibit improved 
coverage of the corresponding analytic solutions, when a marked job based method is used, instead of an 
indirect estimation, by simulating a single regeneration sequence of the common number-in-queue process 
(usually used when estimating other characteristics like throughputs, utilizations, queue lengths etc). This 
finding clearly implies the simultaneous use of more than one regeneration sequence for multivariate studies 
that include response time characteristics.    
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1   Introduction 
The regenerative method is an estimation procedure 
applied for analyzing the output of steady-state 
simulations. It is based on the assumption, that any 
regenerative process is probabilistically restarted at 
each consecutive regeneration point. Thus, 
observations collected from “cycles” of random 
lengths, determined by successive regenerative 
instants of the simulated process, are independent to 
each other and identically distributed (i.i.d.). This 
allows, the use of the classical central limit theorem 
for deriving 100(1-.)% confidence intervals for the 
estimated characteristics. 
The i.i.d. nature of regeneration cycles gives this 
method a firmer theoretical underpinning than is the 
case for the other simulation output analysis 
methods. Moreover, since all cycles are probabilistic 
replicas of each other, the regenerative method is not 
tied in, with the problem of the initial transient, 
where the observations from the “beginning” of the 
simulation are not representative of the system’s 
steady-state behavior. However, the method is not in 
widespread use, perhaps of the difficulty in 
identifying the initial regenerative system state. 
As regarding queuing network simulations, an 
important theoretical contribution, towards this 
direction, was the work published by Shedler [7]. 
More precisely, the author considers multiclass 
networks of queues with priorities among job classes 

and Markovian job routing. An appropriate state 
vector for such networks is a linear job stack, an 
enumeration by service center and job class of all 
jobs. When the service times have exponential 
distributions (with parameters which may depend on 
the service center, class of job in service and state of 
the system), the job stack process is a continuous 
time Markov chain with finite state space. When the 
set of recurrent states of the process is irreducible, it 
is possible to obtain point estimates and confidence 
intervals for general characteristics of the steady 
state, by restricting a single simulation of the job 
stack process to the set of recurrent states. If there is 
a service center that sees only one job class or it is 
such that, jobs of the lowest priority are subject to 
preemption, this can be easily achieved by 
initializing the system at any state accessible from 
the state with all jobs at that center. In this case, we 
say that the common number-in-queue approach is 
applied. 
In open queuing networks, where a steady-state 
distribution exists, the empty system is possible to 
be selected as an appropriate regenerative state. 
For non-Markovian queuing networks, the transition 
dynamics of the simulated job stack process is 
convenient to be described by a generalized semi-
Markov process (GSMP). GSMPs are a class of 
stochastic processes that are characterized by both a 
set of states and a set of events that can trigger state 
transitions. Corresponding to each event is a clock. 



When a clock runs down to zero, this triggers a state 
transition. Clocks are reset randomly according to a 
distribution that depends on the specific event that 
needs to be scheduled. The next state to be visited 
by the GSMP is then determined stochastically 
according to a probability that can depend on both 
the previous state and the triggering event. 
One method for determining regeneration time 
instants in GSMPs is to identify single-states. A 
state s is a single-state, if there is only one active 
event, when the GSMP is in state s. Thus, a single-
state corresponds to a configuration of the job stack, 
such that, all jobs are at the same center with exactly 
one job in service. The GSMP, which is restricted to 
the set of all states accessible from s, has been 
proven [7] to be irreducible and to be characterized 
by the regenerative property. 
Shedler’ s job stack process provides an adequate 
framework for applying the classical or other 
regenerative estimation procedures for queuing 
network characteristics like throughputs, utilizations 
and queue lengths. However, our paper is mainly 
focused on simulation methods for response times, 
i.e. the random times for jobs to traverse specific 
portions of the network. Certainly, one possibility is 
to exploit the regenerative sequence generated, when 
applying the described number-in-queue approach, 
by modifying the selected regenerative estimators 
according to the Little’ s rule. Such an approach 
would assume the response times of interest to be 
totally contained within the corresponding 
regenerative cycles, which is not true in all cases. 
Moreover, the experimental results reported in [2], 
exhibit unacceptably low levels of coverage of the 
corresponding analytic solutions. 
In this work, we first review the theoretical 
background of two different alternatives, namely: 
the marked job and the labeled job methods. A new 
comparative analysis is then presented. We are not 
interested in an in depth study of the efficiency 
properties of the alternative methods, but on the 
quality of the results obtained by applying similar 
accuracy requirements on the characteristics of 
interest. The first experimental results show 
improved coverage of the corresponding analytic 
solutions for all the tested confidence interval widths 
(of the same nominal level), when the marked job 
method is used. This finding is clearly implying the 
simultaneous use of more than one regeneration 
sequence for multivariate studies that include 
response time characteristics.  
 
 

2 Statistical Estimation and  
Sequential Control Procedures 

Let us assume, our aim is to estimate the mean value 
of a queuing network characteristic (e.g. 
throughput), which is given, as a real-valued 
function f over the regenerative stochastic process 
X={X(t) ; t ≥ 0} 

k(f) = E[f(X)] 
Let us also call 
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the observation produced by the kth regenerative 
F\FOH� $ ���. � FRQILGHQFH LQWHUYDO IRU k(f), after 
the completion of N regenerative cycles, is given 
([1]), by 
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Estimator’ s effectiveness is usually assessed by: 
• The bias, which measures the estimator’s 

systematic deviation from the true value, 
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• The variance, which measures the estimator’s 
mean (squared) deviation from its true value; 
that is, 
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• The mean square error (MSE), defined as 
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From (4) and (5), it is easy to derive the following, 
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The classical regenerative estimator, given in (2), is 
consistent, which means that it tends to the true 
mean with probability 1, as ∞→N ; however, it is 
not unbiased. A number of alternatives have been 



suggested ([1]), in an attempt to reduce the bias 
introduced by the estimator’ s ratio form. The most 
important of them are: 
• the Fieller estimator, 

22
2

12

)]([

)()(
)(

sqN

sqNNZ
Nk

⋅−
⋅−⋅

=
τ

τ� ,
 

where Nzq 2
2/1 )( α−=  

• the Beale estimator, 
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• the jackknife estimator 
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• and the Tin point estimator  
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Respectively, different estimation procedures are 
being applied in deriving confidence intervals for 
the Fieller and the jackknife cases. Results reported 
in various studies, indicate that, for long runs, the 
Fieller - Fieller, jackknife - jackknife, Tin - classical 
and classical - classical confidence intervals, give 
accurate coverage of the parameter of interest. 
However, for short runs, in [1], the jackknife - 
jackknife approach did best, followed by the Tin - 
classical and classical - classical approaches, which 
performed about the same. 
As it has been already noted, response time 
estimations may be easily derived, by incorporating 
Little’ s rule into the selected regenerative 
estimation procedure. Thus, when the classical 
regenerative method is used, the estimators of (2) 
and (3) are modified as follows: 
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with  
 )(NL , the observed average number of jobs in the 
studied portion of the network, 
 )(Nk , the observed throughput and 
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This indirect response time estimation is bound to 
the limitations, described in Section 1, but on the 
other hand, it does not make use of additional 

system regeneration sequences. Also, it has been 
applied in a number of experimental studies, like for 
example, those reported in [6] and its use is 
suggested, in other works, as a convenient 
implementation possibility.  
Another problem, equally important for any 
multivariate steady-state simulation, is the run 
lengths, on which the parallel estimation procedures 
will be based. The reason is, that different queuing 
network characteristics behave in totally different 
ways and hence require radically different run 
lengths to generate adequate confidence intervals. A 
number of sequential control procedures have been 
suggested ([4]), for dynamically determining the 
appropriate sampling lengths in the course of the 
simulation run. 
The Lavenberg and Sauer [3] sequential procedure, 
which has been used in the experimental results 
reported in this study, is a direct consequence of (1) 
and determines the number N of the required 
regenerative cycles as 

2

2

1

)()(ˆ
)(2

1








⋅
⋅























 +

≥

−

llk

ls

a
F

N
τδ

               (8) 

where )(),(ˆ),( llkls τ  are the sample estimates, after 
the l th cycle of the simulation experiment and / is 
the half width of the confidence interval to be 
obtained, expressed as a % percent of the generated 
point estimate. As a consequence, the whole 
experiment terminates, when the required number N 
of regenerative cycles, over all the queuing network 
characteristics, has been achieved. An interesting 
finding ([2]) was the fact that (8) was quite often 
temporarily satisfied after a very small number of 
cycles, resulting in highly inaccurate results. 
However, this problem was overcome, by specifying 
minimum numbers of cycles, as initial requirements 
for the sampling lengths of the queuing network 
characteristics to be assessed. 
 
 

3 Response Time Estimation with the  
Marked Job Methods 

Let us consider a closed, multiclass queuing network 
with priorities among job classes and Markovian job 
routing. At every epoch of continuous time, each job 
is in exactly one class, but jobs may change class as 
they traverse the network. Upon completion of 
service at center i a job of class j goes to center k 
and changes to class O with probability ONML� ���

 where 
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is a given irreducible Markov matrix and 
{ } { }�	� ���������������� ×⊆  is the set of (center, 

class) pairs in the network. At each service center, 
jobs queue and receive service according to a fixed 
priority scheme among classes. Within a class at a 
center, jobs receive service according to a specific 
queue service discipline, e.g., first-come first-served 
(FCFS). For convenience (although it is not 
essential), we assume that only one job can receive 
service at a center at a time, i.e., the centers are 
single servers. According to a fixed procedure for 
each center, a job in service may or may not be 
preempted if another job of higher priority joins the 
queue at the center. Initially, we assume exponential 
service times, with parameters, which may depend 
on the service center, the class of job being served 
and the state of the entire network. Let ��
�L  denote 

the class of the job receiving service at center i at 
time t. We set ��� =
�L  if at time t there is no job at 

center i. The classes of jobs served at center i, when 
expressed by order of decreasing priority, are 
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���� LN , each of them being an element of 
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 denote the 

number of jobs of the various classes served in 
center i, at time t. Suppose the NJ jobs of the 
network, ordered in a linear job stack, defined by the 
vector Z(t): 
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Within a class of a particular service center, jobs 
waiting in queue appear in the job stack in the order 
of their arrival at the center. For any service center 
that sees only one class of job, k(i)=1, we can 
simplify the state space by replacing �������

��
W6W&

L

L

M
LN

 by 

Qi(t), the total number of jobs at center i.  
As it has been already noted, in Section 1, Shedler 
proved, that Z(t) is a continuous time Markov chain 
with a finite state space. Also, if there is a service 
center, which sees only one job class or it is such 
that jobs of the lowest priority class are subject to 
preemption, then the job stack process has a single 
irreducible closed set of recurrent states. 
However, since our aim is not only to estimate 
characteristics based on the queue lengths in jobs of 
various classes, at the network’ s service centers, the 
specified state variables do not suffice. More 
specifically, to deal with response times, it is 
necessary to augment the job stack process 
definition by introducing the concept of the marked 
job. We shall keep track of the position of the 
marked job in the network and measure its response 
times of interest, as the job circulates the network. 

The augmented job stack process is defined as the 
vector, X(t)=(Z(t), N(t)), �≥W , where N(t) denotes 
the position of the marked job from the top of the 
job stack. As a consequence of the assumption of the 
Markovian job routing and the exponential service 
times, the augmented job stack process X(t) is also a 
continuous time Markov chain with a finite state 
space, E. However, this process is not necessary to 
possess only one irreducible set of recurrent states. 
Response times are formally defined by means of 
four subsets of E. The sets A1, A2 (respectively B1, 
B2) jointly define the random times at which 
response times for the marked job start (respectively 
terminate). In effect, they determine, when to start 
and stop the clock measuring a particular response 
time of the marked job. We define two sequences of 
random times, { }�� ≥��

M
 and { }�� ≥��

M
, where 

Sj-1 is the start time and Tj is the termination time of 
the jth response time for the marked job. Assuming 
that the initial state of the process X is such that, a 
response time for the marked job begins at t=0, let 
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Then, the jth response time for the marked job is 
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For response times that are complete circuits in the 
network, A1=B1, A2=B2 and consequently Sj=Tj for all 

�≥� . 
Let Xn denote the state of the Markov chain X(t), 
when the (n+1)-st response time starts: Xn=X(Sn), 

�≥Q . It follows [7], that `��^ ≥Q;
Q

 is a discrete 

time Markov chain with finite state space A2 and if 
there is a service center that sees only one job class 
or it is such that, jobs of the lowest priority are 
subject to preemption, then it possesses a single 
irreducible set of recurrent states. Also, it is proved, 
that the process �̀���^�

�
≥+ Q3;

QQ
 is characterized by 

the regenerative property in discrete time and the 
expected time between regeneration points is finite. 
Finally ([7]), the sequence of response times for any 
other job (as well as the sequence of response times, 
irrespective of job identity, in order of start or 
termination) converges in distribution to the same 
random variable as the sequence of response times 
for the marked job. 
Thus, if a regenerative simulation using the marked 
job method is to be performed, the augmented job 
stack process is set to a recurrent state s, such that a 
response time for the marked job starts. For each 



cycle, the response times for the marked job are 
accumulated and an appropriate statistical estimation 
procedure, like those described in Section 2, is 
applied. 
The results described so far, have been also 
extended for networks with multiple job types. In 
such networks, the type of a job may influence its 
routing through the network as well as its service 
requirements at each center. Each job type has its 
own routing matrix and for each center, there is a 
priority ordering of the (type, class) pairs served at 
the center. It has been proved [7], that the set of 
recurrent states of the job stack process is 
irreducible, provided that the routing matrix for each 
job type is irreducible and there is a service center, 
which sees only one class of jobs. Finally, for a 
network with at least two service centers, the same 
conditions ensure that the augmented job stack 
process has a single irreducible closed set of 
recurrent states.  
The applicability of the marked job method in non-
Markovian networks is also proved, by employing 
the GSMP formalism in an analogous manner. 
The labeled jobs method is another regenerative 
variant based on the simulation of the so-called fully 
augmented job stack process, which, in addition to 
the enumeration of all jobs by service center and job 
class, maintains also the position of each one of the 
jobs in the linear job stack. This procedure takes into 
account the response time observations of all jobs, 
thus resulting in statistically more efficient 
estimations. However, it is important to note, that 
the labeled jobs method is not applicable when 
estimating the complete circuit response time, a 
case, where only the marked job method is possible 
to be used.  
 
 

4 Multivariate Response Time 
Simulation: experimental results 

A closed form queuing network (Figure 1) was 
selected, for comparing the quality of the results 
obtained when applying the indirect and the marked 
job estimation procedures under the same accuracy 
requirements and nominal levels of confidence. 
Figure 4 presents the results obtained in a sample 
run. It is important to note, that cycles performed, in 
each case of the marked job estimation, represent 
radically different lengths, than in the case of the 
number-in-queue simulation. 
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Figure 1 A central server model with terminals 
 

Analytic results (MVA algorithm) 
 

RESOURCE RESPONSE  THROUGHPUT  QUEUE   UTILIZATION 
      TIME          LENGTH  

CPU    0,17    17,2      2,91   0,861 

DISK1   0,11    8,61      0,96   0,517 

DISK2   0,11    8,61      0,96   0,517 

TERMINALS 3     1,72      5,17   0,517 

Figure 2 Analytic results for the central server 
model 

 

Experiment description 
 

Random Number Generator:   Mersenne Twister GSFR ([5])  

Estimation procedure:    Classical regenerative estimation 

Sequential control procedure:   Lavenberg & Sauer ([3]) 

Minimum number of cycles:  16 

Level of confidence:     90% 

Regeneration states:     (10, 0, 0, 0) for the number-in-queue process 
            (10, 0, 0, 0, 1) for the TERMINALS response 
            time (marked job estimation)  
            (9, 1, 0, 0, 10) for the CPU response time   
            (marked job estimation) 
            (9, 0, 1, 0, 10) for the DISK1 response time  
            (marked job estimation) 
            (9, 0, 0, 1, 10) for the DISK2 response time  
            (marked job estimation) 

Tested half width c.i. cases:  3.5%  3.0%  2.5%  2.0% 

Figure 3 Experiment description 
 

 

RESOURCE  UTILIZATION       THROUGHPUT     QUEUE LENGTH 
TERMINALS 

  ReqCIL                   2.5 %                2.5 %               2.5 %  
  ActCIL         +/-  2.5 %         +/-  2.5 %         +/-  2.5 %         

CYCLES          60                   42                   60   
  LBOUND      0.49654             1.6579             4.9654     
  MEAN            0.50919             1.7001             5.0919          

UBOUND           0.52185             1.7422             5.2185        
CPU 

  ReqCIL              2.5 %                2.5 %               2.5 %              
ActCIL         +/-  2.4 %         +/-  2.3 %         +/-  2.5 %        

 CYCLES                  22                     16                  160                 
LBOUND          0.83062              17.091             2.8729            
MEAN           0.85141              17.488             2.9462            
UBOUND          0.87219              17.885             3.0195          

DISK1 
  ReqCIL              2.5 %                 2.5 %                2.5 %     
  ActCIL         +/-  2.5 %         +/-  2.2 %         +/-  2.4 %  

CYCLES               33                     33                  93                 
LBOUND          0.50039              8.4319            0.94125            
MEAN           0.51303              8.6206            0.96427            
UBOUND          0.52567              8.8093            0.98729  

 



DISK2 
  ReqCIL              2.5 %                2.5 %                2.5 %           
  ActCIL         +/-  2.5 %         +/-  2.3 %         +/-  2.5 %      
  CYCLES                  48                     26                   171             
  LBOUND          0.50965              8.4611            0.93476 
 MEAN           0.52257              8.6588            0.95854   
 UBOUND          0.53549              8.8564            0.98233  

RESOURCE  INDIRECT   MARKED JOB    
      RES TIME        RES TIME  

TERMINALS 
  ReqCIL                   2.5 %                2.5 %                
  ActCIL         +/-  2.4 %         +/-  2.5 %          

CYCLES        60                       97              
  LBOUND     2.9194              2.9529           
  MEAN           2.9913              3.0284            

UBOUND          3.0633              3.104           
CPU 

  ReqCIL              2.5 %                2.5 %           
ActCIL         +/-  2.5 %         +/-  2.5 %         

 CYCLES                  116                   354              
LBOUND          0.16693              0.16431           
MEAN           0.17118              0.16849           
UBOUND          0.17544              0.17268      

DISK1 
  ReqCIL              2.5 %                 2.5 %           
  ActCIL         +/-  2.5 %         +/-  2.2 %       

CYCLES               32                     20              
LBOUND          0.10414              0.10878        
MEAN           0.10676              0.11118         
UBOUND          0.10938              0.11358      

DISK2 
  ReqCIL              2.5 %                2.5 %           
  ActCIL         +/-  2.5 %         +/-  2.3 %       
  CYCLES                  99                     32             
  LBOUND          0.10946              0.10717          
 MEAN           0.11223              0.10969      
 UBOUND          0.11501              0.11222        

 

Figure 4 Simulation results (initial seed = 1160) 
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Figure 5 Observed coverage (1000 runs/case) 
 
Figure 5 shows the coverage values obtained from 
1000 sample runs for each c.i. half width. It is 
important to note, that the sequential procedure’ s 
half width requirement is considered to be valid, in 
respect to the observed variability, if the obtained 
coverage is close to or higher than the chosen 
nominal level. 
 
 

5   Conclusion 
In this work, we employed two different response 
times estimation variants, based on different 
regeneration sequences. The obtained results show 

substantial coverage improvements. This is due to 
impressive variance reductions, in cases where the 
marked job regeneration sequences were used. This 
finding implies the simultaneous use of more than 
one regeneration sequence for multivariate studies 
that include response time characteristics. 
Application of the labeled jobs regenerative variant 
will improve the experiments’ statistical efficiency. 
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