
Aristotle University of Thessaloniki
Faculty of Sciences

School of Informatics

Doctoral Thesis

Emmanouela Stachtiari

Correct-by-construction model

based design of systems and

software

Supervisor: Assist. Professor Panagiotis Katsaros

October 24, 2018

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΘΕΣΣΑΛΟΝΙΚΗΣ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

∆Ι∆ΑΚΤΟΡΙΚΗ ∆ΙΑΤΡΙΒΗ

Εµµανουέλα Στάχτιαρη

Από κατασκευής ορθή σχεδίαση

συστηµάτων και λογισµικού ϐάσει

µοντέλων

Επιβλέπων: Επίκ. Καθηγητής Παναγιώτης Κατσαρός

24 Οκτωβρίου 2018

Emmanouela Stachtiari

Correct-by-construction model based design of systems and software

Doctoral Thesis

Submitted to the Department of Informatics, Faculty of Sciences, Aristotle

University of Thessaloniki

Defense Date: 24/10/2018

Examination Committee

Panagiotis Katsaros, Assistant Professor, Department of Informatics, Aris-

totle University of Thessaloniki - Supervisor

Ioannis Stamelos, Professor, Department of Informatics, Aristotle Univer-

sity of Thessaloniki - Advisory Committee Member

Eleftherios Angelis, Professor, Department of Informatics, Aristotle Uni-

versity of Thessaloniki - Advisory Committee Member

Saddek Bensalem, Professor, Université Grenoble Alpes - Examiner

Alexandros Chatzigeorgiou, Professor, Department of Applied Informatics,

University of Macedonia - Examiner

Andreas Symeonidis, Associate Professor, Department of Electrical Engi-

neering, Aristotle University of Thessaloniki - Examiner

Simon Bliudze, Research Scientist, Inria Nord, Lille - Examiner

© Emmanouela Stachtiari

© AUTh

Ph.D. Thesis Title:

Correct-by-construction model based design of systems and software

“The approval of this Ph.D. Thesis by the School of Informatics of the Aristotle

University of Thessaloniki does not imply acceptance of the opinions of the

author” (L. 5343/1932, Article 202, par. 2)

Aristotle University of Thessaloniki

Abstract
Faculty of Sciences

School of Informatics

Doctor of Philosophy

Correct-by-construction model based design of systems and software

by Emmanouela Stachtiari

Software systems of today are complex and wide in scope in order to meet

industry needs. Checking correctness in such systems through validation test-

ing reveals flaws late, in which case a backtracking in the development phase

is required to pursue a new design and implementation. Instead, the design of

complex systems should rely on early validation of requirements, which could

take place at the design phase to ensure that implementation will end with a

correct product.

The aim of this thesis is to introduce systematic approaches that fit into a

rigorous design flow for software systems. To this end, the research question

is as follows: to what extent can a software system be designed towards meet-

ing its functional specification while avoiding a-posteriori verification as much

as possible (correctness-by-construction). In this context, a software system

should be represented by a design model, while its functional specification is a

set of formal properties which should be implied by the model’s structure and

behavior.

The research question is answered through a tool-supported rigorous de-

sign flow that relies on the incremental construction of models using the BIP

(Behavior-Interaction-Priorities) component framework. We focus on how to

derive and validate a functional application model from a set of requirements

or from programs written in an application programming language. Our tech-

niques address the following challenges:

1. Early validation of requirements and system design, to eliminate the need

for a posteriori verification and reduce the validation testing during the

late stages of development. The effectiveness of the process and the tool

support was evaluated on a set of requirements for the control software of

the CubETH nanosatellite and an extract of software requirements for a

Low Earth Orbit observation satellite. Through our approach, we managed

to ensure all requirements by construction and limit the needs for system

verification.

2. Automated generation of functional BIP application models that preserve

the semantics of programs written in programming languages with nest-

ing syntax. We focused on the correctness of web service compositions

written in BPEL and we applied our approach and the associated tool to

a benchmark of real BPEL programs with diverse complexities of model

creation and verification.

3. Maintain the consistency between the BIP model and the application code

across the rigorous design steps. To this end, we propose using a suitable

domain-specific language. We addressed the research challenge in the

context of resource-constrained REST IoT application design, for WPAN

systems with nodes running the Contiki OS. The application code is ren-

dered correct by construction, in the sense that it corresponds exactly to

the validated model.

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Περίληψη
Σχολή Θετικών Επιστηµών

Τµήµα Πληροφορικής

∆ιδακτορικό ∆ίπλωµα

Από κατασκευής ορθή σχεδίαση συστηµάτων και λογισµικού ϐάσει

µοντέλων

από την Εµµανουέλα Στάχτιαρη

Τα τελευταία χρόνια παρατηρείται αύξηση της πολυπλοκότητας και του εύρους

των εφαρµογών των συστηµάτων λογισµικόυ, ενώ οι ανάγκες της ϐιοµηχανίας ε-

ξελίσσονται συνεχώς. Η εκπλήρωση των λειτουργικών και µη λειτουργικών απαι-

τήσεων καθορίζει αυτό που αντιλαµβανόµαστε ως ορθότητα της σχεδίασης του συ-

στήµατος. Οι λειτουργικές απαιτήσεις ορίζουν την αναµενόµενη συµπεριφορά του

συστήµατος, ενώ οι µη λειτουργικές απαιτήσεις ορίζουν περιορισµούς σε ποιοτικές

πτυχές που σχετίζονται µε το χρόνο εκτέλεσης και την αξιοπιστία. Η ικανοποίη-

ση των απαιτήσεων επαληθεύεται µε δοκιµές επικύρωσης (validation testing) στα

τελευταία στάδια της ανάπτυξης του συστήµατος. Η επαλήθευση της ορθότητας

µπορεί να γίνει παρόλα αυτά και σε πρώιµα στάδια, αν η σχεδίαση αποτυπώνεται

σε ένα αφαιρετικό µοντέλο της συµπεριφοράς. Καθώς όµως η ορθότητα δεν είναι

απολύτως εφικτή, µπορούµε να επιδιώξουµε ιχνηλάσιµες διαδικασίες σχεδίασης,

δηλαδή µία προσέγγιση αυστηρής σχεδίασης, µέσω της οποίας είναι εφικτή η τεκ-

µηρίωση των σχεδιαστικών επιλογών ως προς τις συνέπειές τους.

Για τη διαχείριση της πολυπλοκότητας στη σχεδίαση των συστηµάτων, οι αυστη-

ϱή σχεδίαση µπορεί να στηριχθεί στη σύνθεση συστατικών λογισµικού και υλικού

(component-based design). Τα συστήµατα συστατικών αναπτύσσονται συναρµο-

λογώντας συστατικά που αλληλεπιδρούν µεταξύ τους. Ο ταυτοχρονισµός είναι ένα

εγγενές χαρακτηριστικό των συστηµάτων συστατικών. Η ταυτόχρονη πρόσβαση

σε κοινόχρηστους πόρους µπορεί να προκαλέσει διενέξεις και προβλήµατα, όπως

τα αδιέξοδα, που υπονοµεύουν την ορθότητα της σχεδίασης. Για την επαλήθευ-

ση της ορθότητας συστηµάτων συστατικών, αρκεί να ελέγχεται η συµπεριφορά

κάθε συστατικού για να διαπιστωθεί αν ικανοποιεί τις αναγκαίες υποθέσεις για

την εκπλήρωση των απαιτήσεων του συστήµατος συνολικά. Αν οι συγκεκριµένες

υποθέσεις ικανοποιούνται, τότε είναι δυνατή η ενσωµάτωση του συστατικού στο

σύστηµα.

Η Αυστηρή Σχεδίαση Συστηµάτων [1] (ΑΣΣ) ϐασίζεται σε µια ιχνηλάσιµη και

επαναληπτική διαδικασία µε χρήση τυπικών µοντέλων (i) του λογισµικού εφαρ-

µογών, (ii) της πλατφόρµας εκτέλεσης και (iii) του εξωτερικού περιβάλλοντος του

συστήµατος. Απώτερος στόχος είναι η παραγωγή µιας αξιόπιστης και ϐελτιστοποι-

ηµένης υλοποίησης του συστήµατος από τα µοντέλα σχεδίασης µέσω µιας ακολου-

ϑίας µετασχηµατισµών, που διατηρούν τη σηµασιολογία εκτέλεσης.

Η Αυστηρή Σχεδίαση Συστηµάτων αποτελείται από τέσσερα ϐήµατα:

Βήµα 1 Το λειτουργικό µοντέλο της εφαρµογής ορίζεται ϐάσει µίας προδιαγρα-

ϕής της λειτουργικής συµπεριφοράς των συστατικών και των περιορισµών

συντονισµού, που επιβάλλονται από τις αλληλεπιδράσεις τους. Σε αυτό το

στάδιο ελέγχονται οι ιδιότητες συµπεριφοράς, όπως η απουσία αδιεξόδου,

µέσω ανάλυσης των αλληλεπιδράσεων των συστατικών.

Βήµα 2 ΄Ενα αφαιρετικό µοντέλο του συστήµατος κατασκευάζεται συνδυάζοντας το

µοντέλο εφαρµογής του προηγούµενου ϐήµατος µε ένα µοντέλο της πλατ-

ϕόρµας εκτέλεσης και την αντιστοίχιση των συστατικών της εφαρµογής σε

συστατικά της πλατφόρµας. Σε αυτό το στάδιο, µπορεί να αξιολογηθεί η

απόδοση του συστήµατος µέσω προσοµοίωσης που λαµβάνει υπόψιν τα χα-

ϱακτηριστικά της πλατφόρµας εκτέλεσης.

Βήµα 3 ΄Ενα λεπτοµερές µοντέλο του συστήµατος επιτυγχάνεται µε µετασχηµα-

τισµό του αφαιρετικού µοντέλου, ενσωµατώνοντας πρωτογενή στοιχεία επι-

κοινωνίας της πλατφόρµας εκτέλεσης για την αλληλεπίδραση συστατικών.

Σε αυτό το στάδιο, οι µηχανισµοί αλληλεπίδρασης υψηλού επιπέδου εκλε-

πτύνονται και αντικαθίστανται από πρωτογενή στοιχεία επικοινωνίας, όπως

αποστολή µηνυµάτων ή χρήση κοινής περιοχής µνήµης.

Βήµα 4 Στο τέλος παράγεται εκτελέσιµος κώδικας για κάθε συστατικό επεξεργα-

σίας της πλατφόρµας στόχο.

Το BIP (Behavior, Interaction, Priority) [2] είναι ένα πλαίσιο συστατικών µε

κατάλληλη υποστήριξη τη διαδικασία ΑΣΣ. Επιτρέπει το διαχωρισµό σχεδιαστικών

πτυχών σε δύο επίπεδα: καταρχήν, σε ένα µοντέλο BIP η συµπεριφορά προδια-

γράφεται ξεχωριστά από τις αλληλεπιδράσεις των συστατικών και τις προτεραιότη-

τές τους. Επίσης, διατίθενται γεννήτριες BIP κώδικα µε αφετηρία διάφορες γλώσ-

σες προγραµµατισµού, γεγονός που καθιστά το BIP ένα πλαίσιο σηµασιολογίας

που ενοποιεί τη σηµασιολογία των διαφόρων γλωσσών, ιδιαίτερα αποτελεσµατικό

για τη σχεδίαση συστηµάτων µε λογισµικό και υλικό. Επιπλέον, οι απλουστευ-

µένες δοµές συντονισµού των συστατικών BIP καθιστούν τη διαδικασία σχεδίασης

ιχνηλάσιµη ως προς τις επιπτώσεις των σχεδιαστικών επιλογών. Με τα λίγα πρωτο-

γενή στοιχεία σύνταξης της γλώσσας η περιγραφή του συντονισµού των συστατικών

γίνεται µε ένα ϕυσικό και άµεσο τρόπο.

Στη γλώσσα BIP είναι εφικτή η υλοποιήση τεχνικών από κατασκευής ορθότητας,

µέσω της διατήρησης των ιδιοτήτων ορθότητας του µοντέλου κατά τους µετασχηµα-

τισµούς που αυτό υφίσταται στα διάφορα ϐήµατα της ΑΣΣ. Οι µετασχηµατισµοί µο-

ντέλου ϑεµελιώνονται µε σχέσεις εκλέπτυνσης (refinement), που έχουν αποδειχθεί

από κατασκευής ορθές, δηλ. διατηρούν την εξωτερικά παρατηρήσιµη ισοδυναµία

και εποµένως όλες τις ϐασικές ιδιότητες ασφάλειας. Πρακτικά, η επαλήθευση των

ιδιοτήτων ασφάλειας γίνεται µόνο στα µοντέλα υψηλού επιπέδου αφαίρεσης. Για

την παράκαµψη της εγγενούς πολυπλοκότητας στην επαλήθευση διατίθενται ερ-

γαλεία, που υποστηρίζουν συνθετικές τεχνικές ανάλυσης, δηλαδή µπορούµε να

συµπεράνουµε την ισχύ ιδιοτήτων σε σύνθετα συστατικά BIP µε ϐάση τις ιδιότητες

που ισχύουν στα συστατικά αυτά περιέχουν.

Η διατριβή αυτή εισάγει τεχνικές από κατασκευής ορθότητας για την αυστηρή

σχεδίαση συστηµάτων. Ειδικότερα, εστιάζουµε στο πώς µπορούµε να παράξουµε

και να επικυρώσουµε ένα λειτουργικό µοντέλο της εφαρµογής από ένα σύνολο

απαιτήσεων ή από προγράµµατα γραµµένα σε µια γλώσσα προγραµµατισµού ε-

ϕαρµογών. Οι τεχνικές µας αντιµετωπίζουν τις παρακάτω προκλήσεις :

1. Την πρώιµη επικύρωση των απαιτήσεων και της σχεδίασης του συστήµα-

τος, ώστε να εξαλειφθεί η ανάγκη µιας εκ των υστέρων επαλήθευσης και να

περιοριστούν οι έλεγχοι επικύρωσης κατά τα τελευταία στάδια ανάπτυξης.

2. Την αυτόµατη δηµιουργία λειτουργικών µοντέλων εφαρµογών από προγράµ-

µατα γλωσσών προγραµµατισµού µε εµφωλευµένη σύνταξη (εστιάσαµε στη

γλώσσα BPEL), διατηρώντας τη σηµασιολογία των προγραµµάτων.

3. Τη διατήρηση της συνέπειας µεταξύ του µοντέλου του συστήµατος και του

κώδικα της εφαρµογής σε όλα τα ϐήµατα της ΑΣΣ. Για το σκοπό αυτό, προ-

τείνουµε τη χρήση µιας κατάλληλης γλώσσας ειδικού σκοπού (επικεντρω-

ϑήκαµε στη σχεδίαση συστηµάτων περιορισµένων πόρων του διαδικτύου των

αντικειµένων).

Σε ότι αφορά το (1), προτείνουµε ένα σύνολο προσαρµόσιµων προτύπων για α-

παιτήσεις σε ϕυσική γλώσσα, από τα οποία παράγονται τυπικά ορισµένες ιδιότητες,

που είτε µπορεί να επιβάλλονται, είτε να επαληθεύονται µέσω επιθεώρησης ή µε

έλεγχο µοντέλου (model checking). Αυτή η προσέγγιση σχεδίασης ϐασίζεται σε ένα

σύνολο προϋπάρχοντων συστατικών, που παρέχουν λειτουργίες του συστήµατος.

Στη συνέχεια, οι τυπικές ιδιότητας επιβάλλονται µε µία σειρά µετασχηµατισµών

του µοντέλου της εφαρµογής, οι οποίοι εφαρµόζουν τυπικά ορισµένα πρότυπα

σχεδίασης, τις λεγόµενες αρχιτεκτονικές, που αναπαριστώνται µε µοντέλα BIP. Η

επαλήθευση µέσω επιθεώρησης είναι δυνατή όταν οι ιδιότητες µπορούν να ελεγ-

χθούν τοπικά στις καταστάσεις ενός µόνο συστατικού, ενώ η επαλήθευση µε έλεγχο

µοντέλου απαιτείται µόνο για ιδιότητες, που δεν µπορούν να εξασφαλιστούν µε τα

προαναφερθέντα µέσα.

Σε σχέση µε το (2), εισάγουµε µια προσέγγιση για τον ορισµό συνθέσιµης

σηµασιολογίας, που πιστεύουµε ότι είναι εφικτή για ένα ευρύ ϕάσµα γλωσσών

προγραµµατισµού µε εµφωλευµένη σύνταξη. Μια τέτοια σηµασιολογία εκτέλεσης

αντιµετωπίζει την πολυπλοκότητα της µετάφρασης κώδικα σε µοντέλα εφαρµογών,

καθώς οι κανόνες µετάφρασης περιορίζονται στον αριθµό των πρωτογενών στοιχε-

ίων της γλώσσας και οι χρόνοι µετάφρασης κλιµακώνονται γραµµικά µε το µέγεθος

του προγράµµατος. Η εγκυρότητα της σηµασιολογίας στηρίζεται σε ιδιότητες που

επιβάλλονται κατά την κατασκευή του µοντέλου. Εφαρµόσαµε επιτυχώς αυτήν την

προσέγγιση για τη γλώσσα σύνθετων υπηρεσιών BPEL. Αναπττύξαµε ένα εργαλείο

για τη µετάφραση προγραµµάτων BPEL σε BIP µοντέλα εφαρµογών. Το εργαλείο

δοκιµάστηκε σε ένα σύνολο πραγµατικών προγραµµάτων. Τα παραγόµενα BIP

µοντέλα χρησιµοποιήθηκαν για να επαληθευθούν ϐασικές ιδιότητες ορθότητας,

όπως η εξασφάλιση τερµατισµού και η έγκαιρη απόκριση των υπηρεσιων, καθώς

και άλλες ιδιότητες που αφορούν την εκάστοτε εφαρµογή.

Αναφορικά µε το (3), αντιµετωπίσαµε την ερευνητική πρόκληση στο πλαίσιο της

σχεδίασης REST (Representational state transfer) [3] εφαρµογών για συστήµατα

ασύρµατων προσωπικών δικτύων περιοχής (WPAN) µε κόµβους που χρησιµοποιο-

ύν το Contiki OS [4]. Σχεδιάστηκε µία γλώσσα ειδικού σκοπού (DSL), που εξυ-

πηρετεί δύο σκοπούς : απλοποιεί τον προγραµµατισµό εφαρµογών και διατηρεί

τη συνεκτικότητα µεταξύ του κώδικα εφαρµογής και του BIP µοντέλου σε όλα τα

στάδια της σχεδίασης. Η DSL παρέχει µια προγραµµατιστική αφαίρεση µε πρω-

τογενή στοιχεία σύνταξης για τον ορισµό της ϱοής ελέγχου και των κοινών ενερ-

γειών πελάτη και διακοµιστή, όπως η αλληλεπίδραση διεργασιών, η επικοινωνία

µέσω του δικτύου και η διαχείριση πόρων. Χρησιµοποιήσαµε τη γλώσσα για να

σχεδιάσουµε ένα σύστηµα έξυπνου κτιρίου, του οποίου το µοντέλο επαληθεύτηκε

ως προς ένα ένα σύνολο λειτουργικών και µη λειτουργικών απαιτήσεων. ΄Ετσι, ο

κώδικας εφαρµογής είναι από-κατασκευής ορθός, υπό την έννοια ότι αντιστοιχεί

ακριβώς στο επικυρωµένο µοντέλο.

Publications

Journal publications

1. Stachtiari, E., Katsaros, P. Compositional execution semantics for business

process verification. Journal of Systems and Software, Vol. 137, 217-238,

Elsevier, 2017 (online: http://doi.org/10.1016/j.jss.2017.11.

003)

2. Stachtiari, E., Mavridou, A., Katsaros, P., Bliudze, S., Sifakis, J. Early

Validation of System Requirements and Design Through Correctness-by-

Construction. Journal of Systems and Software, Vol. 145, 52-78, Elsevier,

2018 (online: http://doi.org/10.1016/j.jss.2018.07.053)

3. Lekidis, A., Stachtiari, E., Katsaros, P., Bozga, M., Georgiadis, C. K. Model-

based Design of IoT Systems with the BIP Component Framework. Journal

of Software: Practice and Experience, Vol. 48 (6), 1167-1194, John Wiley

& Sons, 2018 (online: http://doi.org/10.1002/spe.2568)

Articles in conference proceedings

1. Stachtiari, E., Mentis, A., Katsaros, P. Rigorous Analysis of Service Com-

posability by Embedding WS-BPEL into the BIP Component Framework.

ICWS: IEEE Computer Society, 2012.

2. Stachtiari E., Vesyropoulos, N., Kourouleas, G., Georgiadis, C., Katsaros,

P. Correct-by-Constraction Web Service Architecture. SOSE: IEEE Com-

puter Society, 2014.

3. Lekidis, A., Stachtiari, E., Katsaros, P., Bozga, M., Georgiadis, C.-K. Using

BIP to reinforce correctness of resource-constrained IoT applications. SIES:

IEEE Computer Society, 2015.

4. Mavridou, A., Stachtiari, E., Bliudze, S., Ivanov, A., Katsaros, P., Sifakis

J. Architecture-based Design: A Satellite On-Board Software Case Study.

FACS: Springer, 2016.

Acknowledgements
At first, I would like to thank cordially the supervisor of my PhD thesis,

Assistant Professor Panagiotis Katsaros, for his full trust, his guidance and the

many useful tips throughout the writing of my publications and the dissertation.

He has given me important lessons in scientific, career and other areas. More

importantly, he worked as a role model on how to be a good scientist and person.

Furthermore, I am grateful to the members of the advisory board of my PhD

thesis, namely Professor Ioannis Stamelos and Professor Eleftherios Angelis

for the excellent cooperation we have had from the beginning and until now. I

cannot be less thankful to all the members of my examination committee, which

gave me suggestions and comments to improve my dissertation and consider

new prospects as future work.

Separately, I would like to express my sincere appreciation to Simon Bliudze

and Saddek Bensalem, with whom I had the privilege and pleasure to collabo-

rate and from whom I received invaluable suggestions and ideas in functional

and technical matters. I owe special thanks to Professor Joseph Sifakis for in-

troducing me to new possibilities and a research community that has supported

me throughout these years.

I am also grateful to the people with whom I had the pleasure to work during

research projects. Specifically, I am indebted to Anakreon Mentis, Anastasia

Mavridou and Stylianos Basagiannis for all their help and support. I cannot

forget, people that I met as colleagues and other PhD candidates of our re-

search lab, such as Georgios Chatzieleftheriou, Konstantinos Mokos and Alexios

Lekidis.

Finally, all this journey would have been impossible without the most im-

portant people in my life, which are my family and friends. Therefore, I want to

thank my parents, Giannis and Georgia, and my brother, Panos, for all their love

and guidance that has been with me forever. Last but not least, I wish to thank

my loving husband, Lefteris, who provides endless inspiration and support no

matter what.

Contents

Abstract

Περίληψη

Acknowledgements

1 Introduction 1

1.1 The problem of system design . 1

1.2 Motivation and Contributions . 4

1.2.1 Rigorous System Design . 4

1.2.2 Functional modeling . 6

1.2.3 Functional correctness and thesis contributions 7

Our contributions . 8

1.3 Thesis structure . 10

2 Background 11

2.1 The BIP framework . 11

2.2 Architecture-based design in BIP 13

3 Early validation of system requirements and design 17

3.1 Introduction . 17

3.1.1 Research objectives . 18

3.1.2 Context and contributions 19

3.2 The model-based process . 21

3.2.1 Requirement specification 24

3.2.2 Initial design . 29

3.2.3 Property derivation . 31

3.2.4 Architecture instantiation and property enforcement 35

Action flow . 36

Mode management . 37

Event monitoring . 40

Mutual exclusion management 42

Liveness . 43

Decision flows for property enforcement 44

3.3 Tool support . 45

3.4 Evaluation case studies . 47

3.4.1 CubETH case study . 47

3.4.2 Telecommand Management of an earth observation satellite 50

3.5 Related Work . 50

3.6 Discussion . 53

4 Compositional execution semantics for BPEL programs 59

4.1 Introduction . 59

4.2 Correctness of BPEL processes: a motivating example 62

4.3 BIP model for BPEL processes . 68

4.3.1 BIP components and model structure for the BPEL activities 68

4.3.2 Interface and behavior of activity components 70

The state of service interactions 72

BPEL variables . 73

4.3.3 Atomic BIP components . 73

4.4 Compositional semantics definition 75

4.4.1 BIP compound for the flow 76

4.4.2 BIP compound for the scope and PROC 77

4.5 Verification of correctness properties 80

4.5.1 Essential properties . 82

4.5.2 Additional correctness poperties 84

4.6 BPEL to BIP translation . 85

4.7 Experiments on the verification of BPEL programs 87

4.8 Related Work . 89

5 Application modeling for rigorous design of IoT systems 93

5.1 Introduction . 93

5.2 Background . 96

5.2.1 Foundations of IoT Systems 96

5.2.2 Contiki and REST application programming 97

5.3 The BIP model-based design flow for IoT systems 99

5.4 Case study . 104

5.4.1 General description . 104

5.4.2 Application of the BIP design flow 106

5.4.3 Domain Specific Language for Contiki REST applications . . 109

5.4.4 BIP models for Contiki WPAN systems 112

5.4.5 Calibration . 115

5.4.6 State-space exploration . 115

5.4.7 Fault injection . 117

5.4.8 Experiments and results . 117

5.5 Discussion . 120

5.5.1 Benefits of the BIP design flow 120

5.5.2 Limitations . 122

5.5.3 Comparison with competitive design methods 124

6 Conclusions and future work 127

6.1 Advancements with respect to state of the art 127

6.2 Future research prospects . 130

A 131

A.1 Derived Property Patterns . 131

A.1.1 Prefixes . 131

A.1.2 Suffixes . 132

A.2 Case study . 132

A.2.1 Functional architecture . 132

A.2.2 Physical architecture . 133

A.2.3 Initial design model . 133

A.2.4 Requirements and properties of the running example 133

A.2.5 Final design model . 136

HK PL . 137

HK CDMS . 138

CDMS status . 139

Error Logging . 140

Payload . 141

Flash Memory . 143

I2C_sat . 145

B 147

B.1 Variables for process state . 147

B.1.1 The state of service interactions 147

B.1.2 BPEL variables . 148

B.2 Compositional semantics for BIP compounds 150

B.2.1 BIP compound for sequence 150

B.2.2 BIP compound for if . 151

B.2.3 BIP compound for pick . 152

B.2.4 BIP compound for loop . 153

B.2.5 BIP compound for act . 155

B.2.6 Architectures of the components in PROC and scope 156

B.3 Models for basic activities and other atomic components 159

B.4 Translation times for test programs 168

C 169

C.1 Language for Contiki REST application design definition (DSL) . . 169

C.2 BIP interactions of the RestModule model with the OS model . . . 171

C.3 Network stack model parameters 172

Bibliography 175

List of Figures

1.1 Software verification flow . 3

1.2 A simplified instantiation of the Rigorous System Design flow . . . 4

2.1 BIP connectors and their associated interaction sets 12

2.2 Mutual exclusion model in BIP . 14

2.3 Mutual exclusion architecture . 14

2.4 Mutual exclusion style . 14

3.1 The model-based approach . 19

3.2 The model-based process for the formalization of requirements and

design . 22

3.3 Conceptual diagram of classes. 24

3.4 Conceptual model for the requirements of the HK PL function . . . 28

3.5 Example of an initial design model 31

3.6 Architecture diagram of the Action flow style 36

3.7 Application of an Action flow architecture 37

3.8 Architecture diagram of the Mode management style (component

behavior is shown for k=3) . 38

3.9 Application of a Mode management architecture 40

3.10Architecture diagram of the Event monitoring style 40

3.11Architecture diagram of the bipartite connectors’ simplification . . 40

3.12Application of the bipartite connectors’ simplification of the Event

monitoring architecture . 42

3.13Application of a Mutual exclusion management architecture 43

3.14RERD’s screen for Requirements Editing. 47

4.1 Client and server side activities for synchronous and asynchronous

invocations between processes. 62

4.2 The TravelBooking process interacts with the BookAirline and BookHo-

tel web services on behalf of a client. 63

4.3 empty activity behavior. 72

4.4 Example of activity behavior. 72

4.5 receive component for synchronous operation. 74

4.6 Parallel style . 78

4.7 Synch. links mngmt style . 78

4.8 Coordinator of the Scope style . 79

4.9 The Data mngmt style . 80

4.10The BPEL process verification procedure. 81

4.11Observer automaton for a language of acceptable messages. 85

4.12Template of BIP code for the copy activity 86

4.13Behavior of the copy template . 86

4.14Template of BIP code for the assign activity 87

4.15Behavior of the assign template 87

5.1 Typical SW/HW architecture of IoT node 96

5.2 The BIP model-based design flow for IoT WPAN systems (numbered

rectagles show the process steps) 101

5.3 State flow for temperature control by the zone-controller (temper-

ature t should be in [lb,ub]) . 104

5.4 State flow for motion detection by the zone-controller (alarm trig-

gered in non-office hours) . 104

5.5 Node topology with clients and servers in the building automation

system . 105

5.6 Client process of the building automation application 105

5.7 BIP template for the client (all event handlers of Listing 5.2 are

composed in a single automaton) 111

5.8 BIP model structure for Contiki WPAN systems 113

5.9 Example BIP components and their interactions - Channel (left)

and ProtStack.MsgSender (right) 115

5.10Example observer automaton for the formal verification of a quali-

tative property (no redundant service requests) 116

5.11Example FaultHandler automaton - packet is ignored if fail = 1 . . 116

5.12Temperature observations (in Celcius) for our building automation

application . 118

5.13Transmission times (ms) for motion detection with faults injected

in the Calibrated System Model . 119

A.1 The high level initial design model for the CubETH case study. . . 134

A.2 The high level final design model for the CubETH case study. . . . 136

A.3 The HK PL component (The HK COM and HK EPS are also like HK

PL) . 137

A.4 The HK CDMS component . 138

A.5 The CDMS status component . 139

A.6 The Error Logging component 140

A.7 The Payload component . 141

A.8 The Flash Memory component 143

A.9 The I2C_sat component . 145

B.1 Sequential style . 150

B.2 Conditional alternative style . 152

B.3 Alternative style . 152

B.4 Repetitive style . 153

B.5 Parallel Repetitive style . 154

B.6 Status mngmt style . 155

B.7 Reading of links in act component 155

B.8 Writing of links in act component 155

B.9 The invoke component with two variants. 160

B.10The reply component. 160

B.11The copy component with two variants. 161

B.12The compensate component. 162

B.13The throw component. 162

B.14The rethrow component. 162

B.15The exit component. 163

B.16The valid component. 163

B.17The timer component. 164

B.18The loopctrl component for the while activity. 165

B.19The loopctrl component for the repeatUntil activity. 165

B.20The loopctrl component for the forEach activity. 166

B.21The loopctrl component for the parallel forEach activity. . . . 166

B.22The condctrl component. 167

B.23Regression analysis of translation times for test programs (x axis

is the number of states, y axis in ms) 168

C.1 BIP templates for actions in Listing C.1 169

C.2 BIP templates for actions in Listing C.2 170

C.3 The RestModule for a Client and its interactions with the OS . . . 172

List of Tables

3.1 Conceptual classes . 24

3.2 Prefix clauses . 26

3.3 Main clauses . 26

3.4 Suffix clauses . 26

3.5 Requirements for the HK PL function 27

3.6 Templates for scopes and patterns 32

3.7 Boilerplate templates and their associated patterns 34

3.8 Action flow architecture style parameters 37

3.9 Mode management architecture style parameters 39

3.10Event monitoring architecture style parameters 41

3.11Mutual exclusion management architecture style parameters . . . 42

3.12Statistics on the utilization of BIP architectures 48

3.13Statistics of requirement formulation and property enforcement . . 48

3.14Durations and input sizes of the process steps 50

4.1 Atomic components for basic activities of BPEL. 68

4.2 Atomic components for the BPEL semantics. 68

4.3 Statistics and verification results for analyzed BPEL processes. . . 87

5.1 Effort and design artifacts for the building automation case study . 121

5.2 BIP model statistics for the building automation case study 121

5.3 State-space exploration and statistical model checking statistics

for the building automation model 121

5.4 Simulation time for the building automation model 122

5.5 Logical comparison of design-time analyses and methods for IoT . 125

C.1 Parameters of the modelled network stack 173

Chapter 1

Introduction

1.1 The problem of system design

In recent years there has been a tremendous increase in the complexity and

scope of software systems, while industry needs evolve constantly. For instance,

the expansion of the World Wide Web, and the spread of IoT have introduced

the need for open, distributed and/or embedded systems, that are characterized

by interactive and changing behavior, concurrency and unpredictability with re-

spect of their run-time environment. Such complexity can be handled efficiently

through modern approaches in system design, such as the integration of mod-

ular, reusable and loosely coupled components that interact to form a complete

system. In addition, correctness of complex systems has to be established based

on rigorous system design methodologies.

Correctness is achieved when the functional and extra-functional require-

ments are fulfilled within the anticipated environment of the system. Functional

requirements specify what the system is expected to perform (i.e., its behavior),

whereas extra-functional requirements constrain the system’s performance in

quantitative aspects such as time, accuracy, reliability. Requirements’ satisfac-

tion can be either tested for the final system implementation or verified against

an abstract model. In a typical industrial scenario, the cost of providing cor-

rectness assurance via means of testing, debugging and verification may range

from 50 to 75 percent of the system’s development cost [5]. Therefore, as abso-

lute correctness is not feasible, we aim to accountable design processes that are

1

2 Chapter 1. Introduction

able to effectively handle these activities, which are so challenging and labor-

intensive.

Rigorous system design methodologies rely heavily on component-based en-

gineering for mastering design complexity. According to this paradigm, com-

ponent based systems can be developed through the assembly of interacting

components, which are reusable and self-contained functional modules with

well-defined provided and required interfaces. Since interactions among com-

ponents are not tied to their implementation details, components can be devel-

oped, versioned and deployed independently from each other, thus simplifying

the system’s specification, development and maintenance. In order for compo-

nents to be independent, they need to be separated from the environment and

other components [6].

Concurrency is an inherent characteristic of component-based systems, ow-

ing to the fact that multiple components are meant to run simultaneously by

sharing the resources of the execution platform (e.g. application server, OS).

For instance, embedded systems in household IoT comprise components for

control decisions and components that manage the operation of sensor and ac-

tuator devices. Components in such systems interact through shared buses,

memories and buffers. Simultaneous access to shared resources may cause

conflicts, referred to as resource contention, which can lead to common issues

such as deadlocks, and livelocks. Concurrency issues affect the correctness of

component operations and are also observed in workflow management systems

and web services.

Due to concurrency, the complexity of component-based systems increases

exponentially with the number of components. Components can interact with

each other in a potentially indeterminate way, leading to an overwhelming num-

ber of possible event interleavings. This kind of complexity makes it hard to

establish correctness in the final system implementation. Instead, in such sys-

tems the behavior of existing components is checked to determine if they can

be used to meet system requirements. First, an iterative process of specifiying

Chapter 1. Introduction 3

and refining system requirements is necessary, so that requirements can be al-

located to the components. Then, appropriate component integration should be

decided to provide the necessary functionality. Afterwards, the selected compo-

nents are assembled using locally-developed code [7]. In contrast to monolithic

systems, where system integration is the final step of the design, in component-

based systems deciding which components shall be used and how they will be

integrated is a key design step.

Rigorous design methodologies are based on the utilization of software de-

sign models. In such approaches, models are treated as primary design arti-

facts, which are amenable to formal verification, simulation and code genera-

tion. Thus, a system’s design lifecycle that uses models at early phases, i.e.

after requirements specification, can provide early evidence of design correct-

ness. Moreover, software is usually specified at multiple levels of abstraction,

wherein the involved data and functions are represented at varying degrees of

detail. Models can help to keep coherence and cohesion among the different

design abstraction levels, by iteratively refining the model of the previous level.

The ultimate goal of any such model-driven process is to finally generate, rather

than implement, the necessary code.

In the context of system design, formal verification is the most common

means of establishing design correctness. Figure 1.1 shows a typical flow, in

which an abstract finite-state model of the system and a set of formal properties

are fed to a model checking tool. The tool is able to verify the properties against

the model by exploring all the reachable states of the model. If a property is

found to be violated, a counterexample in the form of an execution trace is

returned to the user, to help finding what causes the violation.

Figure 1.1: Software verification flow

4 Chapter 1. Introduction

Figure 1.2: A simplified instantiation of the Rigorous System Design flow

However, the scalability limitations that model checking algorithms face in

real-world systems make them impractical in many cases. Formal verification

through the exploration of all possible execution paths is in fact only feasible

for small- to mid-scale systems. Another problem is that counterexamples that

are provided by many model checking tools are hardly traceable to a model

mapped to the system’s design, due to the fact that the analyzed model does not

represent the actual system structure. This occurs when the modeling language

is not sufficiently expressive to describe system structure. To overcome all these

deficiencies, correctness by construction approaches provide means to ensure

correctness based on theories and rigorous techniques for system design.

1.2 Motivation and Contributions

1.2.1 Rigorous System Design

Rigorous System Design (RSD) [1] is a design approach that is based on a

formal, accountable and iterative process for deriving trustworthy and optimised

implementations from models of application software, its execution platform

and its external environment. The goal is to validate the design and derive a

system implementation from the high-level models by applying a sequence of

semantics-preserving transformations.

Figure 1.2 shows a simplified instantiation of the RSD approach with four

steps:

Chapter 1. Introduction 5

Step 1 A functional application model is obtained from specifications of the

functional behavior of the system components and coordination constraints

imposed by their interaction. At this stage, behavioral properties, such as

deadlock-freedom, can be established by analyzing component interac-

tions.

Step 2 An abstract system model is obtained by combining the application

model of the previous step with a model of the execution platform ar-

chitecture and a mapping between application and platform components.

At this stage, performance can be evaluated by simulation based on the

characteristics of the execution platform components.

Step 3 A concrete system model is obtained by model transformation of the ab-

stract system model, incorporating platform-specific communication prim-

itives. At this stage, high-level interaction mechanisms are replaced by

appropriate primitives provided by the execution platform, e.g. message

passing or shared memory regions.

Step 4 Finally, executable code is separately generated for each processing el-

ement of the target platform.

The RSD flow aims at a separation of concerns, tractability of design deci-

sions and correctness-by-construction. First, each concern is specified sepa-

rately in a dedicated model using a suitable language or formalism. Second,

design decisions are only taken when strictly necessary, ensuring that all de-

sign space restrictions are justified and traceable to clearly stated requirements,

expressed in languages or formalisms with clear semantics. Third, properties

established at any step of the design flow are preserved throughout the subse-

quent steps including the executable implementation. Thus, resulting systems

are correct by construction.

BIP (Behavior, Interaction, Priority) [2] is a suitable component framework for

supporting the RSD design flow. It enables separation of concerns at two levels:

first, in a BIP model, behavior can be specified separately from interactions and

priorities. Second, BIP code generators from various programming models make

BIP a suitable semantic framework that unifies models and programs written

6 Chapter 1. Introduction

in different languages, which is especially useful for mixed software/hardware

systems.

Moreover, the simple coordination structure in BIP makes the whole design

flow tractable with respect to design decisions. Specifically, design decisions

refer to model refinements which can be represented as constraints enforced by

coordination between components. Such examples are the choice of communi-

cation or scheduling protocols. Having a few powerful primitives for specifying

coordination enables modeling design solutions in a natural and direct manner.

A modeling language with poor expressiveness would lead to complex coordina-

tion mechanisms for establishing refinement relations and intractable models.

In BIP, correctness-by-construction can be supported by property preser-

vation during source-to-source transformations between the different design

steps. These transformations are based on refinement relations that are proven

correct-by-construction, i.e., they preserve observational equivalence and there-

fore essential safety properties. Thus, verification of safety properties has to be

applied only to high level models. To avoid inherent complexity limitations, the

D-Finder [8] tool applies verification of BIP models using compositional tech-

niques, i.e., by inferring global properties of composite components from the

properties of composed components.

1.2.2 Functional modeling

The BIP approach for functional modeling takes place at the first step of the

RSD flow. It consists of generating a BIP model for the algorithmic or functional

aspects of the system, which may have been specified partially (e.g. as a set of

requirements) or programmed in some high-level application programming lan-

guage). The BIP model comprises low coupled model components, each having

only one responsibility, which is performed with explicitly defined side effects

on other components.

A general method exists for generating BIP models from a given application

programming language L with well defined operational semantics, which involves

Chapter 1. Introduction 7

the following steps [9]:

1. Translation of atomic constructs of the source language (application com-

ponents) into BIP components. The translation requires the definition of

adequate interfaces for each component and the encapsulation and reuse

of their data structures and functions.

2. Translation of coordination mechanisms between application components

into BIP connectors and priorities.

3. Generation of a BIP component that models L’s operational semantics. This

component plays the role of an engine coordinating the execution of the

application components.

For generating BIP models from a given set of requirements U a slightly dif-

ferent approach is followed. First, the atomic components have to be identified

based on a functional decomposition of the problem and the principle of separa-

tion of concerns. An adequate set of component interfaces can be derived from

U . Then, a set of reusable coordination mechanisms can be derived, which suf-

fices to impose the coordination specified in U . Such coordination mechanisms

are called BIP architectures [10] and they are parameterizable, so that they can

be applied to different sets of BIP components.

1.2.3 Functional correctness and thesis contributions

A system under design that meets its functional requirements is said that pro-

vides correct functionality. According to the Capability Maturity Model Integra-

tion (CMMI) project [11], a requirement specification is termed as follows:

Definition 1.2.1. (Requirement) A requirement may be:

1. a condition or capability to solve a problem or achieve an objective;

2. a condition or capability that must be met or processed by a system or a

system component to satisfy a contract, standard, specification, or other

formally imposed documents;

8 Chapter 1. Introduction

The quality of requirements can highly impact the system design and im-

plementation, especially in safety-critical applications. Therefore, elicitation,

analysis, and validation of requirements should be supported by formal means.

Such methodologies should focus both on the syntactic and the semantic as-

pects and should also capture the dependencies among the different require-

ments [12]. Typically, requirements should be translated into a formal language

that enables analysis and validation. The used formal language should be able

to represent natural language requirements and all relevant concepts of the

problem domain. Moreover, certain quality characteristics of the requirements

(e.g. their consistency, realizability, completeness) have to be assessed through

dedicated formal checks.

In model-based design, the declarative requirements are transformed into a

model prescribing how the anticipated functionality can be realized (procedure).

This problem is called proceduralization [9] and can be considered as a synthesis

problem. Unfortunately, model synthesis from logical specifications has an

intrinsically high complexity. Therefore, design is today mainly an empirical

task relying on the expertise of the engineer, as well as on a set of principles

and design solutions that have been proven effective.

Our contributions

This thesis introduces correctness-by-construction techniques suitable for rig-

orous system design. We specifically focus on how to derive and validate a func-

tional application model from a set of requirements or from programs written

in an application programming language. Our techniques address the following

challenges in rigorous system design:

1. Early validation of requirements and system design, to eliminate the need

for a posteriori verification and reduce the validation testing during the

late stages of development.

2. Automated generation of functional application models that preserve the

semantics of programs written in programming languages with nesting

syntax (we focused on BPEL).

Chapter 1. Introduction 9

3. Maintain the consistency between the system model and the application

code across the rigorous design steps. To this end, we propose using

a suitable domain-specific language (we focused on resource-constrained

IoT system design).

With respect to (1), we propose a set of customizable templates for natural

language requirements, whose derived formal properties can be either enforced

or verified through inspection/model checking. The design approach is based

on a set of initial components that are assumed to provide the system func-

tions. Then, property enforcement takes place through model transformations

for applying known design patterns encoded in BIP models called architectures.

Verification by inspection is possible when the properties can be verified locally

in the states of a single component, whereas verification by model checking

is needed only for properties that cannot be ensured with the aforementioned

means.

With respect to (2), we introduce a compositional semantics definition ap-

proach that we believe is feasible for a wide range of programming languages

with nesting syntax. Such an execution semantics minimizes the complexity

of translating application code into application models, since the translation

rules are limited to the number of language primitives and the translation times

scale linearly to the size of the program. The semantics validity is founded on

safety properties that are enforced by construction during the model synthesis.

We successfully implemented this approach for the BPEL web service orches-

tration language. A tool for automatic translation of BPEL programs into BIP

application models was developed and tested on a set of real programs. The

derived application models are used to verify essential correctness properties,

such as termination and service responsiveness, as well as application-specific

properties.

With respect to (3), we addressed the research challenge in the context of

resource-constrained REST (Representational state transfer) IoT application de-

sign [3], for WPAN (Wireless Personal Area Network) systems with nodes run-

ning the Contiki OS [4]. The developed domain-specific language language (DSL)

10 Chapter 1. Introduction

serves two purposes: it simplifies the application programming and it maintains

the coherency between the application code and the BIP model, throughout the

rigorous design steps. The DSL provides a sufficient programming abstraction

that consists of primitives for defining essential control flow and common client

and server-side actions, such as process interaction, network communication

and resource manipulation. We used the language for the specification of a

smart building system, where the model was verified against a set of functional

and extra-functional requirements. The application code is thus rendered cor-

rect by construction, in the sense that it corresponds exactly to the validated

model.

1.3 Thesis structure

In Chapter 2, a necessary background is given regarding the BIP framework and

the architecture-based design in BIP. Chapter 3 presents our proposed instan-

tiation of the RSD process for designing correct-by-construction systems from

requirements. Chapter 4 explains our methodology for defining and modeling

compositional semantics for programming languages with nested syntax, using

BPEL as an example. Chapter 5 shows the definition and use of a DSL language

for specifying REST IoT applications that run on top of the Contiki operational

system.

Chapter 2

Background

2.1 The BIP framework

BIP [2] is a formal framework for building complex models by coordinating the

behavior of a set of atomic model components. Behavior is defined as a tran-

sition system, extended with data and functions in C/C++. The description of

coordination between components is layered. The first layer describes the in-

teractions between components. The second layer describes dynamic priorities

between interactions. BIP has a clean operational semantics that describes the

behavior of a composite component as the composition of the behaviors of its

atomic ones [13]. This allows a direct relation between the underlying semantic

model (transition systems) and its implementation.

The atomic components are finite-state automata having transitions labeled

with ports and extended with data stored in local variables. Ports form the inter-

face of a component and are used to define interactions with other components.

States denote control locations at which the components await for interaction.

A transition is an execution step from a control location to another. It might be

associated with a boolean condition (guard) and a computation defined on local

variables. The model’s global state at each execution step is given as the current

control locations and the values of local variables of all atomic components.

Connectors relate ports from different subcomponents by assigning to them a

synchronization attribute, which may be either trigger (represented by a triangle,

Figure 2.1a) or synchron (represented by a bullet, Figure 2.1a). A connector

11

12 Chapter 2. Background

synchron trigger

(a) Port at-

tributes

p q r
{pqr}

(b) All syn-

chrons

p q r
{p,pq,pr,pqr}

(c) With trigger

q rp
{qr,pqr}

q rp
{p,pqr}

q rp
{p,pq,pqr}

(d) Hierarchical connectors

Figure 2.1: BIP connectors and their associated interaction sets

defines a set of interactions, i.e., a non-empty set of ports. The set of interactions

of each connector is based on the synchronization attributes it assigns. Given

a connector involving a set of ports {p1, ...,pn}, the set of its interactions is

defined as follows: an interaction is any non-empty subset of {p1, ...,pn} which

contains some port that is assigned to a trigger (Figure 2.1c); otherwise, (if all

ports are assigned to synchrons) the only possible interaction is the maximal

one that is, {p1, ...,pn} (Figure 2.1b). The same principle is recursively extended

to hierarchical connectors, where one interaction from each subconnector is

used to form an allowed interaction according to the synchron/trigger typing

of the connector nodes (Figure 2.1d). For instance in the third hierarchical

connector shown in Figure 2.1d, port p is assigned to a trigger, whereas the

binary subconnector q − r is assigned to a synchron. Thus this hierarchical

connector allows the singleton interaction p and any interaction that combines

p with some interaction of the binary subconnector. Since the latter defines

interactions q and qr, the resulting set of interactions is p, pq, and pqr.

The meaning of a BIP interaction is synchronization of ports. Recall that

transitions are labelled with ports. Thus an interaction p..q defines synchro-

nization constraints on the execution of the corresponding transitions that are

labelled with ports p..q. A BIP interaction is enabled for execution if all the

corresponding transitions are enabled for execution, i.e., the current control

locations of components include these transitions as outgoing transitions and

all corresponding transition guards evaluate to true. The operational semantics

Chapter 2. Background 13

of BIP is as follows. During the execution of a BIP interaction, all components

that participate in the interaction, i.e., have an associated port that is part of

the interaction, must execute their corresponding transitions simultaneously.

All components that do not participate in the interaction, do not execute any

transition and thus remain in the same control location.

2.2 Architecture-based design in BIP

An architecture in BIP is a model that characterizes the structure of the inter-

actions between a set of component types. Such an architecture is defined with

respect to a set of parameter components and a set of coordinators. The struc-

ture is specified as a relation, i.e. connectors between component ports. The

components to which an architecture is applied are the operands that replace

the architecture’s parameters.

Figure 2.2 shows a BIP model for mutual exclusion between two tasks. Each

component on the two outer sides models a task, which enters its critical section

(i.e., the control location work) only when its corresponding port bi (i = 1,2) is

invoked and leave it when port fi (i = 1,2) is invoked. The model has also one

coordinator component C that allows the execution of bi ports only when itself

is in the free control location. The coordinator is in free after a task has left

its critical section. Four binary connectors are used for the aforementioned co-

ordination. Two connectors synchronize each of b1, b2 ports with the t port and

two others synchronize each of the f1, f2 ports with the r port. The connectors

essentially constrain the behavior of the system so that whenever the shared

resource, managed by the coordinator, is taken by e.g., the first task, it cannot

be accessed by the second task unless it is first released by the first task. Initial

control locations of the components are indicated with an arc and show that

both tasks are outside their critical section. Figure 2.3 shows an architecture

that enforces the mutual exclusion property on two parameter components with

interfaces {b1, f1} and {b2, f2}.

14 Chapter 2. Background

b1 f1 t r

C

taken

free

t r

b2 f2
work

sleep

b2 f2

work

sleep

b1 f1

Figure 2.2: Mutual exclu-

sion model in BIP

b1 f1 t r

C

taken

free

t r

b2 f2

Figure 2.3: Mutual exclusion

architecture

Figure 2.4: Mutual exclusion style

Composition of architectures is the conjunction of the induced synchroni-

sation constraints. It takes the form of an associative, commutative and idem-

potent architecture composition operator ‘⊕’ [14], as illustrated by an example

in [15]. If two architecturesA1 andA2 respectively enforce the safety properties

Φ1 and Φ2, the composed architecture A1 ⊕A2 enforces the property Φ1∧Φ2,

that is, both properties are preserved by architecture composition. Combined

application of architectures can generate deadlocks and the resulting model has

to be checked for deadlock-freedom.

Although the architecture in Figure 2.3 can be applied to precisely two com-

ponents, it is clear that an architecture of the same style—with n parameter

components and 2n connectors—could be applied to n operand components

satisfying the interface assumptions. We specify such architecture styles with

architecture diagrams [16]. An architecture diagram consists of a set of com-

ponent types with cardinality constraints for the expected number of instances

and a set of connector motifs. Connector motifs are non-empty sets of port types.

Each port type has a cardinality constraint representing the expected number of

port instances per component and two additional constraints: multiplicity and

degree, represented as a pair m : d. Additionally, each port type is typed as

either trigger or synchron.

Figure 2.4 shows the architecture style of the architecture in Figure 2.3.

The unique—due to the cardinality being 1—coordinator component, Mutex

manager, manages the shared resource, while n parameter components of type

Chapter 2. Background 15

B can access it. The connector motifs have multiplicities of 1 (i.e., in 1:_) in all

port types, denoting that all connectors are binary. The degrees of 1 (i.e., in

:1) require that each port instance of a component of type B is attached to a

single connector with the coordinator. Similarly, the degrees of n require that

each port instance of the coordinator is attached to n connectors. The behav-

iors of the two component types enforce that once the resource is acquired by a

component of type B, it can only be released by the same component. This hap-

pens because the begin port of a B component interacts with the take port of

Mutex Manager leading the latter to the control location taken. Afterwards,

no other B component can fire begin, until Mutex Manager returns to the

control location free ,which happens when the finish port of the former B

component is fired.

Cardinalities, multiplicities and degrees may also be intervals. Let us con-

sider, a port type p with its multiplicity defined as interval. By the interval

attributes ‘sc[x,y]’ (single choice) and ‘mc[x,y]’ (multiple choice), we mean that

the same (resp. a different) multiplicity is applied to each port instance of p,

provided that it lies in the interval.

Chapter 3

Early validation of system

requirements and design

3.1 Introduction

The design problem in systems engineering concerns with defining the architec-

ture, modules, interfaces and data for a system, in order to meet given require-

ments [17]. Initially, requirements are high-level mission statements (conditions

or capabilities that are also called stakeholder requirements) [18], from which

system requirements are derived that define what the system must do to satisfy

stakeholder requirements [19]. In this chapter, we focus specifically on system

requirements; when we refer to stakeholder requirements we do so explicitly.

In [1] and [20], two perspectives of rigorous system design are introduced.

In particular, the focus is on the design problem for systems that continuously

interact with an external environment; such systems usually involve concurrent

execution and emergent behaviors. The design process can be decomposed into

two phases. During the first phase, which is called proceduralization in [1],

the declarative system requirements are transformed into a procedure, i.e., a

model prescribing how the anticipated functionality can be realized by executing

sequences of elementary functions. During the second phase, which is called

materialization, the procedure is implemented in a system that meets all extra-

functional requirements by using available resources cost-effectively.

17

18 Chapter 3. Early validation of system requirements and design

In this chapter, we introduce a model-based approach for the procedural-

ization phase, which aims to the systematic development of a design solution

for a set of system requirements. The design problem is well-defined, only if

requirements fulfill essential properties, i.e., if they are complete, consistent,

correct (valid for an acceptable solution), and attainable. However, require-

ments provide in principle only a partial specification, which according to the

current industrial practice (even for critical systems) is stated using a simpli-

fied controlled natural language (i.e. restricted in syntax and/or lexical terms).

However, natural language is ambiguous [21] and it is not tied to a formal se-

mantics. Thus, none of the essential properties can be easily proved.

3.1.1 Research objectives

The main objectives of our approach is to provide the means for:

• unambiguous specification of requirements;

• early assurance of consistency between the requirements and design cor-

rectness;

• use of correct-by-construction techniques to limit the need for a posteriori

model checking.

Some of the aforementioned objectives are related to the requirements formal-

ization challenge [22], [23] that refers to the transformation of requirements

into formal properties. These property specifications should be implied by the

system’s structure and behavior in conjunction with its external stimuli [24].

We provide a systematic stepwise design approach for transforming declar-

ative system requirements into procedures (proceduralization). This happens

by incrementally building a formal and executable model of a design solution

(design model), i.e., a blueprint of the system structure and behavior. The de-

sign model provides early evidence of design correctness and consistency. If the

properties derived from the requirements cannot be fulfilled by the design model,

a different design should be pursued or certain unsatisfied requirements have

to be revised. Such an approach incurs extra cost to be paid towards delivering

Chapter 3. Early validation of system requirements and design 19

early evidence that the requirement specifications are realizable; on the other

hand, late-stage validation, relying on testing and requiring high-cost corrective

measures, can be drastically reduced.

3.1.2 Context and contributions

Figure 3.1: The model-based approach

Figure 3.1 outlines the proposed approach, where our research objectives are

attained in three consecutive phases. In the Requirements formulation and for-

malization phase, we formulate requirements by instantiating textual templates,

called boilerplates (like in [25]–[27]), which are filled with catalogued concepts of

the system’s context. The formalization of requirements as properties occurs in

a semi-automated way, based on a predefined mapping of boilerplates to formal

property patterns and a user-defined association of requirements’ concepts to

events of the design model. Through precisely stating how the boilerplates and

concepts of requirements are transformed into properties using predefined and

user-defined mappings, we achieve the unambiguous specification of require-

ments, since they are ensured to have a consistent interpretation with respect

to the design model.

In the Design model building phase, the system’s components are treated as

blocks of established functionality; they have to be coordinated while they are

progressively assembled and integrated so as to fulfil the system requirements.

We adopt the main principles of [1]:

• a component-based modeling framework for enhanced productivity through

reuse of model artifacts;

20 Chapter 3. Early validation of system requirements and design

• the modeling language BIP, which provides an expressive component frame-

work adequate for a semantically coherent process; any BIP model can be

formally analyzed and simulated with the BIP tools
1
;

• correctness-by-construction based on property enforcement and property

composability while integrating the model components; to this end, we

utilize recent theoretical results [14] together with proper automation sup-

port.

In the Model verification phase, we formally verify the obtained design model to

check that the non-enforceable properties are fulfilled. Verification takes place,

as a final step, after correct-by-construction techniques have been applied. If

the properties cannot be fulfilled, a different design should be pursued or certain

unsatisfied requirements have to be revised.

The relevant concrete research contributions of this chapter are:

i. The model-based process for the early validation of system requirements

and design.

ii. The technical approach for the formalization of requirements. This in-

cludes the natural-like template languages for specifying requirements

and formal properties, as well as the associations between templates, for

the derivation of properties.

iii. A library of BIP architectures for simple designs [15], [28] and their as-

sociations with patterns for properties that can be enforced using our

correctness-by-construction approach. These architectures were adequate

to enforce all safety properties for two industrial studies through correct-

by-construction model transformations.

iv. A brief account of the tool-support for the automation of the process,

including a new tool called RERD (Requirements engineering for Rigorous

Design).

v. A report on the early validation of requirements in two studies: the control

software of the CubETH nanosatellite [15], [28], and an extract of soft-

ware requirements for the telecommand management of a low orbit earth

1
http://www-verimag.imag.fr/BIP-Tools-93

Chapter 3. Early validation of system requirements and design 21

observation satellite.

Section 3.2 discusses the overview of the model-based process steps, which

are thoroughly seen in Sections 3.2.1, 3.2.2, 3.2.3 and 3.2.4 together with the

corresponding technical approaches. In Section 3.3, we refer to the tool-support

and in Section 3.4 we provide a brief report on the results from the two case

studies. The related work is surveyed in Section 3.5. Finally, the chapter

concludes with a discussion on the identified benefits and limitations, as well

as on the further development of our model-based process and its tool-support.

3.2 The model-based process

Any system under design is intended to accomplish a set of functions with

each of them defining a stateful processing of input. The system’s functional

architecture is a top-down decomposition of its functions (using e.g. function

trees [29]). The functions must fulfill certain requirement specifications, i.e.

statements that delimit the problem of system design. In effect, this is only a

partial specification which assumes some common and often tacit knowledge

for the problem domain (domain knowledge [30]), such as physical laws for the

system’s external stimuli [31], standardized protocols, services and libraries.

On the side of the design solution space, a design is defined based on a hier-

archical description (using e.g. product trees [32]) of the system’s hardware and

software components, known as physical architecture. The functions and their

associated requirements are then allocated to the components of the physical

architecture.

For the specification of requirements and properties, we employ two natural-

like languages with precisely defined semantics. Requirements are specified us-

ing composable boilerplates [19], i.e., semi-complete specifications, with place-

holders to be filled with concepts that adhere to a conceptual model of the system

under design. The conceptual model encodes the relationships among the con-

cepts used in the placeholders. With proper tool-support, the engineer avoids

indeterminate references and maintains links between concepts that exist in

22 Chapter 3. Early validation of system requirements and design

requirements. In order to derive the properties that capture each requirement,

we have mapped each boilerplate to one or more property patterns, that are also

natural-like language templates with placeholders. These patterns associate

the properties with a formal representation in a logic language.

If requirements (and derived properties) are simultaneously satisfied by the

design model, then early assurance of consistency and correctness is provided

(we do not cope though with inconsistencies between requirements at the spec-

ification level, which are treated e.g. in [33] and other works). The design

model is incrementally built using correct-by-construction model transforma-

tions, which integrate reusable BIP architectures [14]. The integrated archi-

tectures provably discharge the specified properties through coordinating the

model components. This is an automated step aiming to preserve the previ-

ously established properties. Only the properties that cannot be enforced by

design need to be verified by model checking.

Figure 3.2: The model-based process for the formalization of requirements and

design

Figure 3.2 introduces the overall process by showing the steps along with

their input and output data:

Input: (i) the functional architecture

(ii) the physical architecture

Output: a design model satisfying the derived properties OR requirements that

are not satisfied

Chapter 3. Early validation of system requirements and design 23

Step 1 Requirement specification: Requirements for each function of the func-

tional architecture are specified based on predefined boilerplates (cf. Sec-

tion 3.2.1).

Step 2 Initial design: An initial design model is manually built with BIP compo-

nents representing the physical architecture (cf. Section 3.2.2). BIP com-

ponents implement behavior for the actions performed by the allocated

functions; the interactions among the components encode the invocation

of actions.

Step 3 Property derivation: Properties are derived from the specified require-

ments (cf. Section 3.2.3). To this end, we have associated each boilerplate

with the predefined property patterns that can formally capture it. Then,

for each requirement, properties are derived by filling in the patterns with

elements of the design model that represent the concepts used in the boil-

erplate.

Step 4 Architecture instantiation: Properties which can be enforced by design

are identified; every such property is provably enforced by a BIP archi-

tecture. The architecture to be used is instantiated (cf. Section 3.2.4) by

defining the operands of an existing architecture style [10], [15], i.e., com-

ponents of the design model in place of the style parameters, which fulfill

assumed properties.

Step 5 Property enforcement: The architectures are incrementally applied to the

design model (cf. Section 3.2.4) [14]. The properties assumed by definition

for the operands of an architecture are verified locally by inspecting the

corresponding components, before the architecture is applied to the design

model. If an assumed property is not satisfieed, the component behavior

will have to be refined to ensure property satisfaction.

Step 6 Model checking: Properties that could not be enforced using existing ar-

chitecture styles are verified on the final design model. If these properties

are satisfied, then so is the whole set of requirements; otherwise, the de-

sign model should be refined or certain unsatisfied requirements have to

be revised.

The steps 1, 3, 4 and 5 are supported by the RERD tool, which is described

24 Chapter 3. Early validation of system requirements and design

in Section 3.3. The BIP design model is compiled and simulated with the BIP

tools [34], whereas its deadlock freedom is checked with the D-Finder tool [8].

DesignBIP
2

[35] is a web-based graphical editor for BIP models, which can be

used for the creation of the initial design model. For the verification of prop-

erties (Step 6) by model checking, it is possible to use the the nuXmv model

checker [36]. Additionally, safety properties can be expressed as observer au-

tomata [37], which are then verified with the BIP tools. Three engineering roles

are involved in the process, namely the Requirement Engineer for the specifi-

cation of requirements (Step 1), the System Software Engineer for the system

design (Steps 2, 4, 5) and the Verification Engineer for the property derivation

and model checking (Steps 3, 6).

3.2.1 Requirement specification

One of the main objectives of our approach is to tackle the ambiguity of natural

language requirement specifications through the use of boilerplates in combi-

nation with a conceptual model. According to [25], a boilerplate consists of

attributes and fixed syntax elements, such as:

〈function〉 shall 〈action〉

where “shall” is a fixed syntax element, while 〈function〉 and 〈action〉 are at-

tributes of placeholders for user input.

Table 3.1: Conceptual classes

Class Definition

〈function〉 A function of the functional architec-

ture.

〈action〉 A processing step of a function.

〈state〉 A condition that enables/disables ac-

tions.

〈state-set〉 A set of mutually exclusive states.

〈event〉 A nominal or failure effect of an action

or an external stimulus.

Figure 3.3: Conceptual

diagram of classes.

In order to avoid indeterminate values in boilerplate attributes, we link these

values with uniquely identified concepts from the conceptual model, where each

2
https://github.com/DesignBIP/DesignBIP

Chapter 3. Early validation of system requirements and design 25

concept is an instance of a class with precisely defined relationships. The con-

ceptual classes are defined in Table 3.1 and the essential relationships for sup-

porting the modeling steps of the process are shown in Figure 3.3. Each function

performs actions in order to interact with other functions or the environment.

In particular, actions can invoke actions of other functions or generate events.

Moreover, actions are of different granularity, hence some actions are action

containers i.e. their execution involves the execution of more fine-grained ac-

tions. Events are either generated as the effect of actions or by the environment.

Specifically, an event occurs upon the end of one of its associated actions. The

occurrence of ceratin events triggers a change (set) in the state of one or more

state-sets. Notice that the diagram doesn’t show two reasonable constraints for

the actions, i.e., that they can invoke only actions of other functions and that

they can contain only actions of their own function. Also, a constraint for the

states is that they are set by events generated by actions and not by external

stimuli.

Our boilerplate language is similar to the one used in [25], [38], where a boil-

erplate consists of at most three clauses: (i) the prefix clause, which specifies a

stimulation or a condition, (ii) the main clause, which specifies an expected sys-

tem action or state and (iii) the suffix clause, which specifies various additional

constraints. Moreover, each boilerplate attribute is associated with a specific

class of our conceptual model. The definition of boilerplates as a sequence of dif-

ferent clauses offers modularity, simplifies the problem of boilerplate definition

and their interpretation using formal properties.

Example 1. Let us consider the following natural language requirement:

Log-001 Every time a hardware error is detected,

it shall be stored in a memory region in the RAM.

This requirement is expressed in active voice, using a prefix and a main clause

for defining the triggering event and the system’s action, respectively, as follows:

Log-001 Prefix: If 〈event: a hardware error is detected by a function 〉,

Main: 〈function: the function 〉 shall 〈action: store the error in a

memory region in the RAM 〉.

26 Chapter 3. Early validation of system requirements and design

4

Table 3.2: Prefix clauses

ID Template

P1 if 〈event〉
P2 if 〈event〉 and 〈state〉
P3 while 〈state〉

Table 3.3: Main clauses

ID Template

M1 〈function〉 shall 〈action〉
M2 〈function〉 shall 〈action〉 (and 〈action〉)+
M3 〈function〉 shall 〈state〉

Table 3.4: Suffix clauses

ID Template

S1 before 〈event〉
S2 sequentially

Table 3.3 defines the syntax for the main clauses of our boilerplate language,

whose subject is a function, that may (i) execute an action (M1), or (ii) execute a

sequence of actions (M2), or (iii) be in a certain state (M3). The main clause is

mandatory. It is the core of the requirement.

Prefixes (Table 3.2) refer to hypothetical conditions on events and/or states.

They specify conditions for the main specification, i.e., for the action, the se-

quence of actions or the state observation mentioned in the main clause. Ac-

cording to the prefixes, the main clause shall occur: (i) if an event has occurred

(P1), (ii) if an event has occurred and a state is observed (P2), or (iii) throughout

an interval, where a state can be observed (P3). The conditions that involve

events are necessary and sufficient, while those consisting only of states simply

represent a necessity.

A suffix is used to constrain the main specification. The suffix clauses shown

in Table 3.4 specify that each time the main specification (action, sequence of

actions or state observation) is activated, it shall: (i) have ended before an event

occurs (S1), or (ii) occur sequentially (i.e., consecutive activations do not overlap

in time) (S2)

Let us consider the boilerplate consisting of the P1, M1 and S2 templates,

specifying that “if event, function shall action sequentially”. Such a boiler-

plate expresses that: (i) event is a necessary and sufficient precondition for one

Chapter 3. Early validation of system requirements and design 27

action occurrence and (ii) consecutive action occurrences are constrained to be

executed sequentially. The remaining prefix-suffix combinations are interpreted

accordingly.

During the specification of each requirement, the conceptual model is en-

riched with new concepts, if the existing concepts are not sufficient. At the

end of the specification step, the conceptual model will contain the concepts

used in the requirements and additional concepts that are related to them. For

example, events used in the requirements will be related to their generating

actions, even if these actions are not explicitly mentioned in requirements. The

conceptual model’s quality is a responsibility of the Requirement Engineer. This

matter has been examined in related works [39], [40] that are further discussed

in Section 3.6.

Example 2. Let us consider the requirements in Table 3.5, which have been

defined for the function that handles the housekeeping of the payload (PL) sub-

system (abbreviated as HK PL). The concepts in requirements and other concepts

related to them are depicted in the conceptual model of Figure 3.4, which shows

that:

Table 3.5: Requirements for the HK PL function

ID Requirement

HK-02 P2: if 〈event-e003: [TBD] sec pass 〉 and 〈state-s003: HK collection is enabled

for PL 〉

M1: 〈function: HK PL 〉 shall 〈action-a004: handle HK data from the PL 〉

HK-03 P3: if 〈state-s002: PS
3

for PL is not enabled 〉

M1: 〈function: HK PL 〉 shall 〈action-a002: transmit HK data through the

TC/TM service 〉

HK-04 P3: while 〈state-s001: PS for PL is enabled 〉

M1: 〈function: HK PL 〉 shall 〈action-a001: write HK data to the flash memory

〉

HK-05 P1: if 〈event-e004: a PL failure persists for [TBD] sec 〉

M1: 〈function: HK PL 〉 shall 〈action-a003: contact the EPS for a restart of

the PL 〉

• states s001 and s002 belong to the state-set st001, thus, only one of them

can be observed at a given instant. Each of these states is set by the events

e001 and e002, respectively (states s003 and s004 are similarly related).

28 Chapter 3. Early validation of system requirements and design

Figure 3.4: Conceptual model for the requirements of the HK PL function

• the used action a004 represents an action container that consists of a001,

a002 and a005.

• events e003 and e004 are neither generated by an action nor do they set

any states.

For brevity, Figure 3.4 omits the invokes relationships that relate these actions

to actions of other functions. These relationships are shown at later steps of the

running example.

4

The templates in Tables 3.2, 3.3 and 3.4 in no way form a complete set of

boilerplates adequate for all kinds of system requirements, since the boilerplate

language is not the primary goal of this thesis. Thus, our prefixes can only

express necessary and sufficient conditions based on one state or event, even

though requirements are often subjected to more complex conditions (e.g. based

on two events) or to conditions that are either necessary or sufficient. However,

we opted to keep the boilerplate language simple enough for illustrating the

main principles behind its design, while covering the specification needs of the

two case studies in Section 3.4. Our considerations for the evolution of the

current language are discussed in Section 3.6.

Chapter 3. Early validation of system requirements and design 29

3.2.2 Initial design

The initial design step generates the design model in its initial form, which is a

manually built blueprint of the system’s functional behavior. All the concepts of

actions and events mentioned in the requirements should be traceable in ports

of the initial design model.

The model consists of BIP components that implement functions of the func-

tional architecture. Each action of the conceptual model, which is an identi-

fiable block of functionality within a function, is represented by a list of ports

of a component. Events that are generated by actions are also represented by

the action’s ports, whereas environmental events are non-deterministic inputs

which are not explicitly modeled. Components may enclose one or more atomic

subcomponents in order to enable ports within separate threads of control. The

number of atomic components to be used and the placement of actions is a

design choice that depends on possible order dependencies among the actions.

For instance, actions which are executed alternatively should be enabled at the

same control location of a component, whereas actions that are independent

with each other should be placed in different components.

The invocation of actions, which is reflected by the “invokes” relationship

in the conceptual model, is represented by component interactions. Separate

interactions are included for issuing an invocation and receiving the output.

Rendezvous connectors can model synchronous invocations, where the caller

has to wait for the output. For asynchronous invocations, an additional atomic

component should be used for buffering the output before the caller can get it.

Actions may return a nominal output or possible failures. The caller may receive

all outputs with the same port or using different ports, if it needs to distinguish

among them (e.g. if it should be transferred to different control locations).

The design choices at this step incur a limited complexity and risk to the

whole process, since components of the initial design model should have ele-

mentary behaviors. More complex behaviors are only built with architecture

instantiation in a controlled and rigorous way.

30 Chapter 3. Early validation of system requirements and design

Example 3. The initial design model shown in Figure 3.5 corresponds to the

requirements in Table 3.5. It includes the following three components of the

physical architecture:

• the HK PL, which handles the Housekeeping for the PL subsystem function;

• the I2C_sat, which handles the communication through the I2C bus [41]

function;

• the Flash Memory, which handles the flash memory data management

function.

Figure 3.4 shows the actions of the function allocated to the HK PL component.

The other two components are included in the model since their actions are invoked

by HK PL. The HK PL actions have been placed into two atomic subcomponents

of the HK PL, namely the HK PL read , which reads Housekeeping data, and

the HK PL restart, which activates a restart of the PL subsystem. Actions

are mapped to lists of ports as follows:

a001→ [mem_write_req , mem_res]

a002→ [I2C_ask_TTC , I2C_res_TTC]

a003→ [I2C_ask_EPS , I2C_res_EPS]

a004→ [beginHK , finished]

a005→ [I2C_ask_PL, I2C_res_PL , I2C_fail_PL]

The use of two atomic components is driven by existing dependencies among

actions. For example, in HK PL read, the action of reading housekeeping data

(a004) should precede their transmission (a002) or storage (a001). On the other

hand, subsystem’s reset (a0005) occurs independently of other actions.

In Figure 3.5 a simplified presentation of BIP connectors is shown by using the

diamond shapes in component interfaces. Each diamond is attached with ports

that participate in one action’s invocation and the receipt of the result/failures and

the link between two diamonds denotes that BIP connectors exist between these

ports. All actions of the HK PL function invoke actions of the I2C_sat and Flash

Memory components4. Specifically, the action of subsystem communication of the

I2C_sat is invoked by three actions that need to contact other subsystems:

4
the invokes relationship is not shown in the conceptual model of Figure 3.4

Chapter 3. Early validation of system requirements and design 31

• a004, which reads housekeeping data from the PL subsystem;

• a002, which submits data to the TC subsystem for transmission to the

ground;

• a005, which contacts the EPS subsystem for the restart of the PL subsystem.

Moreover, the memory write action of the Flash Memory is invoked by a003

for writing the data to the flash memory storage. Note here that a failure in

reading the housekeeping data from PL leads to a different control location than

the nominal output and it is therefore received by a different port (i.e. I2C_-

fail_PL) than the port receiving the nominal output (i.e. I2C_res_PL). In

contrast, both outputs of the memory write action can be received with the mem_-

res port, since they lead to the same control location.

Figure 3.5: Example of an initial design model

4

3.2.3 Property derivation

Formal properties are bound to a unique interpretation specified in an analyz-

able language. For behavioral and architectural properties of design models in

BIP, we usually use the Computational Tree Logic (CTL) [42] and the configu-

ration logics [10], respectively. However, since we aim at a general approach

for specifying properties, we use the specification framework of [43] with pat-

terns that are formally defined in CTL and in other languages
5
. These patterns

5http://patterns.projects.cs.ksu.edu/

http://patterns.projects.cs.ksu.edu/

32 Chapter 3. Early validation of system requirements and design

have been found expressively sufficient to capture requirements written with

our boilerplates.

Each property specification consists of two templates, a scope and a pattern.

The pattern defines an expected occurrence or the order of one or more events.

The scope selects the subset of the model state-space, where the pattern is

expected to hold true. For the rest of the state-space, the property is undefined.

For the set of our boilerplates, it suffices to derive properties using the existence,

absense, precedence and response patterns of [43]. Also we needed two scopes,

namely the Global scope or the Between...And scope that refers to a part of

the state-space. The templates for the patterns and the scopes are shown in

Table 3.6. Their placeholders are filled with logical propositions (beh), that are

specified as follows:

• Atomic propositions are defined over firings of component ports: a port p

of a component A is denoted by A.p and holds true at a global state in

which the port has fired.

• Logical connectives & (and), | (or) combine atomic propositions with their

usual meaning.

• Temporal modalities are used to build more complex propositions. In

particular, with the next operator (X) in front of a beh, we refer to the next

global state after beh occurs (the next operator can be formally expressed

in CTL as AX).

Table 3.6: Templates for scopes and patterns

ID Template Description

Global globally, throughout the whole execution

Between...And between 〈beh〉 and 〈beh〉, from a 〈beh〉 to another 〈beh〉

Existence 〈beh〉 exists a 〈beh〉 is observed

Absense 〈beh〉 is absent a 〈beh〉 is not observed

Precedence 〈beh〉 precedes 〈beh〉 a 〈beh〉 is observed before another 〈beh〉
Response 〈beh〉 responds to 〈beh〉 a 〈beh〉 is observed after another 〈beh〉

We derive properties from requirements, based on a mapping from the re-

quirement’s boilerplate to combinations of scope and pattern templates that are

shortly referred to as “property patterns”. This association, which is shown in

Table 3.7, refers to a set of symbols, which map the boilerplate attributes to

Chapter 3. Early validation of system requirements and design 33

beh propositions. The mappings have to be manually created by the System

Software Engineer, as follows:

• The beg and end symbols map actions to the beh propositions that define

their beginning (resp. ending). For instance, the beginning of an action is

the port with which it can be invoked and its ending is the port of sending

its response or a disjunction of ports (e.g. when alternative endings exist).

• The occ symbols map events to beh propositions that define each event’s

occurrence. An internal event is generated by one or more action(s), hence

a beh is the disjunction of end symbols of alternative actions generating

the event. The occurrence of an external event is a port that generates ex-

ternal stimuli. Such ports are not part of the initial model; instead, we con-

sider them “virtual ports” of a “virtual component” named Environment,

in order to assign them to occ symbols in property derivation.

• The obs symbols map states to ports, which are enabled when the design

model is in each particular state. These ports are not part of the initial

model; instead, they are placed in coordinating components of architec-

tures that are added during property enforcement. Hence, we consider

them “virtual ports” in property derivation.

In addition to the aforementioned symbols, the beg(M) and end(M) symbols

(see the footnote
b

in Table 3.7) are automatically evaluated based on the used

main clause template.

The semantics for M1 and M3 templates, alone, do not yield any correctness

properties. On the other hand, M2 specifies a sequential execution of N actions,

which is expressed by the conjunction of properties, M2.1.i (see Table 3.7),

defined for each action a[i] in the sequence (except for the last one). The property

expresses that:

• the end of action a[i] enables the beginning of action a[i+1], i.e., “globally,

a[i] should end before a consecutive beginning of a[i+1]”, formulated as:

M2.1.i: globally, end(a[i]) precedes beg(a[i+1]).

34 Chapter 3. Early validation of system requirements and design

Another example is the P2 prefix template, from which patterns P2.1 and P2.2

are derived. The patterns express that:

• the observation of an event while being in a state enables beg(M), i.e.,

“globally, the event and the state are observed at some time instant before

beg(M)”, formulated as:

P2.1: globally, obs(e1) ∧ obs(s1) precedes beg(M)

• the observation of an event while being in a state triggers beg(M), i.e.,“globally,

beg(M) follows the observation of the event and the state at some time in-

stant”, formulated as:

P2.2: globally, beg(M) responds to occ(e1) ∧ obs(s1)

The rationale of the other derived properties is discussed in A.1.

Table 3.7: Boilerplate templates and their associated patterns

Boilerplates Derived patterns

P1: if e1, ...
a P1.1: globally, occ(e1) precedes beg(M)

b

P1.2: globally, beg(M) responds to occ(e1)

P2: if e1 and s1, ... P2.1: globally, occ(e1) ∧ obs(s1) precedes beg(M)

P2.2: globally, beg(M) responds to occ(e1) ∧ obs(s1)

P3: while s1, ... P3.1: between beg(M) and X beg(M),obs(s1) exists

M1: f1 shall a1 -

M2: f1 shall a1 and ... and aN M2.1.i: globally, end(a[i]) precedes beg(a[i+1])

M3: f1 shall s2 -

S1: ... before e2 S1.1: between obs(P) and beg(M), occ(e2) is absent
c

S2: ... sequentially S2.1: between beg(M) and beg(M), end(M) exists

a
The enumerated fi, ai, ei and si denote a function, action, event and

state mentioned in the requirement.

b beg(M) and end(M) are replaced according to the used main clause M
as follows:

beg(M) =

beg(a1) if M=M1 or M=M2

obs(s2) if M=M3
end(M) =


end(a1) if M=M1

end(aN) if M=M2

¬obs(s2) if M=M3

c obs(P) is replaced according to the used prefix P as follows:

obs(P) =


occ(e1) if P=P1

occ(e1)∧obs(s1) if P=P2

obs(s2) if P=P3

Chapter 3. Early validation of system requirements and design 35

Example 4. Let us consider the requirement HK-02 of our running example, which

is captured by the P2.1 and P2.2 property patterns. For these patterns, the

following symbols have to be assigned with ports:

• occ(e1), is assigned with the “virtual port” Environment.HKPL_TBDpass

port modeling the occurrence of the external event e1;

• obs(s1) is assigned with the “virtual port” HK_PL.enabledHK_PL model-

ing the observation of the state s1;

• beg(a1) is assigned with the HK_PL.beginHK port modeling the begining

of action a1.

4

3.2.4 Architecture instantiation and property enforcement

Nine architecture styles from those introduced in [15], [28] were adequate to

satisfy the safety properties of our case studies. In this section, we outline how

property enforcement is achieved using four out of these nine styles, namely:

• the Action flow, which enforces an ordering of actions;

• the Mode management, which restricts the set of actions performed in a

mode (state);

• the Event monitoring, which reports upon monitored events;

• the Mutual exclusion management, which ensures mutually exclusive ac-

cess to a critical section.

While these styles represent recurring patterns of satellite on-board software,

we believe that they are not tied to the given problem domain.

In order to apply an architecture, the architecture style’s parameters have

to be defined. Then, the architecture is instantiated and combined with other

architectures that have already been applied to the same operand components

(using the ⊕ operator as described in Section 2.2). In our design process this

is an automated step, which merges the connectors of architectures applied

on common ports. The result of applying multiple architectures to the design

model has to be verified for deadlock-freedom.

36 Chapter 3. Early validation of system requirements and design

Action flow

The Action flow architecture style, shown in Figure 3.6, enforces a sequential

flow on N actions allocated to n components of type B, using an Action Flow

Manager coordinator component. Assuming that na actions of the flow be-

long to one component, the component has na instances of the actBegin and

actEnd port types, which represent the beginning and end of each action. The

coordinator resets the action flow only after the N-th action has ended. Con-

nector degrees imply that each action can only be involved in one action flow.

Figure 3.6: Architecture diagram of the Action flow style

The Action flow style is used to enforce a collection of properties of the M2.1.i

pattern (i = 1, . . . ,N) derived from the same requirement. Such patterns specify

that, given a set of actions a[1] . . . a[N], the end of action a[i] enables the begin-

ning of a[i+1]. For each action a[i], the port instances that should be mapped

to each actBegin[i] (resp. actEnd[i]) are the port(s) that correspond to the

beg(a[i]) (resp. end(a[i])):

actBegin[i]→ beg(a[i])

actEnd[i]→ end(a[i])

Example 5. Let us consider the requirement CDMS-02 of the CubETH case study:

P1: 〈e1: if [TBD] seconds pass 〉

M2: 〈f1: CDMS_status 〉 shall 〈a1: reset the internal and external watchdogs 〉 and

〈a2: contact the EPS subsystem with a “heartbeat” 〉

from which the following property of the M.2.1 pattern is derived:

CDMS-02-M.2.1: globally, end(a1) precedes beg(a2)

Chapter 3. Early validation of system requirements and design 37

Let us assume that actions a1 and a2 are placed in the Watchdog reset and

the Heartbeat components, respectively. For the enforcement of the property, an

Action flow architecture was instantiated using the two components as operands

of type B. Table 3.8 shows the mapping of their ports for actions a[1] and a[2]

to port type parameters. Figure 3.7 presents the result of applying the architec-

ture, which adds the coordinator and two connectors shown with dashed lines.

Since the coordinator represents the Heartbeat component (i.e., all its ports are

synchronized with ports of the coordinator), the latter is removed as redundant.

Moreover, any symbols that refer to the removed component’s ports are updated

to refer to the ports of the the coordinator.

Table 3.8: Action flow architecture style parameters

a[1] a[2]

actBegin Watchdog_reset.internal_watchdog Heartbeat.send
actEnd Watchdog_reset.done Heartbeat.res , Heartbeat.fail

Figure 3.7: Application of an Action flow architecture

4

Mode management

The Mode management architecture style (Figure 3.8) restricts the set of actions

which can be executed (i.e., enabled actions) based on a set of modes. It con-

sists of one coordinator of type Mode Manager, n parameter components of

type B1 and k parameter components of type B2. Each B2 component triggers

the transition of the Mode Manager to a specific mode. B1 components have

actions that should be enabled in specific mode(s) of the Mode Manager. Mode

38 Chapter 3. Early validation of system requirements and design

Manager has one control location for each mode, one port type toMode with

cardinality k and k port types inMode with cardinality 1. Each toMode port is

connected with the changeMode port of a dedicated B2 component.

B1 has k port types modeBegin with cardinality mc[0,1]. In other words, a

component instance of B1might have any number of port instances of modeBegin

from 0 to k. B1 has also a modeEnd port type with cardinality k. m[i]b stands

for “mode i begin” and indicates that an action that is enabled in mode i has

begun its execution. The m[i]e ports stand for “mode i end” and indicate that

an action that is enabled in mode i has ended. Such ports are exported as

modeEnd in the interface of the B1 components. Each inMode port instance

of the Mode Manager must be connected with the corresponding m[i]b port

instances of all B1 components through an n-ary connector, where a different

multiplicity in the interval [1,n] is considered for each port instance.

Figure 3.8: Architecture diagram of the Mode management style (component

behavior is shown for k=3)

This architecture style enforces sets of properties of the P3.1 pattern that

refer to states of the same state-set. According to each such property, “the main

specification shall begin only if a state is observed”. The style is parameterized

by setting k equal to the number of states in the state-set. To identify instances

of m[i]b ports, we use a new symbol enforce_beg(M), which is evaluated as

follows:

• if M =M1 or M =M2, enforce_beg(M)=beg(M)

• if M =M3, in which case beg(M)=obs(s2), enforce_beg(M) is the beg of

each action that triggers state s2; these actions are found in conceptual

model by backward tracing the relationships action
generates
−−−−−−−−→event

sets
−−−→state.

Chapter 3. Early validation of system requirements and design 39

The second evaluation case reflects that the restriction of being in a state can

only be ensured by restricting the event of entering in that state. Operands of

type B1 are the components having the ports mapped to the m[i]b ports. The

changeMode port type is mapped to the ports of the occ of each event that sets

the state. Operands of type B2 are the components having these ports. After

having applied a mode management architecture, each “virtual port” assigned

to the obs of the represented states is replaced by an inMode[i] port of the Mode

Manager.

The Mode management style is also used in combination with the Event

monitoring style to enforce the P2.1 pattern. Specifically, we apply the Mode

management after having applied the Event monitoring, by mapping the m[i]b

port type to the port of the event monitoring coordinator that observes the event.

Example 6. Let us consider the requirements HK-03 and HK-04 in Table 3.5,

from which the following two properties are respectively derived:

HK-03-P3.1: globally, obs(s002) precedes beg(a002)

HK-04-P3.1: globally, obs(s001) precedes beg(a001)

States s001 and s002 belong to the same state-set, hence, they can be en-

forced through a single Mode management architecture in which k = 2. The style

parameters shown in Table 3.9 associate state s001 with mode[1] and state s002

with mode[2]. The m[1]b and m[2]b port types are mapped to the beg(M) of

each pattern, namely the beg(a001) (evaluated as HK_PL_read.mem_write_-

req) and beg(a002). Since Figure 3.4 shows that each mode is set by the events

e001 and e002, respectively, the changeMode port type is mapped to the ports

assigned to the occ(e001) (evaluated as s15_1.PL) and the occ(e002) (evaluated

as s15_2.PL). The result of architecture application is presented in Figure 3.9,

where the added connectors are shown with dashed lines.

mode[1] mode[2]

changeMode s15_1.PL s15_2.PL
m[i]b HK_PL_read.mem_write_req HK_PL_read.I2C_ask_TTC

Table 3.9: Mode management architecture style parameters

4

40 Chapter 3. Early validation of system requirements and design

Figure 3.9: Application of a Mode management architecture

Event monitoring

The Event monitoring architecture style, shown in Figure 3.10, provides a coordi-

nator component of type Event Monitor that tracks events of n components

of type B and reports them to a component of type service. Each B component

has an instance of the sndEvent port type, while the service component has an

instance of the getRep port type.

Figure 3.10: Architecture diagram of the

Event monitoring style

Figure 3.11: Architec-

ture diagram of the bi-

partite connectors’ sim-

plification

The event monitoring architecture style is used to enforce the P1.1 and P2.1

patterns, according to which “the main specification shall begin only if a certain

Chapter 3. Early validation of system requirements and design 41

event occurs”. For each such pattern, a separate architecture is applied, where

the getRep port type is mapped to the ports assigned to enforc_beg(M) and

the sndEvent port type is mapped to the set of ports given in the occ of the

event. Moreover, the P2.1 pattern requires the additional application of a mode

management architecture, as it has been already explained in Section 3.2.4.

Under the assumption that the action is enabled whenever the event is ob-

served, the coordinator’s behavior is reduced to a single control location and

the transitions observe, report are seen as indivisible (replaced by a single

port). For simplicity, the coordinator is omitted, and it is replaced by bipartite

rendezvous connectors between the port(s) of the event occurrence and the ac-

tion’s beginning. Figure 3.11 shows the architecture diagram of the bipartite

connectors’ simplification.

Example 7. Let us consider the requirement HK-01 in Table 3.5, from which the

following property is derived:

HK-02-P2.1: globally, occ(e003) ∧ obs(s003) precedes beg(a004)

The property is enforced through a combination of an event monitoring and

a mode management architecture, but here we focus on the event monitoring.

The used parameters are shown in Table 3.10. The getRep port is mapped to

the enforc_beg(M), namely the beg(a004) (evaluated as HK_PL_read.beginHK).

The sndEvent is mapped to the occ(e003) (evaluated asEnvironment.HKPL_-

TBDpass).

sndEvent Environment.HKPL_TBDpass
getRep HK_PL_read.beginHK

Table 3.10: Event monitoring architecture style parameters

In this example, the event represented by the port Environment.HKPL_-

TBDpass can be reported anytime after a deadline expires. Hence, the assump-

tion that the reporting action is enabled whenever the event occurs is true and

the bipartite connector simplification is used without affecting event occurrences

(Figure 3.12).

4

42 Chapter 3. Early validation of system requirements and design

Figure 3.12: Application of the bipartite connectors’ simplification of the Event

monitoring architecture

Mutual exclusion management

The Mutual exclusion management architecture style, shown in Figure 2.4, has

a coordinator component of type Mutex Manager, which ensures that the ac-

tions of n parameter components of type B are executed in a mutually exclusive

manner. The beginning and end of actions are represented by the begin and

finish port types of B components.

Mutual exclusion management is used to enforce the S2.1 pattern, according

to which “consecutive executions of the main specification occur in a sequential

manner”. The style is parameterized by mapping the begin and finish ports

to the set of ports in enforc_beg(M) and the set of ports in end(M).

Example 8. A mutual exclusion architecture applied to the Flash Memory com-

ponent is used to enforce that the read and write requests should be processed

in a mutually exclusive manner. The parameters for the architecture are those in

Table 3.11. The begin is mapped to the ports for the invocation of a read/write

request and the finish is mapped to their results. The obtained model is shown

in Figure 3.13.

begin Flash_Memory.read, Flash_Memory.write
finish Flash_Memory.return, Flash_Memory.fail

Table 3.11: Mutual exclusion management architecture style parameters

4

Chapter 3. Early validation of system requirements and design 43

Figure 3.13: Application of a Mutual exclusion management architecture

Liveness

In general, the enforcement of liveness properties requires additional assump-

tions of fair execution scheduling. Furthermore, in order to guarantee the

preservation of liveness properties by architecture composition, one has to verify

the architectures’ pair-wise non-interference [14].

However, liveness properties of the patterns P1.2 and P2.2, can, indeed,

be enforced by the bipartite connectors’ simplification of the Event monitoring

architecture style. Let us consider the safety property “the main specification

begins atomically upon the occurrence of event e”, formulated as follows:

P1.2’: between occ(e) and X occ(e), beg(M) exists.
6

It can be easily shown that P1.2 is implied by P1.2’, which can be enforced

by the bipartite connectors’ simplification if the assumptions for its application

hold (cf Section 3.2.4).

Another way to indirectly enforce P1.2 through the Event monitoring archi-

tecture style is by considering the following safety property: “after an occurrence

of event e, another such event does not occur before the beginning of the main

specification”, formulated as follows:

P1.2”: between occ(e) and occ(e), beg(M) exists.
7

It can be easily shown that P1.2”, which is enforceable by the Event monitoring

architecture style, implies P1.2, if it can be verified or assumed that occ(e) occurs

infinitely often:

6
The semantics of this property in CTL is given by the formula AG

(
occ(e)→ beg(M)]

)
.

7
The semantics of this property in CTL is given by the formula AG

(
occ(e) →

AX A[¬occ(e) W beg(M)]
)
.

44 Chapter 3. Early validation of system requirements and design

P1.2.asm: globally, occ(e) responds to occ(e)

Decision flows for property enforcement

Finding the suitable approach for enforcing a given property involves a decision-

making process. Algorithm 1 introduces such a process for properties of the

P1.1 pattern. The first conditional (line 1) checks whether the bipartite connec-

tor simplification can be applied, the second conditional (line 3) checks whether

Event monitoring is necessary, and the else statement (line 6) is reached if the

property should be verified, through inspection or model checking.

Data: occ(e), beg(M)

Result: P1.1 is either enforced or should be verified

if occ(e) is allocated to a different atomic component than beg(M) then

P1.1 is enforced by the bipartite connectors’ simplification of the Event

monitoring style;

else if occ(e) is allocated to the same atomic component with beg(M) and

P1.1 does not hold by inspection then

P1.1 is enforced by the Event monitoring style;

else

P1.1 should be verified

Algorithm 1: Decision-making process for the P1.1 pattern

The direct or indirect enforcement of the P1.2 pattern is guided by the process

shown in Algorithm 2. The flow takes into account the architecture that enforces

P1.1, if such an architecture has been applied. The decision of the flow is either

that the P1.2 property has been enforced by the architecture, or that it has

to be verified through model checking. Similar processes are followed for the

Chapter 3. Early validation of system requirements and design 45

remaining patterns.

Data: the applied architecture that enforces P1.1, if any

Result: P1.2 is either enforced or has to be verified through model

checking

if the Event monitoring style has been applied and the P1.2.asm is verified

then

P1.2 is enforced by the Event monitoring style;

else if the bipartite connectors’ simplification has been applied then

P1.2 is enforced by the the bipartite connectors’ simplification;

else

P1.2 has to be verified through model checking

Algorithm 2: Decision-making process for the P1.2 pattern

3.3 Tool support

The RERD tool supports the requirement specification, property derivation, ar-

chitecture instantiation and property enforcement, i.e. the steps 1, 3, 4 and 5

of the model-based process, whereas in step 6 the D-Finder tool is used and

the nuXmv model checker [36], if there is need for verifying CTL properties.

For step 1, the Requirements Engineer selects among the predefined boilerplate

clauses and then inserts in each placeholder a textual description referring to

a uniquely identified concept. The concept can be selected from the previously

defined concepts (search support is provided) or if a new concept is needed it

is entered along with its relationships. The conceptual model is stored, shared

and is accessed through an underlying ontology architecture, whose design

does not need to be known to the Requirement Engineer (the concept classes in

Figure 3.3 suffice for specifying requirements).

Figure 3.14 shows the Requirement Editing screen of the RERD tool. The

upper part of the screen allows selecting among the available boilerplate clauses,

which are displayed in separate tables. In the middle part, requirements are

shown in an editable form, that is, their placeholders and additional information

for the requirement (e.g. id, category) can be filled in this panel. The lower part of

the screen is used for browsing and searching requirements that match string(s)

46 Chapter 3. Early validation of system requirements and design

given in a search box. The table displays the requirements returned by each

search (all requirements match an empty string), with buttons attached to each

row for editing/deleting them.

The RERD tool also stores the user-defined values for the symbols used in

patterns. Specifically, the System Software Engineer assigns ports to the sym-

bols that are necessary for the properties of the specified requirements. These

symbols may be reused in more than one property. Hence, when the Verifica-

tion Engineer uses the tool during the property derivation (step 3), the necessary

properties are automatically created by retrieving the values of symbols.

For architecture instantiation and property enforcement (steps 4 and 5), the

System Software Engineer can choose among the available architecture styles

and parameterize them for creating architectures that enforce a set of properties.

The architectures are then automatically applied to their operand components

and the design model is updated as appropriate.

DesignBIP [35] is a web-based graphical editing tool, which can be used

for the specification of BIP models and BIP architectures. The tool can assist

the creation of the initial design model in step 1. Moreover, it allows for the

creation of new architecture styles to be integrated in the RERD tool, whenever

RERD is extended with new boilerplates (and enforcement opportunities).

The D-Finder tool [8] is used by the Verification Engineer for verifying

the deadlock-freedom of the design model (step 6). D-Finder is capable of

analyzing very large BIP models using compositional verification on an over-

approximated set of reachable states. For model checking CTL properties, the

BIP model has to be transformed with the BIP-to-NuSMV tool
8

into the input

language of the nuXmv model checker.

8
The tool is available from http://risd.epfl.ch/bip2nusmv. It is based on the encod-

ing presented and proven correct in [44, Section 4].

http://risd.epfl.ch/bip2nusmv

Chapter 3. Early validation of system requirements and design 47

Figure 3.14: RERD’s screen for Requirements Editing.

3.4 Evaluation case studies

3.4.1 CubETH case study

The CubETH nanosatellite [45] is comprised of: the electrical power subsystem

(EPS), the command and data management subsystem (CDMS), the telecommu-

nication subsystem (COM), the attitude determination and control subsystem

(ADCS) and the payload (PL). Our early validation study is focused on the soft-

ware for the following subcomponents of the CDMS subsystem (cf. A.2.1): 1) the

CDMS status that resets internal and external watchdogs; 2) the Payload

that is in charge of payload operations; 3) three Housekeeping components

that recover engineering data from the EPS, PL and COM subsystems; 4) the

CDMS Housekeeping which is internal to the CDMS; 5) the I2C_sat that im-

plements the I2C bus protocol; 6) the Flash memory management that im-

plements a non-volatile flash memory and its write-read protocol; 7) the s3_5,

s3_6, s15_1 and s15_2 services that activate or deactivate the housekeeping

component actions; 8) the Error Logging that implements a shared RAM

region. The case study comprises 38 requirements, from which 57 properties

48 Chapter 3. Early validation of system requirements and design

were derived. The complete BIP model can be found in A.2.5.

Table 3.12 summarizes statistics that characterize the utilization of BIP ar-

chitectures. In total, the integrated architectures are 1 Action Flow, 11 Mode

management, 5 Event monitoring, 10 Mutual Exclusion Management and 3

Failure Monitoring were used to enforce safety properties that have been de-

rived from our boilerplates’ requirements. Since safety properties enforced by

each architecture are preserved by architecture composition (see Section 2.2),

these safety properties are satisfied by the design model by construction. Ta-

ble 3.13 shows the overal statistics that characterize the property enforcement

step. In total, 38 requirements were formulated, from which 57 properties were

derived. Among the derived properties, 4 were left to hold by assumption, 47

could be enforced and 10 were found to hold by inspection.

Table 3.12: Statistics on the utilization of BIP architectures

Model Flow Mode Event Mutex Failure

Payload 0 2 0 4 0

HK PL 0 2 1 1 1

HK EPS 0 2 1 1 1

HK COM 0 2 1 1 1

HK CDMS 0 2 1 1 0

Flash Memory 0 1 0 1 0

CDMS status 1 0 0 0 0

Error Logging 0 0 1 1 0

Total 1 11 5 10 3

Table 3.13: Statistics of requirement formulation and property enforcement

Model Reqs. Deriv. Prop. Assum. Prop. Enforced By inspect.

Payload 12 16 0 16 0

HK PL 4 6 0 6 0

HK EPS 4 6 0 6 0

HK COM 4 6 0 6 0

HK CDMS 3 4 0 4 0

Flash Memory 8 17 4 3 10

CDMS status 1 3 0 3 0

Error Logging 2 3 0 3 0

Total 38 61 4 47 10

Chapter 3. Early validation of system requirements and design 49

Combined application of architectures can generate deadlocks. We veri-

fied the deadlock-freedom of the design model using the D-Finder tool [8].

D-Finder’s compositional analysis is sound, but incomplete: due to the em-

ployed over-approximation of reachable states, it can produce false positives,

i.e., potential deadlock states that are in fact unreachable in the concrete sys-

tem. However, our design model was found to be deadlock-free without any

potential deadlocks. Thus, no additional reachability analysis was needed. The

verification of deadlock-freedom was completed in 12 seconds, for our model

consisting of 46 atomic components and 155 connectors.

The key advantage of our architecture-based approach is that the burden of

verification is shifted from the final design to architectures, which are consider-

ably smaller in size and can be reused. In particular, we managed to enforce 47

out of 57 derived properties using our simple architecture styles. The remain-

ing 10 derived properties were verified by inspection and 4 fairness assumptions

were left for verification using the nuXmv model checker.

Table 3.14 summarizes the duration of each process step for the input of the

problem size shown in each row; the three roles of the process were performed

by an engineer who was fully familiarized with the process’s tool support. The

property derivation and property enforcement steps are not shown, since they

are fully automated and the time needed was negligible. We note that the time

spent is not evenly distributed across the steps and it tends to be less towards

the end of the process. Also, it is essential to clarify for the shown times that

the architecture styles had already been configured in the RERD tool and the

input forms for the style parameters had been defined. This takes 1–2 hours per

style. Much greater effort was needed, though, to create the taxonomy of our

architecture styles which took about 1 man-month. However, this taxonomy

serves as a knowledge base in abstract form that we have acquired, and which

can be reused to build other models of satellite on-board software.

50 Chapter 3. Early validation of system requirements and design

Table 3.14: Durations and input sizes of the process steps

Step Duration Input size

Requirement specification 8 hours 38 requirements

Initial design 5 hours 12 components

Architecture instantiation 3 hours 47 enforced properties

Verification of deadlock freedom 12 seconds 46 components

3.4.2 Telecommand Management of an earth observation satel-

lite

In a second case study, our model-based approach was also applied to an extract

of 29 software requirements for the Telecommand Management function of a low

orbit earth observation satellite. The requirements and the BIP model of this

study cannot be disclosed, due to confidentiality liability terms. We derived 58

properties from the requirements and 34 (58%) of them were eventually enforced

through architectures.

More specifically, during this case study we identified the need for and for-

mulated an architecture style for Priority Management [28]. In overall, the in-

tegrated architectures were 10 Action Flows, 3 Mutual Exclusion Management,

13 Mode management and 1 Priority Management. The number of components

in the BIP model was 25.

3.5 Related Work

The early validation of system requirements and its design using formal methods

has attracted the interest of noteworthy industrial research initiatives [23], [46].

On the other hand, the principles of correctness-by-construction in system de-

sign have been introduced in [20] and [1]. In all technical approaches for correct-

by-construction system design it is assumed that requirements and early design

coevolve through iterative cycles [47], and the process converges into a design

model, which (provably) fulfills all formal properties that are derived from the

Chapter 3. Early validation of system requirements and design 51

requirements. Existing works following the principles in [20] advocate a top-

down hierarchical decomposition of the system into components. Correctness

by construction is based on assume-guarantee contracts, where assumptions

are either assertions on component inputs or invariants, and guarantees cor-

respond to component requirements. Such top-down design flows [47]–[50] are

concerned with the allocation of system requirements to system components

(as in [51]), so that higher level requirements are established. System decom-

position leads to the decomposition of contracts through a formal refinement

relation [52]. When allocating requirements to a component, it should be en-

sured that the assumptions made for its environment (assertions or invariants)

can be fulfilled. Developing assumptions manually is hard and the advantages

when compared with monolithic verification have been questioned [53].

Our work aims at a bottom-up rigorous design flow [1]. Important differences

from the top-down approaches are: (i) we focus on requirements formalization,

rather than their allocation to components, (ii) we aim at the transformation

of system requirements into a procedure, as opposed to the ad hoc design of

components that should meet their contracts. Architectures in BIP drive the

choice of system decomposition, component coordination and behavior trans-

formation. In the top-down design flows, these choices should be validated

through a posteriori verification; finding a solution in such approaches has a

non-negligible complexity [53].

The use of natural language boilerplates in the formalization of requirements

is not new. In [54], the authors target the specification and analysis of stake-

holder requirements, referred to as early requirements [18]. Our approach for

the use of boilerplates resembles those in [55], [56] and the CESAR reference

technology platform [25]. CESAR introduces the Requirements Specification

Language (RSL) that combines boilerplates of three clauses, namely the prefix,

the main part and the suffix. Boilerplate attributes are defined in an attribute

ontology and their placeholders must be filled with concepts from a domain-

specific ontology. In [57], the authors introduce contracts with assumptions

and guarantees built up from instances of RSL property patterns. A tool called

DODT [58] allows for projectional requirement editing and for checking pairwise

52 Chapter 3. Early validation of system requirements and design

ontology-related contradictions [59] among requirements. Finally, properties

are specified based on a recommendation of patterns with formal semantics,

although no exact association of boilerplates with patterns is proposed.

The Easy Approach to Requirements Syntax (EARS) [26], [27] has intro-

duced a set of structural rules (templates) for natural language requirements.

The authors of EARS admit that their technique is mostly suitable for high-

level stakeholder requirements and it is not applicable to all types of system

requirements. Empirical evidence from industrial application showed improve-

ment or, in some cases, complete elimination of problems related to ambiguity,

vagueness, omissions and others. The EARS-CTRL tool [60] aims to ensure

well-formedness in EARS requirements by construction and checks whether a

controller can be synthesized from the provided set of requirements. If a con-

troller cannot be synthesized, possibly conflicting requirements exist. The tool

allows for projectional requirements’ editing, based on a glossary defined on

the domain of controller synthesis. Requirements are analyzed as LTL (Linear

Temporal Logic) formulas. The analysis’ effectiveness depends on user-defined

semantic information (e.g. simple predicates) for the given glossary. Moreover,

model synthesis is limited to a fragment of LTL that involves the universal path

quantifier (G), the next-step operator (X) and the weak until temporal opera-

tor (W) [61]. Synthesis for such specifications is in PSPACE, whereas full LTL

synthesis is intrinsically complex (2EXPTIME-complete).

Instead of automated model synthesis, we opt for incremental system con-

struction that maintains the traceability of requirements up to the final design

solution that discharges the derived properties. In this incremental process,

designers can (re-)use “ready-made” solutions formally encoded in BIP architec-

tures, which have been proven correct practically and theoretically. In essence,

the architectures represent design patterns (e.g. for mutual exclusion, clock

synchronization, scheduling, resource management, security) that are defined

independently of the components which make up the system. We can thus

ensure correctness-by-construction with respect to properties, while avoiding

computationally expensive techniques that imply state explosion.

Chapter 3. Early validation of system requirements and design 53

The importance of software architecture has been greatly acknowledged by

the industry and academia. As a result, there has been an increasing interest in

defining languages that support the architecture-based approach, e.g. UML [62]

and architecture description languages (ADLs) [63], [64]. All these works rely

on the distinction between behaviors of individual components and their coordi-

nation in the overall system organization. These languages, however, often lack

formal semantics [62], [65], [66]. As a result, analysis is carried out on mod-

els that cannot be rigorously related to system development formalisms. This

introduces gaps in the design process which reduce productivity and limit the

ability for ensuring correctness. In fact, in a survey conducted in the industrial

sector regarding architecture description languages, it is stated that practicing

architects nowadays emphasize the need to reconcile informal notations with

more formal and analysable ones [67].

Similarly to the aforementioned approaches, BIP architectures also provide a

clear separation of concerns between functional and coordination aspects. BIP

architectures have rigorous semantics; the underlying theory of components

and their interactions is inspired from the BIP framework [2]. In essence, BIP

architectures are operators restricting component behavior for enforcing a char-

acteristic property. Their composition has some similarities with architecture

composition in architecture languages with CSP-like semantics, e.g., Wright

ADL [68]. Nevertheless, in contrast to these approaches application of BIP ar-

chitectures does not require any modification of the components it is applied

on. Additionally, as explained above, BIP architectures are tightly related with

characteristic properties, which are preserved through composition.

3.6 Discussion

The applicability of our approach in an industrial context depends on a number

of factors that we discuss henceforward. First, we assume the availability of a

conceptual model like the one depicted in Figure 3.4. Such a model represents

54 Chapter 3. Early validation of system requirements and design

the structural elements and their conceptual constraints comprising the prob-

lem domain [69]; its adequacy and completeness determines the range of avail-

able concepts and relationships for the boilerplate attributes, the initial design,

and the property derivation steps. We consider that conceptual modeling is per-

formed by the Requirement Engineers in cooperation with the domain experts

in charge of system design. This activity also includes capturing the domain as-

sumptions, i.e., common and often tacit knowledge for the problem domain, and

in spite of the system under design [30], [70]. The so-called domain knowledge

(cf. Section 3.2) may concern with standardized protocols, services, libraries

or physical laws, and can provide additional semantic information about the

nature of the concepts in question. This information is essential, in order to

conclude e.g. that certain events or data ranges that respect the conceptual

model syntactically, are not relevant semantically. Some assumptions may

be related to physics, e.g. “mass cannot be negative”, and some assumptions

may be mission-specific, e.g. “the temperature within the orbiting range of the

spacecraft cannot rise above N degrees”. Elicitation of domain knowledge, as a

collaborative effort, could be facilitated by the use of templates for each ontology

class [71].

The conceptual model and all assumptions related to domain knowledge

are encoded into domain-specific and system-specific ontologies, which are ac-

cessed through the RERD tool. New concepts may be created from within the

tool and the user is notified for violations of constraints related to the model

integrity (e.g. undefined relationships). The model quality (syntactic, seman-

tic, pragmatic) [39], [40] is a responsibility of the Requirement Engineers, who

should aim for models that can be reused to significant extent in multiple

projects. Certainly, the reusability depends on the abstraction level of design,

since the requirements are usually specified at different abstraction levels along

the development lifecycle (for space systems we have the spacecraft, avion-

ics and software levels) and a conceptual model is pertinent only to a specific

level [72]. The aforementioned problems and the right ontology in relation to

our model-based design process need to be further researched in future work.

A second important issue is the expressiveness of the boilerplate language,

Chapter 3. Early validation of system requirements and design 55

and whether it can be sufficient for specifying the full range of requirement

types found in the design of, say, space systems. This of course depends on the

expressiveness of the property patterns, and on the analyzability of BIP models

with extended semantics for the various property types, because correctness-by-

construction does not vanish the need for a posteriori verification. The structure

of the boilerplate language in Section 3.2.1 resembles that of RSL in the CESAR

reference technology platform [25]. We currently support fewer templates than

RSL for the prefix, main and suffix clauses, but this set of templates was suffi-

cient for expressing the requirements of the case studies. Moreover, the RERD

tool was designed such that new templates may be added; the only prerequisite

is that the additional templates must be associated with property patterns, as in

Table 3.7. The adopted framework of patterns from [43] is well-established and

stems from industrially-relevant studies, but it only covers functional property

specifications. We certainly foresee the need for boilerplates with templates for

extra-functional aspects, which call for support by e.g. timing patterns [73] and

probabilistic patterns [74]. It is worth to note here:

• the extension of BIP [75] that allows specifying probabilistic aspects of

BIP components, while providing a stochastic semantics for the parallel

composition of components through interactions and priorities;

• the RT-BIP extension for modeling timing constraints as a timed automa-

ton, and a real-time engine for computing the schedules meeting the timing

constraints, given the underlying platform’s real-time clock [76].

These extensions are accompanied by advanced verification tools, some of which

implement scalable compositional verification techniques [77].

However, a matter of vital importance is how expressive can a boilerplate

language be with respect to today’s industrial practice of natural language spec-

ifications. The loss of expressiveness, given the controlled vocabulary for the

attributes, is inevitable though necessary to avoid ambiguity. However, the true

question is whether it is still possible and whether we really need to cover all

system aspects of today’s specifications. This question also matters for lan-

guages like EARS [26], [27], which insist on natural language specifications

56 Chapter 3. Early validation of system requirements and design

using a fixed set of structural rules (though the EARS-CTRL analysis works

with a user-defined glossary of terms). From our experience with the case stud-

ies we believe that only a subset of requirements needs to be validated. This

subset includes requirements that may cause consistency issues and have to

be established or checked against the system’s structure and behavior.

Requirement Engineers tend to classify requirements in project documen-

tation into categories (e.g. at the software level of space systems there are var-

ious classes of interface requirements, performance requirements, functional

requirements and design/construction requirements). Any boilerplate language

is considered adequate if it can express all representative forms of requirements

that need to be validated, for all requirement categories (e.g. the design/con-

struction requirements need not be expressed using boilerplates). This may

imply changes to the scope of individual requirements (e.g. a natural language

requirement may be broken into multiple boilerplate requirements). To this end,

the RERD tool displays applicable boilerplates for each category of requirements

found in a user-defined catalogue (Figure 3.14).

Our emphasis lies on precisely capturing the requirements by properties

which—ideally—can be enforced through BIP architectures or—if not enforced—

could be verified. As we aim to a semi-automated formalization of requirements,

we are intentionally limited to specific types of requirements and templates. Our

approach can accommodate additional templates for requirement boilerplates,

provided that they are associated with property patterns, for which it is known

how they can be enforced or verified.

The applicability of the correctness-by-construction approach throughout

our model-based process depends on a library of BIP architecture styles for en-

forcing a worthwhile set of properties in the different categories of requirements.

We have implicitly adopted the commonly accepted perception that the system’s

architectural design is in some sense intertwined with requirements [78], [79].

While specifying system requirements, Requirement Engineers have in mind

the overall structure of the system under design (functional and physical ar-

chitecture inputs shown in Figure 3.2) and a significant part of specification

Chapter 3. Early validation of system requirements and design 57

comes from adapting requirements found in previous projects. Our notion of

architecture styles provides the means to formally capture common solutions

to recurring design problems in an abstract and reusable form. This certainly

incurs a non-negligible investment cost towards developing adequate and orga-

nized libraries of architecture styles, especially since the set of property patterns

that they can enforce has to be precisely defined. The set of styles was derived

by identifying commonalities in the base of natural language requirements of

the case studies. Additional effort is required to this respect, whereas a re-

cent research work opens prospects for defining styles that enforce quantitative

properties [80].

Another important issue is the scalability and the effort needed for applying

our model-based process. Indicative figures for problems of the size of our case

studies have been previously mentioned. We acknowledge that in industrial

problems of moderate size additional challenges may arise. More specifically,

it may be trickier to identify and uniquely determine—on a team basis—the

concepts for specifying requirements, as well as to verify properties against a

large-scale design model. A-posteriori verification with model checking does not

scale well and it can be rendered infeasible for large-scale models. With the

architecture-based design a key advantage is, in particular, that the burden

of verification is shifted from the final design to architectures, which can be

reused. Moreover, as was illustrated in the case studies, the verification of

deadlock freedom—which is essential when combining architectures—with the

compositional approach of D-Finder is very fast.

However, when a non-enforceable property is not verified in Step 6 of our

process, identifying a relevant sub-model for corrective action is complex. An

important issue is how to present the resulting BIP model to engineers in a

cognizable manner. In any case, the complexity of locating a design error is

not inherent to the proposed process: it arises for any design process involving

verification. In that sense, our proposal improves the current state of practice

by reducing the number of properties that need to be verified.

Chapter 4

Compositional execution semantics

for BPEL programs

4.1 Introduction

Businesses rely more and more on distributed, value-adding software applica-

tions in order to offer enterprise functionality to customers. Business Process

Modeling (BPM) is a promising paradigm for integrating software components

into a single executable unit, termed as process. The Service-Oriented Archi-

tecture (SOA) suits to the BPM paradigm, with respect to the composition of

services into processes, which can be also deployed as services. Among existing

languages for the specification of such processes, BPEL stands out by providing

high-level primitives, and constructs for the definition of complex synchronous

and asynchronous web service interactions. The used web services are au-

tonomous and loosely-coupled components that possibly span different organi-

zations. For the wide adoption of business process programming, it is essential

to ensure reliability in order to avoid errors that may cause critical losses to the

involved organizations. Additionally, the program has to fulfil correctness goals

such as process responsiveness and compliance with partner services.

One approach towards ensuring reliability is by testing the process with em-

ulating its interactions [81]. In this case, an adequate coverage of the program’s

control flow has to be achieved by selecting the appropriate test inputs. On the

other hand, formal verification guarantees full coverage of execution paths for

59

60 Chapter 4. Compositional execution semantics for BPEL programs

all possible inputs. Such an analysis has to be based on a formal specification of

the language execution semantics, which involves nesting of service interactions

using concurrency, isolation, compensation and event handling constructs.

Many works attempt to verify correctness by model checking a formal model,

which is an abstract representation of the service composition program [82].

However, the original structure of the source program is not reflected in the for-

mal model, thus rendering impossible to exactly locate the verification findings

in the program’s code. This is an inherent problem of most formalisms, which

lack sufficiently expressive composition primitives for a model representation

that preserves the service composition structure. BIP [2] provides a minimal

set of primitives adequate for preserving the service composition structure. It

consists of an executable modeling language for layered transition systems,

which has formally defined operational semantics and mathematically proven

expressiveness [83].

Therefore, we use BIP to introduce a compositional semantics for BPEL, i.e.

a semantics in which the processing for each BPEL construct is placed locally

to a corresponding BIP component. Such a definition tackles the combinatorial

problem of defining semantics for each possible combination of nested BPEL

constructs. Compositional semantics can be defined for executable languages

with nesting syntax if the execution semantics of enclosing and nested con-

structs can be defined independently from each other. To achieve such a def-

inition in our approach, the semantics of nesting constructs are defined based

on abstractions built-in by construction for the nested ones, while the latter

are combined using coordination primitives that do not alter their semantics

(just restrict their execution traces). A structure-preserving translator into the

BIP language has been implemented that covers all activities of the BPEL stan-

dard. The translator transforms BPEL programs into BIP models that contain

the code needed for the verification of essential correctness properties. Prop-

erties are checked by exploration of the reachable state space. If a property is

violated, we are able to obtain a counterexample execution trace that contains

the processing steps of BPEL activities, which lead to the error location.

Chapter 4. Compositional execution semantics for BPEL programs 61

In [84], we presented a first version of our translator for a limited set of BPEL

constructs with more emphasis on the translation algorithm. The verification of

a functional property for a showcase application scenario was also demonstrated

along with evidence for its violation in the form of a counterexample. Here, we

expose:

• the complete execution semantics of BPEL through a new methodology for

compositional definition;

• the verification of a wide range of important correctness properties;

• the testing of our translator in mid-scale programs and their verification.

We note that the translation times were found to have a statistically significant

linear relation to the number of states of the generated BIP model. The trans-

lator, the verification utilities for the properties of interest, as well as the BPEL

programs of our experiments are available online in [85]. Verification is only one

of the possible uses of our BPEL process models, which can be also used e.g.

for test case generation based on the produced execution paths [86]. Moreover,

in an independent research work [87], our approach was extended towards en-

abling the configuration of information flow policies for BPEL processes. Finally,

our BPEL process models can be be executed as standalone web services, by be-

ing enhanced with runtime support for SOAP-based communication, through

the application of the BIP architecture for SOAP-based web services that we

presented in [88].

In Section 4.2, we discuss the design problems and the correctness of BPEL

processes through a motivating example. Section 4.3 introduces the structure

of our BIP model and the principles of the compositional approach for the defini-

tion of the BPEL execution semantics. These principles determine the interface

and the behavior of BIP components, which allow implementing the semantics

of the various BPEL activities. Section 4.4 encodes the BPEL execution seman-

tics into safety properties that are enforced in our model by construction. Our

modeling approach covers all activities of the BPEL standard, but the presenta-

tion is restricted to the most important activities and details for more activities

62 Chapter 4. Compositional execution semantics for BPEL programs

are exposed in B.2. In Section 4.5, we present the verification of essential cor-

rectness properties that have been previously introduced in Section 4.2 and the

formalization of additional useful correctness properties. Section 4.6 discusses

the principles of the translation of BPEL programs in BIP. Section 4.7 shows

results from the translation and analysis of mid-scale BPEL applications and

the chapter concludes with a critical review of the related work in Section 4.8.

4.2 Correctness of BPEL processes: a motivating

example

BPEL programs depend upon web services (partner links) whose interfaces ex-

pose service operations written in the WSDL 1.1 language. Synchronous oper-

ations accept an input and block the invoker for the output, or a fault, to be

returned. On the contrary, in asynchronous operations the invoker dispatches

the input and forgets it. Thus, through the use of two asynchronous opera-

tions it is possible to apply a request-response interaction pattern that does not

block the invoker. In this approach, a service is invoked with the first operation

and the response is returned with a second operation, referred to as callback,

exposed by the invoker. The use of asynchronous operations generally allows

for complex service interaction patterns, such as parallel operation invocations,

but it raises the need to effectively manage communication sessions, i.e. the

stateful chains of dual service interactions. The assignment of messages to the

correct session takes place by message correlation.

(a) Synchronous invocation (b) Asynchronous invocation

Figure 4.1: Client and server side activities for synchronous and asynchronous

invocations between processes.

Chapter 4. Compositional execution semantics for BPEL programs 63

Figure 4.2: The TravelBooking process interacts with the BookAirline and

BookHotel web services on behalf of a client.

Atomic behavior in processes is realized with basic activities, such as the

invoke, receive, and reply, which are used respectively to (i) invoke, (ii)

receive input, and (iii) send output (or fault), with respect to specific service

operations. Figures 4.1a and 4.1b show the client-side and server-side activities

used for a synchronous (resp. an asynchronous) invocation of an operation

x. A client-side synchronous invocation is implemented by a request-response

invoke, while the asynchronous interaction relies on an one-way invoke of x

and a receive of the callback operation y. Generally, the assign activity is

used before sending and after receiving a message, in order to copy data between

the message and the process’s variables. BPEL’s structured activities define

workflows of activities, such as sequence, parallel flow, and other conditional

and repeatable structures. The scope activity defines a local context for its

enclosed activities, with its own data and error handling through compensation,

termination and fault handlers. A scope also defines event handlers for incoming

messages and timeouts.

Example 9. A BPEL process for travel booking is presented in Figure 4.2 with

its activities shown in rectangular boxes. The activities for service interactions

are labelled with the invoked operations. The bold, the thin and the dotted edges

represent respectively relationships for the order of execution, the containment of

handlers and the synchronization between activities.

64 Chapter 4. Compositional execution semantics for BPEL programs

The process provides to its clients the synchronous operation get_itinerary that

responds with an output or a fault message. When a client wants to book a travel

itinerary, a get_itinerary request is received along with the preferred hotel, room

type and flight details. Two scopes are then executed in parallel that communicate

respectively with the HotelBookWS and AirlineBookWS web services:

• The Hotel-booking scope invokes the asynchronous bookHotel operation of

HotelBookWS to reserve the chosen hotel room. For this purpose, it uses

an one-way invoke and continues its processing, while the response is

pending. A receive waits for the confirmation in the hotelBooked callback

operation. When the confirmation is received, the synchronous payHotel

operation of the HotelBookWS is invoked for the payment. The progress of

the whole process is then blocked on the synchronous invoke, until the

receipt of the expected response. In parallel to the normal flow, the scope

also has an event handler that listens to requests for the noAvail operation.

This is a callback operation that is invoked by the HotelBookWS service, if

there is no availability for the chosen hotel room. Upon receipt of such a

message, the event handler throws a bookFailed fault.

• The Airline-booking scope invokes the asynchronous bookFlight operation

of the AirlineBookWS to book the flight and upon the confirmation receipt

the synchronous payFlight operation is invoked for the payment. The book-

ing cancellation of AirlineBookWS is invoked, when the scope is abruptly

terminated or when it is compensated after having been completed.

Two synchronization links (dotted arrows) are used between the two scopes, in

order to exclude the invocation of payment in each scope, before the confirmation is

received in the other scope. The process responds to the client with a confirmation,

after having completed the payment in both scopes.

Faults in any of the two scopes are propagated to the process level, where

they are handled by the process’s fault handler. In this case, the enclosed scopes

are terminated, if they are still running, or compensated, if they have finished.

Afterwards, the process replies to the client with a fault message. 4

Chapter 4. Compositional execution semantics for BPEL programs 65

The main principles for the design of BPEL processes are summarized along

the following three axes:

1. all available input from partner services must be received and handled

2. all the expected input to partner services must be provided

3. the process must hold a global view of the behavior that is composed

For the first axis, input from partner services is received though incoming

invocations. A dedicated receive activity should be therefore reachable at

each point of the control flow, where such an input is expected. In Example 9,

the hotelBooked callback is invoked, when the HotelBookingWS responds with

the result of the asynchronous hotelBook, and the noAvail callback is invoked

upon a booking failure. If the input to noAvail was neglected, the process would

be blocked forever in the receive of the hotelBooked callback, unless there

would be a timeout handler to limit the waiting time. Moreover, with respect to

the process’s requirements, the input to noAvail is essential to throw a fault at

the process root level in order to terminate the whole booking attempt.

For the second axis, for each partner service, the syntax of its expected input

is defined in WSDL, but there is no standard way for specifying the input’s se-

mantics and its relation to other events. In Example 9, the cancelBook request

to the AirlineBookWS is sent, to cancel a booking request. The termination and

the compensation handlers of the scope must send this cancellation request,

otherwise the process will have sent and saved booking results that are not re-

flected in its state. If the cancellation request is omitted, the PayFlight request

will still be expected from the partner service, though it will not be sent. How-

ever, the relationship between an operation and its callbacks is not explicitly

defined and the process’s runtime environment cannot detect and handle the

missing inbound or outbound responses of the asynchronous requests. Due

to this weakness, the responsibility for handling the issue is delegated to the

process designer.

For the third axis, when implementing a scope, it is important to consider

the environment in which it is executed. In Example 9, if the Airline-booking

scope was the only scope running within the process, there would not be need

66 Chapter 4. Compositional execution semantics for BPEL programs

for implementing a termination handler, because there would be no other scope

to throw a fault while this scope is executed. The termination handling is

necessary, due to the parallel execution of the scope with a scope which might

fail. If a termination handler can never be triggered, we have a case of dead

code in the process.

The BPEL processes need to fulfil several correctness properties that are

application-agnostic, in order to ensure safety of the control flow and the ses-

sions. Some of these properties are BPEL constraints that are identified by

standard types of faults (e.g. the conflicting receive fault). Essential properties

that are not BPEL constraints, though they have to be ensured for any BPEL

process, are the following:

1. No blocking: The process will not be blocked indefinitely for receiving an

incoming message.

2. No dead code: The process does not include code that cannot be executed.

3. Process termination: The process can always terminate.

4. No incomplete asynchronous request-response patterns: The process can-

not terminate with asynchronous (outgoing or incoming) request-response

patterns that have not been responded.

The absence of dead code is important, in order to save memory space for the

process execution and for the caching of operations by the CPU. A code segment

may be unreachable, because of a logical error, such as conditions that are

always false, or due to obsolete event handlers for messages that are not sent

any more by the partner service. The process termination is essential for most

processes that shouldn’t run forever. A process may not be able to terminate,

due to a possible livelock, i.e. an execution path of tasks that are executed

infinitely often. The last property concerns the behavioral compliance between

the process and the partner services with respect to asynchronous invocations.

That is, if an invocation has been received (or sent) by the process, and this

invocation is part of a request-response pattern, then a response will always

have to be sent (resp. receive).

The main approach to address the aforementioned correctness and other

Chapter 4. Compositional execution semantics for BPEL programs 67

application-specific issues is through testing [81] and interactive simulation. In

an effective testing approach the developer has to create test cases that cover

the program’s control flow up to an acceptable level, as well as to instrument

the program with assertions to be checked. The test case generation includes

the definition of input/output data for the emulation of process interactions.

When an assertion violation is encountered the developer has still to explore

the execution path the leads to the violated assertion. This is possible through

interactively simulating the BPEL process for the specific test case. Testing is

an iterative procedure, since every time that the process is changed towards cor-

recting an error, all test cases have to run again to ensure that no other assertion

is violated. Moreover, due to the complex synchronous and asynchronous web

service interactions, the cost for effectively testing a BPEL process may be much

higher than that for testing other types of applications.

In this chapter, we introduce a modeling approach based on BIP along with

the verification of the essential properties that is discussed in Section 4.5.1.

Moreover, our approach can address additional verification needs that are de-

tailed in Section 4.5.2. Within the development cycle of BPEL processes, cor-

rectness verification has to take place after process specification. As opposed

to testing, verification is the only way to check functional properties against a

process model with full coverage. If a property is violated, the needed correc-

tions for the BPEL program are identified based on the automatically generated

counterexample execution trace [84]. If all essential correctness properties have

been verified, then extra-functional aspects can be addressed, such as the veri-

fication of security, e.g. through an extension of our approach in [87], or timing

properties, e.g. through statistical model checking [89]. The verification proce-

dure is iterated until all properties are met.

68 Chapter 4. Compositional execution semantics for BPEL programs

4.3 BIP model for BPEL processes

4.3.1 BIP components and model structure for the BPEL ac-

tivities

Every BPEL process is defined by a single topmost scope that encloses variable

declarations and stateful web service interactions through exchanged messages.

Such a process is translated into BIP by preserving the structure of the used

activities. Each activity is represented by a BIP component, called activity com-

ponent, which explicitly defines the processing of that activity by the BPEL en-

gine. Basic activities, like service invocations, are represented by the atomic BIP

components of Table 4.1, apart from the assign activity, which is represented

by one or more copy components.

BIP comp. Behavior description

receive handles a message receipt

reply handles reply to a message

invoke invokes a service operation

compensate activates compensation of one or more

scopes

valid validates a variable’s value w.r.t. its

definition

empty null behavior

exit activates abrupt interruption of the

process

throw generates a fault

rethrow re-throws a caught fault

copy sets value to a variable, partner link

or property

Table 4.1: Atomic components for basic activities of BPEL.

BIP comp. Behavior description

data manages access to the scope’s data

timer fires timer events

listn handles multiple message receipts

links manages access to synchronization

links

rdlnk reads a set of synchronization links

wrlnk sets a synchronization link

loopctrl controls loop execution

condctrl controls conditional execution

Table 4.2: Atomic components for the BPEL semantics.

Structured activities are modelled as BIP compounds that enclose lower level

activity components, as well as additional atomic components from those listed

Chapter 4. Compositional execution semantics for BPEL programs 69

in Table 4.2. For every structured activity a set of connectors is generated, which

is referred to as the glue, and may be accompanied by coordinating components

that are attached to the glue. These coordinating components are introduced in

Section 4.4 and they are not shown in the overall model structure.

PROC is the topmost component of the BIP model for a BPEL process. Its

enclosed components specify the process’s normal behavior (norm) and its asso-

ciated fault-handlers (faulthlrs), that are executed as a response to a thrown

fault. One more component is used to store the shared data, such as the pro-

cess variables. Other shared data are the partner links and correlation sets,

which identify services and communicating sessions respectively. The norm

component encloses a primary activity (act) and event-handlers (evhlrs), that

are scopes activated by timers or message receipts.

The overall model structure is further exemplified using phrase structure

rules, where each rule refers to a compound (enclosing component shown in

“<” and “>”) in the left part and its constituents (enclosed components) in the

right part. The high level structure discussed so far is reflected by the following

two rules:

〈PROC〉 ::= 〈norm〉 〈faulthlrs〉 data

〈norm〉 ::= 〈act〉 〈evhlrs〉

The components shown in the right-hand side of the PROC rule are also used in

scope components, along with two more handlers: the compensation-handler

(comphlr) that specifies behavior for the reversal of the scope’s effects, and

the termination-handler (termhlr) that controls the forced termination of the

scope.

〈scope〉 ::= 〈norm〉 〈faulthlrs〉 〈termhlr〉 〈comphlr〉 data

The lower-level structure of the mentioned handlers is given by the following

rules:

〈evhlrs〉 ::= ((listn | timer) 〈evscope〉)+ | empty

〈faulthlrs〉 ::= (catch 〈act〉)+

〈comphlr〉 ::= 〈act〉
〈termhlr〉 ::= 〈act〉

with the “|” representing the allowed alternatives and the “+” showing the occur-

rence of one or more components of the preceding type. The evscope activity

70 Chapter 4. Compositional execution semantics for BPEL programs

component has the same structure with the scope, though it has a different

glue. This allows to address the prescription of the BPEL standard, which fore-

sees a special scope for event handlers that treats the handler’s starting activity

(modelled by a listn or timer) as if it were part of its main activity.

The execution of parallel activities can be synchronized through synchro-

nization links: an activity can defer other activities through outgoing (source)

links and can be deferred through incoming (target) links. The components

source and target handle the associated links using one wrlnk and one or

more rdlnk.

〈source〉 ::= rdlnk+ wrlnk

〈target〉 ::= wrlnk rdlnk+

The rules and the details for modelling each activity are as follows:

〈act〉 ::= 〈source〉? 〈target〉? (receive | reply | invoke | compensate | valid

| empty | exit | throw | rethrow

| 〈assign〉 | 〈seq〉 | 〈flow〉 | 〈loop〉 | 〈pick〉 | 〈if 〉 | 〈scope〉)
〈assign〉 ::= copy+

〈seq〉 ::= 〈act〉+
〈flow〉 ::= links 〈act〉+
〈loop〉 ::= loopctrl 〈act〉+
〈pick〉 ::= ((timer | receive) 〈act〉)+

〈if 〉 ::= condctrl 〈act〉+

where “?” specifies optional occurrence of the preceding component type. Struc-

tured activities enclose one or more activity components and control their ex-

ecution either sequentially (seq, if, loop), in parallel (flow), or by deferred

activation (pick).

4.3.2 Interface and behavior of activity components

The observable behavior of activity components [90] fulfills certain assumptions

(model abstractions). This enables the compound components to be defined

based on the assumed observable behavior of the combined components i.e.,

the glue is not tied to the combined behaviors. For each activity component,

its assumed observable behavior is ensured by construction, throughout the

incremental building of the BIP model.

Chapter 4. Compositional execution semantics for BPEL programs 71

The fact that the glue is not tied to the combined behaviors allows the pro-

cessing of each activity, i.e. the handling of control and dataflow events, to be

placed locally to the corresponding activity component. The dataflow events com-

prise ports for reading/writing data to components that manage shared data.

The control events include: (i) commands, that tell an activity what to do (e.g.

start or terminate), and (ii) notifications, that are generated by the activity (e.g.

upon finishing or throwing a fault). The basic interface of activity components

consists of ports for the propagation of distinct commands and notifications.

Command ports of activity components are fired by their outer components,

with the aim to:

• start them (start);

• disable them (dsbl), for some execution scenario;

• terminate them (term), due to a fault in a parent scope;

• compensate them (rvs), during the compensation of a whole scope.

On the other hand, notification ports are fired by activity components, when

they:

• throw a fault (fault), which can be any BPEL- or WSDL-defined fault;

• have finished (fin), either successfully (not disabled/terminated or having

thrown a fault) or unsuccessfully;

• complete their compensation (rvsd).

The observable behavior of an activity component with respect to some goal,

is formed by hiding the actions that are of no interest for this goal. Thus, the

component might have different observable behaviours for different goals. Let us

consider the behavior of the empty activity component in Figure 4.3 and that of

the activity component in Figure 4.4, whose τ and fault actions are hidden. We

define the bisimulation relation R = {(e0,s0), (e1,s1), (e1,s3), (e1,s4), (e2,s2)}

between the states of the two behaviors, i.e. one relation such that the related

states imitate each other’s observable actions leading to states that again are

related. We say that any two behaviors are observationally equivalent, if and

only if there is a bisimulation relation R with (e0,s0) ∈ R, where e0 and s0 are

their respective initial states. It can be easily shown that the two behaviors

72 Chapter 4. Compositional execution semantics for BPEL programs

in Figures 4.3 and 4.4 are branching bisimilar [91], which is an observational

equivalence notion that preserves the branching structure of behaviors. This

means that R preserves the computations together with the potentials in all

intermediate states that are passed through, even if hidden actions are involved.

Figure 4.3: empty activity be-

havior.

Figure 4.4: Example of activ-

ity behavior.

One general assumption for defining the glue is that the behavior of all activ-

ity components is branching bisimilar with the behavior of the empty compo-

nent. This assumption is ensured by construction for all activity components;

in atomic components, this is easily implemented in their behavior, which con-

sists of limited control locations, while in compounds, the glue and possibly

additional coordinating components enforce the externally observable behavior.

The state of service interactions

Since the lifetime of service interactions may span the execution of multiple

activity components, the data components have to accommodate variables for

sharing the service interactions’ state. These variables store: (i) the (url) loca-

tion of partner link services, that may change dynamically, (ii) sets of correlation

properties that are instantiated and accessed by activity components for service

interactions (receive, reply, invoke, listen), (iii) the enabled Inbound

Message Activities (IMAs) for routing messages to the listening receive com-

ponents, and (iv) the open IMAs, that identify incomplete inbound synchronous

requests. More details for the representation of the service interactions’ state

and the detection of associated faults are given in B.1.

Chapter 4. Compositional execution semantics for BPEL programs 73

BPEL variables

The variables of a BPEL process store the messages’ content or other business

specific information that has to be shared among the activities (of a scope or

globally), which may influence the control flow. Their data types are either

XML types or WSDL message types with partitions, called parts. In our model,

XML typed variables and variable parts are represented as local variables in the

data components, which are accessed by activity components with dataflow

processing, such as the copy and receive components. The read and write

ports of activity components are used to read and assign variables of data,

respectively.

For the values of BIP variables , we have adopted a data abstraction approach

(details are given in B.1), which allows to identify (i) variables that have not been

initialized, (ii) pairs of variables that hold the same value, and (iii) variables that

are not assigned within a loop body.

4.3.3 Atomic BIP components

Each atomic BIP component is parameterized according to the modelled activ-

ity. We adopt the common implementation approach of BPEL engines, which

serialize the execution of basic activities. For this purpose, we enforce a mutual

exclusion management in which the components for basic activities perform

their execution (i.e., critical section) one by one; they remain blocked until they

get the lock through their allow port, and invoke their done port to release the

lock.

As an example, we show in Figure 4.5 the receive component for a syn-

chronous operation and we discuss its differences from a receive component

for an asynchronous operation. The receive is completed in two consecu-

tive processing phases, one for the establishment of message listening, and one

for the processing of the received message. The actions in these phases are

included in two critical sections and the component remains idle in-between.

Specifically, the component includes ports in order to:

74 Chapter 4. Compositional execution semantics for BPEL programs

s0 s1 s2 s3

s10s11

s15

s4

s5

s6

s13

s12

s9 s8

s14

s7

start

dsbl

term

rvs

rvsd

fin

allow

term

read

term

done

enabl_ima

term

fault

[cs_viol]

fault

[cf_rcv]

done
term

rcv_msg
amb_rcv

term

allow

fault

[inval_var]

open_ima

[cf_req]

write

fault

disab_ima

done

receive

Figure 4.5: receive component for synchronous operation.

• read the expected partner link and correlation sets (read),

• establish message listening (enabl_ima),

• stop message listening (disab_ima),

• detect an ambiguous receipt (amb_rcv),

• receive the message (rcv_msg),

• allow, to get the execution rights in order to begin processing

• enlist the request identifier (open_ima),

• store the message and the correlation sets (write).

• done: yields execution

Component actions are guarded by the boolean variables shown in brackets,

which represent detected faults. Possible faults are the correlation violation

(cs_viol), conflicting receive (cf_rcv) and conflicting request (cf_req). Moreover,

the ambiguous receive fault is detected when the amb_rcv port interacts with

another listening component and the invalid variable (inval_var) is thrown if the

message does not match the expected structure. , and a WSDL-defined fault

(fault_msg) if the message is a WSDL fault message.

The receive component for asynchronous operations does not have the

open_req port, since there is no need to enlist the requests of asynchronous

operations; thus, no conflicting request faults are thrown in this case. In B.3,

we expose the details of the other atomic components.

Chapter 4. Compositional execution semantics for BPEL programs 75

4.4 Compositional semantics definition

The execution semantics is enforced onto the composed behaviors of BIP com-

pounds through coordination defined by the glue and additional components. A

compositional definition is enabled by the principle that the coordination is not

tied to the combined behaviors (shown in Section 4.3.2) and preserves the exe-

cution semantics of combined behaviors (no additional behavior is introduced,

as explained below).

The acceptable behavior for the BIP compounds representing structured ac-

tivities is captured in the form of safety properties defined over ports. To ease

readability, all properties are defined using natural language statements. A set

of general safety properties for any compound C with n enclosed components

A1. . .An is the following:

- if C is disabled (dsbl port), so do all Ai .

- if C is terminated (term port), so do all the Ai that can be terminated.

• Ai can atomically cause the component to throw a fault, if the component

does not handle it.

- C is finished (fin port) only if all Ai are finished.

• C is not finished before disabling each Ai that will not start.

- C’s compensation is completed (rvsd port) only if all Ai have been compen-

sated.

Moreover, the order of compensation (rvs port) for all Ai is the reverse order of

their start port activation, if there is an imposed order (e.g. for sequence).

Otherwise, the compensation of all Ai is started simultaneously.

The aforementioned safety properties, as well as the invariants for basic ac-

tivities and additional safety properties specific to each structured activity aim

to formally capture the informally defined BPEL semantics from [92]. The invari-

ants for the basic BPEL activities are enforced within atomic BIP components by

design, such as in Figure 4.5 and in the components of B.3. For the structured

BPEL activities, we introduce architecture styles that enforce safety properties

- like those mentioned - associated with their semantics. This means that each

76 Chapter 4. Compositional execution semantics for BPEL programs

property is built-in by construction within the used architecture style, i.e. it is

implied by the behavior of the coordinating component(s) plus the used glue.

In the BIP compound for a structured activity, the architecture styles are

instantiated into concrete architectures by defining a mapping from the styles’

parameters to the compound’s enclosed components (operands). This involves

also a mapping of the parameters’ ports to operands’ ports. According to the

results presented in [14], the safety properties of combined architectures are

preserved in the compound; this result is also valid when the architectures

are composed hierarchically. Moreover, all compounds only interfere with the

lower level components by applying synchronization on their ports and synchro-

nization always preserves the component invariants. In this way, we follow the

principle of compositional semantics definition mentioned in the first paragraph

of this section.

The following properties and the used architecture styles are specific to the

most important structured activities. Details for the other activities are exposed

in B.2.

4.4.1 BIP compound for the flow

Definition 4.4.1. A flow compound encloses one links component and n

components act1. . .actn that contain k rdlnk and m wrlnk components in

total. The following properties have to be satisfied:

- if flow is started, so do all acti .

- some rdlnki can read a link (from links), only if some wrlnkj has set

the link (to links).

For the properties of the flow compound, two architecture styles were com-

bined, namely the Parallel style in Figure 4.6 and the Synch. links mngmt style

shown in Figure 4.7. The Parallel style enforces the first property of Def. 4.4.1

and the general safety properties that hold for any compound. The Synch. links

mngmt enforces the second property of Def. 4.4.1.

Chapter 4. Compositional execution semantics for BPEL programs 77

All architecture styles are applicable to operands that: (i) have at least the

ports assumed for the replaced parameter, and (ii) are branching bisimilar with

the behavior assumed for the replaced parameter. For example, for the pa-

rameters Ai of the Parallel style (Figure 4.6) we assume the ports of the basic

interface and the behavior of the empty component. The style is applicable

to act1. . .actn that fulfill these assumptions for Ai . The style’s coordinator P

mediates the interactions of the basic interface of all Ai with the environment,

so that the coordination fulfills the general assumption of Section 4.3.2: the

observable behavior of the compound is branching bisimilar with the empty

component. If the compound is started (P.start), all Ai are started due to a ren-

dezvous connector (n : 1 means that the connector connects all Ai). Therefore,

the first property of Def. 4.4.1 is enforced, when the style is used in the flow

compound. Furthermore, the connectors in Figure 4.6 that connect the dsbl,

term and fin ports enforce the general safety properties.

The Synch. links mngmt style manages the access of m parameters WRlnk

and n RDlnk to the synchronization links of the Lnk parameter. Each WRlnk

sets a link through the set port, whereas each RDlnk reads a set of links through

the get port. Ports set and get are connected to Lnk through the WRVAR (resp.

RDVAR) connectors that enable exchange of data. A RDlnk can read a set of

links (RDlnk.get), only if some WRlnks have set these links (WRlnk.set), since

each Lnk.get port is assumed to be guarded with this condition. Therefore, the

second property of Def. 4.4.1 is enforced, when the style is used in the flow

compound. Since for the RDlnk and WRlnk parameters we assume a trivial

behavior with a single state, the style is applicable to the rdlnk and wrlnk

components of act (set and get ports are exported by act).

4.4.2 BIP compound for the scope and PROC

Definition 4.4.2. A scope compound encloses the components (i) norm, (ii)

faulthlrs, (iii) termhlr, (iv) comphlr and (v) data. Let us also consider that

the enclosed components (i) to (iv) contain k rddat and m wrdat components

78 Chapter 4. Compositional execution semantics for BPEL programs

Figure 4.6: Parallel style

Figure 4.7: Synch. links mngmt
style

in total, which read (resp. assign) variables stored in data. The following

properties have to be to satisfied:

1. if scope is started, then norm is started.

2. if norm throws a fault and norm is terminated while termhlr, comphlr

are disabled, then faulthlrs is started only if norm has been termi-

nated.

3. if scope is terminated while norm is executed, norm is terminated and

also faulthlrs, comphlr are disabled, then termhlr is started only if

norm has been terminated.

4. scope is finished successfully, only if norm has finished, without being

disabled, terminated or having thrown a fault.

5. scope is finished unsuccessfully, only if faulthlrs or termhlr have

been executed and finished.

6. if faulthlrs throws a fault, the fault is thrown by scope, then faulthlrs

is terminated only if scope is terminated (i.e., by the enclosing scope that

will handle the fault).

7. comphlr is started, only if a successfully finished scope is compensated.

8. scope is finished only if norm, faulthlrs and termhlr are finished

and while comphlr is not being executed.

9. the values of variables in data are modified only if they are assigned by

some wrdat.

Chapter 4. Compositional execution semantics for BPEL programs 79

Figure 4.8: Coordinator of the Scope style

For the properties of Def. 4.4.2 two architecture styles were combined, namely

the Scope and one Data mngmt. The Scope style is used only in scope, in or-

der to fulfill properties (1) to (8). The style has a coordinator that is shown in

Figure 4.8 and takes as parameters the norm (NR), faulthlrs (FH), termhlr

(TH) and comphlr (CH). The coordinator’s role is to export the scope’s basic

interface and to coordinate the parameters with respect to their basic interface.

This happens under the assumption that faulthlrs, termhlr and comphlr

are branching bisimilar with the empty. The coordinator enforces property (1)

by starting norm (startNR port) after the scope is started (start port). For prop-

erty (2), a fault thrown by norm (faultNR port) is followed by the preparation

needed for starting fault handling (preFH port), that involves terminating norm

and disabling faulthlrs and comphlr. Afterwards, norm must first finish

(finNR port) before faulthlrs is started. Property (3) is treated accordingly.

For property (4), the coordinator enables the succ port after norm has finished

without being terminated or thrown a fault. Similarly, for property (5), the coor-

dinator enables the fail port after either faulthlrs (finFH) or termhlr (finTH)

is finished. For property (6), the coordinator enables fault after faulthlrs

has thrown a fault (faultFH). Then, it waits for the scope’s termination (by

the enclosing scope that will handle the fault) before invoking the termination

of faulthlrs (termFH). Property (7) holds because the coordinator disables

comphlr whenever the scope is not going to finish successfully, during the

preparation for termination (preTH port) and fault handling (preFH port). Fi-

nally, property (8) is enforced by starting comphlr (startCH) after scope’s

compensation is invoked, provided that scope has finished successfully.

80 Chapter 4. Compositional execution semantics for BPEL programs

Figure 4.9: The Data mngmt style

The Data mngmt style in Figure 4.9 is used to fulfill property (9). The style has

one parameter D that stores some variables, m parameters W, and n parameters

R. The W have ϕ ports for assigning variables, whereas the R have χ ports for

reading variables. The style is applied to each scope by mapping the wrdat

and rddat components to the W and R parameters, while the data component

is mapped to D. Property (9) is fulfilled by connecting data exclusively with the

wrdat components that are enclosed by the scope.

The PROC compound uses the Proc style, whose coordinator is different from

the coordinator of the Scope style with respect to the following four aspects: (i)

it does not have the branches starting with term and disbl, since PROC is a root

component and cannot receive events that come from enclosing components,

(ii) the faultFH is not followed by the faulthrs termination, but immediate

interruption of the process occurs instead, (iii) if an exit component is executed

within norm or faulthlrs (i.e. invoking coordinator’s exit port), then the

interruption of the process occurs, and (iv) it does not need to enable the ports

succ, fail, rvs and rvsd.

4.5 Verification of correctness properties

In the verification procedure of Figure 4.10, we attach a fault injection compo-

nent, as well as observer automata (monitors) [37] for observing the state of the

BPEL process model, whereas the state space exploration takes place with one

of the BIP tools [34]. The building of monitors, that is discussed later, requires

information given by the user in a configuration file. The procedure steps are

shown with rectangles and the input and output data for each step with dotted

lines. More specifically, the individual steps are as follows:

Chapter 4. Compositional execution semantics for BPEL programs 81

Input: (i) the BPEL program and its WSDL definition files , (ii) the configuration

file

Output: the verification verdict

Step 1 BPEL-to-BIP translation. The BIP model is built together with the moni-

tors and the fault injection component through the translation of the BPEL

program and its WSDL definition.

Step 2 Verification. The verification output is produced by executing the BIP

state space exploration tool. The output contains diagnostic messages ap-

pended by the monitors, the activity components and the BIP exploration

tool.

Step 3 Analysis of verification. The verification verdict for each property is

produced. For some properties, it suffices to inspect the diagnostics in the

verification output, while for others a post-processing program is used
1
.

If a property is found to be violated, a counterexample execution trace is

generated through post-processing the verification output with a dedicated

program.

Figure 4.10: The BPEL process verification procedure.

In the following subsection, we discuss specifically the verification of the

essential correctness properties from Section 4.2. Moreover, the verification

of other important properties (standard BPEL faults, properties specific to the

application functionality and compliance with a session specifications) is dis-

cussed in Section 4.5.2.

1
The post-processing program and the configuration file template are available online in [85].

82 Chapter 4. Compositional execution semantics for BPEL programs

4.5.1 Essential properties

No blocking

To detect blocking by receive activities, we compose the process model with a

fault injection component that consists of two non-deterministically selected

states: the state representing availability of partner links for communication

(AVAIL state) and the state in which partner links cannot send messages (NAVAIL

state). This component also exports a send port, enabled at the AVAIL state,

which is synchronized using a rendezvous connector with the rcv_msg ports

exported by the receive components. If the process model can be blocked by

an incomplete receive, then the state-space exploration will detect deadlocks

in the execution paths, in which the NAVAIL state was reached. Indeed, the

rcv_msg ports will not be triggered if the NAVAIL state is reached and a deadlock

will be met unless each receive is stopped by a timer component. The

attachment of the fault injection component only affects the model by restricting

the execution traces to those observed when a failure in the process environment

exists. Thus, the execution semantics of the process is not changed.

Process termination

We detect livelocks caused by eternal loops that prevent process termination.

In particular, we detect execution paths in which the variables used in the loop

exit conditions are not updated during the loop’s execution. For each evaluation

of an exit condition, the values of variables are compared with the values they

had in previous evaluation. This check is integrated within the loopctrl

components, which print a diagnostic message during state exploration when

reaching states where the aforementioned condition is detected.

No dead code

Dead code consists of basic activities, which are not started in at least one

execution path. Such activities are detected using a script that processes the

Chapter 4. Compositional execution semantics for BPEL programs 83

output of state-space exploration. During the exploration, each basic activity

component prints its id twice: in one message at the initial state and in a second

message once it is started. The output is post-processed by a script that adds

the ids of the messages printed at the initial state in a hash set and removes the

ids of the messages at starting. The ids that remain in the hash set after the

output is processed indicate the components that are dead code. Note that the

post-processing algorithm scales linearly with the number of printed messages,

since the cost for adding and retrieving each id in the hash set is O(1) in the

average case.

No incomplete asynchronous request-response

In order to verify that every asynchronous request-response pattern is responded

in all execution traces, we introduced two monitoring components for observ-

ing the incoming (resp. outgoing) patterns. The monitor of outgoing patterns

observes the dispatch of the first message (request) to partner services and

the receipt of the second message (response). Upon process termination, if

the dispatched requests are more than the received responses, the monitor

outputs the property’s violation. Similarly, the monitor of incoming patterns

prints a message, if more receipts of requests are observed than the dispatched

responses. The attachment of monitors does not affect the execution traces,

because they are connected with the activity components using broadcast con-

nectors, through which only the activity components can trigger the monitors

and not the other way around. Thus, the execution semantics of the process is

not changed.

For this check, it is necessary to define which request and response messages

are associated, since this cannot be derived from the WSDL description. This

mapping is given by the user in a configuration file.

84 Chapter 4. Compositional execution semantics for BPEL programs

4.5.2 Additional correctness poperties

Our BPEL process models can be used for verifying properties that are defined

in the context of the application’s functionality. For example, in [84], we verified

a purchase order BPEL process with respect to the property: “If an invoice

has been issued, the process must not complete before sending the invoice to

the client”. Such properties are verified through the use of application-specific

observer automata.

The properties related to standard BPEL faults, such as those checked in [93]

(message delivery atomicity, no session ambiguity, possible inputs) and [94] (the

so-called conflicting receive in BPEL) are checked by the activity components,

which throw these faults. Thus, we represent the handling of every such fault

by the responsible scope.

Besides that, our model can be checked for compliance with the acceptable

message sequences within a session, as it is demonstrated in [95]. This en-

tails the attachment of an automaton representing the language of acceptable

message sequences, while observing the exchanged messages identified by the

session. The process’s compliance is then verified, if the observer automaton

is in an accepting state, when the process is terminated. Properties like those

in (4) of Section 4.2 are examples of compliance with a language of sequences

with two exchanged messages (asynchronous request and response). An exam-

ple language for a complete session between the process of Section 4.2 and the

Airline Booking service is shown in the observer automaton of Figure4.11. Tran-

sitions are labelled with send and receive message actions of the BPEL process

that are allowed at each state. Valid message sequences lead to the states 4 and

5 which enable the port valid. If a message is exchanged that is not allowed, a

non-accepting state is reached that is not shown and the message sequence is

rejected. Thus, the process is not compliant with the session language specifi-

cation, if there is an execution path in which it sends, for example, cancelBook

twice.

Chapter 4. Compositional execution semantics for BPEL programs 85

Figure 4.11: Observer automaton for a language of acceptable messages.

4.6 BPEL to BIP translation

A code generation embedding [96] was developed, such that BPEL is translated

into BIP by parsing BPEL programs and their referenced WSDL descriptions.

Our algorithm implements a single pass syntax-directed translation [97]

through a recursive decent parsing of the BPEL XML tree and a postorder call

of the BIP code generation function for the tree nodes. The code generation

function is invoked only for the XML elements corresponding to BPEL activi-

ties. A code fragment, that is generated upon each function call, is part of an

incrementally built BIP model. The symbol table structure stores information

derived from the parsing of the BPEL XML tree (e.g. visible BPEL variables) and

the referenced WSDL descriptions, as well as from the code generation results.

The latter is necessary for building a hierarchical model, in which each BIP

compound refers to the enclosed BIP components and their exported ports.

The code generation function uses templates of code for BIP components with

placeholders. The tokens of XML elements (tree nodes), such as the element tag

and attribute values, determine the template to be used. The placeholders are

replaced by BIP code that is generated based on: (i) information retrieved from

the symbol table, and (ii) the attribute values of the XML element.

Figure 4.12 shows the template of a BIP code fragment that models the copy

activity. The template starts with the declaration of the copy atomic component,

which includes data (lines 3-4), a set of states (line 6) and transitions (lines 8-13).

The template accepts two input parameters: () an auto-incremented component

identifier i, () a list var[k] of size K with component variables for storing the

message parts. The placeholder for i is noted with <i>. The lines ending with

/* for k=1..K */ comments (i.e. lines 4 and 10) are repeated for each element in

86 Chapter 4. Compositional execution semantics for BPEL programs

1 atomic type copy_<i>()

2 /* ... sample of data ... */
3 data int err

4 data int <var[k]> /* for k = 1 .. K */
5 /* ... sample of states ... */
6 place s0, s1, s2, s3

7 /* ... sample of transitions ... */
8 initial to s0

9 on read_<i>from s1 to s2 do {

10 if <var[k]>==-1 then err=10 fi /* for k = 1 .. K */
11 }

12 on fault from s2 to s3 provided (err>0)

13 on write from s2 to s3 provided (err==0)

14 end

Figure 4.12: Template of BIP code for the copy activity

s0

..
.

s1 s2

s3

read_<i>
if (<var[k]>==-1) { err=10; } /* for each k */

write
[err==0]

fault
[err>0]

Figure 4.13: Behavior of the copy template

var[k]. The behavior corresponding to the transitions of this template is shown

in Figure 4.13. Specifically, the copy starts from state s0. Let us consider

that it reaches s1, where it reads the message parts that should be copied (port

read_<i>). After checking whether there are uninitialized message parts, either

the message parts are copied to the new variables (port write_<i>) or a fault is

thrown (port fault).

The template of BIP code for the assign activity component is shown in

Figure 4.14 and the component’s structure is illustrated in Figure 4.15. The

template starts with the declaration of the compound (line 1) and the enclosed

copy components (line 3). Lines 5-7 show the declaration of a connector that

synchronizes all the copy.write ports. This connector exports a write port at

the assign’s interface (line 9). A number of read ports are also exported, one

for each included copy.read port (line 10). On the other hand, a single fault

port is exported for all included copy.fault ports (lines 11-13). The template

accepts three input parameters: () an auto-incremented component identifier

Chapter 4. Compositional execution semantics for BPEL programs 87

1 compound type assign_<i>()

2 /* ... enclosed components ... */
3 component <cp[k]> C<k> /* for k = 1 .. K */
4 /* ... sample of connectors ... */
5 connector <wrConn> write_<i>1(

6 C<k>.write , /* for k = 1 ..K */
7)

8 /* ... sample of exported ports ... */
9 export port write_<i>1.xpr as write_<i>

10 export port C<k>.read_<cp[k]> as

read_<cp[k]> /* for k=1..K */
11 export port

12 C<k>.fault, /* for k=1..K */
13 as fault

14 end

Figure 4.14: Template of BIP code for the

assign activity

write

faultread_<cp[1]>

write

fault read_<cp[N]>

write_<i>

faultread_<cp[1]> read_<cp[N]>

assign_<i>

<cp[1]> .. . <cp[N]>

Figure 4.15: Behavior

of the assign template

i, () a list cp[k] of size K with the enclosed copy components () the connector

wrConn used for the assignment of message parts.

4.7 Experiments on the verification of BPEL pro-

grams

Table 4.3: Statistics and verification results for analyzed BPEL processes.

Process ID #

comp.

#

conn.

#

RSS

transl.

time

verif.

time

no

block.

process

termin.

no

dead

no

incompl.

AmericanAirlines_12 42 216 12533 6471 21112 - - 0 of 13 1 of 2

AmericanAirline_59 22 127 69 3632 8 - - 0 of 4 1 of 1

BookRating_50 20 129 69 4496 18 - - 0 of 4 0 of 0

BookStore1_52 40 243 1791 5118 1204 - - 1 of 8 0 of 3

BookStore2_49 42 247 1791 4834 1211 - - 1 of 8 0 of 3

BuyBook_48 85 454 2437 6441 567 fail - 2 of 13 0 of 1

BuyBook_51 89 1359 49295 15967 43737 fail - 29 of 54 0 of 3

BuyBook_53 50 836 13607 9933 3242 fail - 2 of 25 0 of 5

BuyBook_54 27 326 983 6167 245 fail - 0 of 15 0 of 5

BuyBook_55 34 341 1707 9796 349 fail - 0 of 19 0 of 5

DeltaAirline_56 13 90 69 3736 15 - - 0 of 4 0 of 1

Employee_57 12 89 69 3712 18 - - 0 of 4 0 of 0

Travel_58 25 243 907 5721 209 fail - 0 of 13 0 of 3

TravelApproval_41 168 811 32907 11089 24364 - pass 0 of 27 0 of 0

The scalability of our analysis in real-size BPEL programs and the effectiveness

of the verification approach were tested using a number of BPEL programs

of various sizes from [98] and [99]. The programs mentioned in the rows of

88 Chapter 4. Compositional execution semantics for BPEL programs

Table 4.3 were first translated and then analyzed with respect to the essential

properties of Section 4.5.1.

For each program, Table 4.3 summarizes in the corresponding row the statis-

tics for the size of the BIP model, the translation/verification time and the ob-

tained results. The shown times in ms were measured on a 64-bit machine

with an Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz and 16 GB RAM running

Ubuntu 14.04. The first five columns show the number of components, con-

nectors and reachable states (RSS), as well as the CPU time for translating and

verifying the program. The worst time taken for the program translation was 16

sec, whereas for the program verification was almost 44 sec. The translation

times were found to have a statistically significant linear relation to the number

of states of the generated BIP model (B.4).

The last four columns show the verification results, for each one of the prop-

erties of Section 4.5.1. We note with dash the cases in which a property does

not raise some correctness issue or a property’s definition is not applicable. For

example, we don’t need to verify “no blocking” in programs, which do not wait

for incoming messages other than the first messages that create new process

instances. Also, “process termination” is not relevant to programs that do not

have loop activities. The verification result for the two aforementioned proper-

ties is noted with either “pass” or “fail”. For the two other properties, Table 4.3

shows the number of violation cases out of the total number of checked cases.

For example, for the property “no dead code”, it is shown the number of non-

reachable basic activities together with the total number of basic activities. The

last column shows the number of incomplete asynchronous requests and the

total number of asynchronous requests.

The “no blocking” property is violated in all programs in which it was checked.

By inspection of the execution traces it was found that only the programs Buy-

Book_48 and BuyBook_51 could avoid the eternal waiting for messages using

timers, but not in all cases. The “process termination” property was relevant

only for the TravelApproval_41 program, where it was found to be satisfied. The

property “no dead code” was violated in five programs. More specifically, we

Chapter 4. Compositional execution semantics for BPEL programs 89

detected fault handlers that cannot be started. Some of these handlers were

included, in order to be invoked, if a partner service is not available. How-

ever, such a fault can be thrown only from BPEL engines, which support this

non-standard fault. On the other hand, we do not provide built-in support for

non-standard faults and for this reason the corresponding fault handlers can-

not be started. Finally, two programs were found, in which the property “no

incomplete requests” was violated. By inspection, we confirmed afterwards that

these programs do not respond in all cases to services that invoke the process.

4.8 Related Work

In order to place our approach in the broad range of formal methods for the anal-

ysis of service compositions, we start with the comparison framework in [82]. In

that article, the authors review the pros and cons of 35 related works classified

in three categories of semantic models, namely automata or labelled transition

systems, Petri-nets and process algebras. The authors conclude that few of the

considered formal methods address in a satisfactory way the correctness prop-

erties for continuity of service delivery, and they specifically emphasize that only

a limited number of proposals support exception handling and compensations,

as is the case in our approach.

The works of [100] and [94] are the only BPEL formalization approaches

accompanied by available translators (the BPEL2oWFN and the BPEL2PNML

tools respectively). A comparison between the two frameworks is presented

in [101]. The resulting models of both approaches can be checked by tools that

verify temporal properties on Petri-nets. The models in [94] do not represent

data dependencies but they can be checked efficiently by tools that analyze

the structure of WF-nets. Such examples are the WofBPEL tool in [94], which

can check application-agnostic properties and the tool in [102] that checks

the conformance of a BPEL process model with respect to message logs. On

the other hand, models in [100] are built with an abstraction level that suits

the intended analysis goal, with the possibility to represent data dependencies.

90 Chapter 4. Compositional execution semantics for BPEL programs

These models can be checked for general and application-specific properties only

by reachability analysis, since they do not comply to the structural requirements

of WF-nets. Compared to the two aforementioned translation approaches, our

work exposes the way that the translation rules ensure the BPEL semantics and

provides more expressive means (i.e. the observer automata vs temporal logics)

for the definition of application-specific properties.

The distinct feature of our approach is a compositional definition of execution

semantics for BPEL, such that there is no need to model all possible combina-

tions of nested BPEL constructs. Similar approaches are those in [103], for the

BPEL, and in [104], for an artificial variant of OWL-S. The latter, does not feature

complex event handling structures like the ones offered by BPEL. Moreover, the

main goal of semantics definition was the implementation of an orchestration

execution engine, as opposed to ours, which is the verification of correctness

properties. In [103], the authors describe a stepwise refinement approach for

a structure-preserving modeling of BPEL in Event-B. This work, like ours, is

supported by a translation tool and considers both generic and custom correct-

ness properties for verification. We instead follow a constructive approach in

building the model by gradually imposing constraints while preserving invari-

ants. In another work [105], a BPEL translation to FIACRE [106] is presented.

FIACRE is a formal language for modeling both the behavioral and timing as-

pects of systems. This work is focused on the translation approach, rather than

a compositional semantics definition. No details are provided for the verifica-

tion of BPEL programs and for the scalability of their translation to programs of

various sizes.

In [107], the authors suggest the use of process algebras for the specification

and reasoning of BPEL processes. Their specification framework is based on

CCS (Calculus of Communicating Systems), which allows only to focus on web

service interactions, rather than also dealing with data exchanges and the com-

plex event handler structures in BPEL. For considering the effectiveness of BIP

in comparison with this and other process algebraic approaches, we recall [108],

where the authors realized a semantic gap between BPEL and the π–calculus.

They recognize that the notion of global state over BPEL computations, the

Chapter 4. Compositional execution semantics for BPEL programs 91

message passing and the combination of sequencing with concurrency create

interleaving and name binding behavior that cannot be faithfully represented

in π–calculus. As a consequence of these findings, in order to provide formal

semantics for the BPEL activities, they extend π–calculus with a transactional

construct. In [109], a two–way mapping is introduced between BPEL 4WS and

the LOTOS process algebra. The authors claim that LOTOS has the expres-

sive power to structurally represent BPEL processes, due to its compositionality

semantics. However, LOTOS lacks expressive primitives like for example the

broadcast connector in BIP.

The difference between the process algebra setting and that of BIP is thor-

oughly studied in [83]. The components in BIP are characterized by their be-

havior (labeled transitions) and their composition takes place by means of in-

teraction models and priority models, which essentially perform memoryless

coordination of behavior. On the other hand, in process algebras processes

evolve with the use of operators for composition. With respect to a notion of

expressiveness that characterizes the ability of some framework to coordinate

components, process algebras have been shown to be less expressive than BIP.

Regarding the compositional semantics definition, the coordination means of

process algebras do not preserve the invariants of composed behaviors, since

the behaviors evolve.

Moreover, it is worth comparing BIP with high-level modeling languages for

component-based systems. One language that has been used for modeling com-

positional construction of web services is Reo [110]. However, Reo’s semantic

model, which is the constrained automata, cannot preserve the BPEL process

structure due to lack of powerful coordination operators, such as those in BIP.

The lack of structure preservation, along with the fact that connectors in Reo are

stateful, would complicate the definition of a compositional semantics definition

for BPEL in Reo.

Finally, in an independent research work [87], our structural BPEL process

representation from [84] was extended towards the verification of service non-

interference, which is an interesting application of our compositional semantics

92 Chapter 4. Compositional execution semantics for BPEL programs

framework. To do so, the process designer must provide a configuration file

(.xml) with authorization rights, that is, a list of owners and authorized readers

- partner link services - for critical data. Then, the configuration synthesis algo-

rithm takes as input the BIP model of the BPEL program and the configuration

file and builds information flow dependency graphs by considering all implicit

and explicit data dependencies in the system. In case a total configuration file

can be generated by the tool, the system information flow is then considered

non-interferent with respect to the initially defined configuration. Otherwise,

the system is interferent and the system designer has to re-define the initial

configuration by utilizing the obtained counterexample. The calculated config-

uration is optimal, i.e. only data that need to be protected is configured as

critical. The ultimate aim is to reduce the security processing overhead like

cryptography encryption and decryption, signature calculation, certificate veri-

fication, etc.

Chapter 5

Application modeling for rigorous

design of IoT systems

5.1 Introduction

The Internet Of Things (IoT) aims at the seamless interconnection of heteroge-

neous embedded systems using the Internet technologies and infrastructure.

The connected things are network nodes equipped with low-memory and low-

power devices that collect data from the surroundings (sensors) and commu-

nicate it to the system, as well as smart objects that perform computations.

System integration is facilitated by operating systems [4], [111], [112], which

enable the nodes’ control by abstracting the provided hardware and software

resources.

Many different programming models have been proposed for the various types

of IoT applications [113]–[116]. In practice, software design relies heavily on

node programming close to the operating system level. This affects the develop-

ment time, the application reliability and its efficiency, due to the heterogeneity

of the involved things and the diverse interaction modes that should be taken

into account. In applications with a continuous communication, a fixed sched-

ule with periodic transmissions has to be designed. On the other hand, if

communication is event-driven, i.e., using dynamic scheduling, it may cause

packet collisions and message overloading. Moreover, applications are not eas-

ily adapted to evolving needs, especially when they are deployed in large-scale

93

94 Chapter 5. Application modeling for rigorous design of IoT systems

distributed environments [117].

The design complexity of an IoT application is reduced significantly, when re-

using web services [118], [119]. According to the REpresentational State Trans-

fer (REST) style, things are accessed as abstract resources located by Universal

Resource Identifiers (URIs) and they are manipulated through the Hypertext

Transfer Protocol (HTTP) or the Constrained Application Protocol (CoAP) [120].

However, IoT applications primarily involve asynchronous interactions, as op-

posed to the synchronous interactions found in most Internet applications. Fur-

thermore, a typical web service is a long-running executable process, whereas

IoT applications are targeted for resource-constrained things, which may have

to remain idle for relatively long periods of time.

To address the risks due to the overall design complexity, operating systems

provide tools [121], [122] for simulation-based validation of execution scenarios.

However, this analysis does not support an early validation of requirements at

design time. To this end, a model-based design process relying on formal model-

ing semantics can open prospects for an exhaustive analysis of the application’s

behavior, and a simulation analysis grounded on statistical confidence.

We therefore advocate a design flow based on BIP. The system design is spec-

ified in a Domain Specific Language, which is used to preserve the consistency

between the auto-generated BIP model and the application code. BIP is suitable

for building executable models of mixed software/hardware systems. With its

expressive coordination primitives, it facilitates the modeling of heterogeneous

computations and interactions (synchronous and asynchronous) that are in-

herent in service-based IoT applications [1], [88]. It also allows using resource

variables that model resources (e.g. time, memory, energy). Formal verifica-

tion of the BIP model through state space exploration guarantees behavioural

correctness properties. If the model is extended with stochastic variables, it is

amenable to statistical model checking [123], a simulation-based analysis with

statistical guarantees, i.e. finely controlled quality of results by various confi-

dence parameters. This allows validating quantitative properties derived from

requirements relevant to the IoT system’s architecture [124].

Chapter 5. Application modeling for rigorous design of IoT systems 95

Through analysis by state space exploration we ensure deadlock freedom and

other properties related to handling events in a timely manner, i.e. what we call

service responsiveness. With statistical model checking, we validate properties

for the correct operation of the system, under statistical assumptions for its ex-

ternal stimuli, as well as the message buffer utilisation, the collision occurrence

and the event queue blocking times [125]. These analyses are not supported

by today’s IoT operating system simulators. The concrete contributions of this

research work are as follows:

• We present our model-based design flow in the context of IoT WPAN (Wire-

less Personal Area Network) systems.

• The domain specific language (DSL) for REST applications running on

the Contiki OS [4] is then introduced; the focus on the Contiki OS was

motivated by the fact that it is open source and its design is transparent

to the development community.

• We illustrate the design of a REST sense-compute-control (SCC) appli-

cation for a building automation system. The BIP model was based on

the WPAN architecture standards and it was subsequently calibrated with

respect to Contiki OS runtime constraints.

• We provide results for properties derived from requirements for IoT WPAN

systems. Moreover, a study of the system robustness with respect to error

behaviors is presented.

The described approach supports a component-based design philosophy that

allows locating design errors to specific components, while boosting modular

design and reuse of model artifacts. Through the separation of concerns, it

enables the application development independently from the IoT system ar-

chitecture. Finally, based on the wide range of supported analyses, multiple

requirement types can be validated. The BIP models for the Contiki OS were

first presented in [126]. Compared to that work, we introduce here the design

flow with the DSL, and we present a SCC use case (a sense-only application

was shown in [126]). This allowed us to additionally provide statistical model

checking results for the system’s operation under assumptions for its external

stimuli.

96 Chapter 5. Application modeling for rigorous design of IoT systems

Section 5.2 provides the background on the foundations of IoT systems. Sec-

tion 5.3 introduces the model-based design flow. Section 5.4 presents the case

study and Section 5.5 comments on the benefits and the limitations of our

approach. A comparison with other design methods is also included.

5.2 Background

5.2.1 Foundations of IoT Systems

In an IoT system, the interactions among the different abstraction layers of

the mixed SW/HW architecture (Figure 5.1) impact the overall system’s per-

formance and efficiency. From another point of view, we often have different

applications overlapping in networks of heterogeneous things. The REST de-

sign is an architectural style that enables application-layer interoperability, i.e.

multiple applications can co-exist and share the same set of things. It is used in

the design of node-decentralized systems, but the nodes may be also integrated

in cloud-centric solutions [127], which are more often preferred. Here, we only

consider the former case. In most IoT operating systems, there is integrated

support for the design of REST applications.

Network stack

Operating system

Device drivers

Application software

Hardware architecture

Figure 5.1: Typical SW/HW architecture of IoT node

Message exchanges involve a “server” and a “client”. Clients send requests to

servers and receive responses; they are responsible for keeping the state of the

session with each server. Servers accept requests in the form of CoAP/HTTP

methods (e.g GET, POST, PUT, DELETE), for retrieving or modifying the state of

Chapter 5. Application modeling for rigorous design of IoT systems 97

their resources; every resource is uniquely identified by a URI and encapsulates

data, such as its description, location and state (e.g., sensed values, mode and

other). The same networked node may act as a server in some communications

(e.g. to provide access to sensor values), and as a client in others (e.g. to register

in a directory). There are also intermediary nodes, which implement both the

client and server roles in order to forward requests or translate them in other

protocols. For instance, a gateway node is used to mediate client requests and

forward them to the actual server; such nodes often encapsulate legacy services,

to improve server performance through caching and to enable load balancing

across multiple machines.

The IoT applications for WPAN systems can be classified into two broad cate-

gories according to how they manage their internal interactions and the interac-

tions with the physical environment. The Sense-Only (SO) applications collect

sensor data on occasions (intermittent sensing) or regularly. Such examples

are the smart heating systems, where one can remotely access and adjust the

in-house temperature using cloud services, as in [126]. On the other hand,

applications of the Sense-Compute-Control (SCC) category, both sense and coor-

dinate various control activities. Such activities range from e.g. taking proactive

actions for controlling the temperature. The main difference between these two

application categories is the autonomic operation of the SCC nodes, i.e. their

functioning without any human intervention.

5.2.2 Contiki and REST application programming

The Contiki OS implements a lightweight architecture for event-driven applica-

tions [4]. The node processes wait for events and handle them in event handlers

that run sequentially with respect to other handlers without being interrupted,

i.e. they finish upon running to completion. This means that lengthy event

handlers can absorb the processing capacity [128].

Processes communicate by posting synchronous and asynchronous events

to each other. Synchronous events are dispatched immediately when they are

posted, thus they are handled on the spot. The execution control returns to

98 Chapter 5. Application modeling for rigorous design of IoT systems

the calling process after the event handler has finished. On the other hand,

asynchronous events are en-queued by the OS for later dispatch. While syn-

chronous events target a single process, asynchronous events can target many

processes, which are called in a sequential iteration.

Events are identified by their type. Along with the predefined event types by

the OS, processes may define custom event types. Two commonly used prede-

fined events are the poll and exit events. Poll is a high priority asynchronous

event, which are dispatched before any other asynchronous event. Exit is posted

synchronously and causes its target process to run the exit handler and even-

tually end. As opposed to other handlers, the optional poll and exit handlers

are enabled at all control flow locations of the process.

The Contiki OS features a REST Engine API [129], for the definition of REST

service resources. A basic REST resource has a name, a URI-path and a set

of supported HTTP/CoAP methods. Each access is handled by a dedicated

resource handler that handles requests coming from the network. A REST En-

gine process listens to the network stack and transfers the requests/responses

from/to the resource handlers. The design of REST applications typically con-

sists of the following steps:

1. The REST resource definitions are provided and the resource handlers are

implemented or reused.

2. The application behavior is distributed to nodes. The server processes and

the client processes are implemented.

3. Appropriate parameters for the network are configured.

4. The functional behavior is debugged using the OS’s simulator.

5. When enough testing confidence is achieved, the client and REST server

implementations are deployed on system nodes.

The Cooja simulator [122] is used to validate the functional behavior and,

when simulating realistic workloads, the performance aspects of Contiki OS ap-

plications. However, such a simulation provides insight only for a limited set

of execution scenarios and cannot ensure by itself the diverse requirements of

an IoT system. Programming for resource-constrained devices involves various

Chapter 5. Application modeling for rigorous design of IoT systems 99

sources of delay that are hardy predictable. First, asynchronous communi-

cation within a node or between remote nodes is prone to delays, due to the

execution of other processes and the fact that events are handled sequentially.

Second, delays might occur due to message encoding and decoding, which de-

pends on the overall CPU load of nodes. Finally, there is a high probability of

packet collision in the network, if nodes access the communication medium si-

multaneously. In this case, all the involved nodes will back off the transmission

for a random period of time and retry after this period has elapsed. With Cooja,

the programmer is restricted to inspecting the behavior of application functions

and the performance of system nodes without being able to inspect the interac-

tions at the lower layers of the node architecture shown in Figure 5.1.

5.3 The BIP model-based design flow for IoT sys-

tems

An IoT project always starts from a set of requirements that can be classified

in two major categories: (i) the functional requirements that are related to the

application functionality, and (ii) the non-functional requirements related to the

performance and the efficiency of the IoT system, along with its robustness

characteristics. Functional requirements can be captured by formally specified

safety and liveness properties, but we may be interested also for a quantitative

characterisation of the correct operation of system under statistical assump-

tions for its external stimuli. Of particular importance are the non-functional

requirements, such as the enforcement of bounded latencies due to e.g. packet

collisions, and limited energy consumption.

We advocate a design flow using models that capture both the functional,

as well as the non-functional aspects of behaviour across all abstraction layers

of Figure 5.1, while supporting the separation of concerns during the system’s

design [130]. The separation of concerns is two-fold and involves not only the

separation of application from the lower abstraction layers, but also the separa-

tion of computation from the communication. The former is of vital importance

100 Chapter 5. Application modeling for rigorous design of IoT systems

as it enables the application development independently from the IoT system

architecture. The latter refers to the mechanisms and the primitives of the pro-

tocols employed in the network stack, which can be handled independently from

the data processing. In this context, developers can model and build artifacts

separately for the software and the various node architecture layers, which can

be also reused in similar applications. Those reusable model artifacts are eas-

ily instantiated and parameterized, with respect to the particular system under

design.

The design flow aims to the progressive development of the system, starting

from the modelling and the implementation of the application functions up to

their deployment onto the IoT system. The design philosophy is incremental

in nature, since it is based on the hierarchical composition of simpler model

artifacts, i.e. components, to form more complex components. An immediate

consequence is that the debugging and identification of design errors in simpler

components is easier and less time-consuming. In the course of the design

flow, the developers should be able to find the optimal deployment - from the

performance perspective at a given system scale - for the applications, while

ensuring their proper functioning.

Our models rely on the BIP component framework. We take care of preserving

the consistency between the BIP models and the corresponding application code

by generating both from a single design definition written in a proprietary DSL.

The DSL refers specifically to REST applications to be deployed onto IoT WPAN

systems with Contiki OS nodes. The language provides XML-based constructs

for the communication, the control flow and the scheduling of events in Contiki

OS nodes, as well as for mapping the application’s modules onto the system’s

nodes. The network configuration parameters are defined in XML files of the

format proposed in [131]. Each model modification for fulfilling a violated re-

quirement is respectively applied by the developer to the DSL design definition,

from which the updated Contiki code is generated.

The design flow is based on analysis techniques for guaranteeing the qualita-

tive and quantitative properties that capture the functional and non-functional

Chapter 5. Application modeling for rigorous design of IoT systems 101

Modeling

Code

generation
4

Transformation for

System Model

Fault

(BIP)
model

Fault

injection

Model
(BIP)

Application

System

Model

(BIP)

Calibration 6

Model

Calibrated
System

(BIP)

(SMC)
7model−checking

Statistical

configuration

(XML specification)
(DSL)

Mapping

Simulation
(e.g. Cooja)

Distributed
deployment

Runtime

(e.g. packet
delivery ratio)

measurements
error

(DSL)

Application

description

Network

(BIP)

component
library

Preliminary phase

standards
communication

network stack
IoT OS kernel/

IoT

3

5

8

2Translation for
Application

Model

OS / Kernel
Model

1

(BIP)

Translation for
OS / Kernel

Model

exploration)
(state−space
Verification

Figure 5.2: The BIP model-based design flow for IoT WPAN systems

(numbered rectagles show the process steps)

requirements. The qualitative properties for safety and bounded liveness are

formalised as observer automata [37] for monitoring the state of the BIP model

and are then verified with the BIP tools for state space exploration. The quanti-

tative properties are validated with statistical model checking [123].

Figure 5.2 provides an overview of our model-based design flow. We assume

the availability of a library with model fragments for the applicable OS and

SW/HW network stack, which can be reused in new IoT projects. All the nec-

essary system components are instantiated from this library, according to the

DSL design definition, which includes the IoT application’s mapping onto the

system’s nodes. From these artifacts, it is possible to generate the BIP model of

the IoT system. The overall approach consists of the following steps:

1. Translation for the construction of the Application Model. The design

definition for a REST application in the DSL is translated into BIP. The

structure of the DSL description is preserved and this allows to trace the

102 Chapter 5. Application modeling for rigorous design of IoT systems

analysis findings back to the design definition.

2. Translation for the synthesis of the OS/kernel Model. The BIP model

fragments for the OS and the network stack (part of the network stack

may be implemented by the HW architecture, as shown in Figure 5.1)

are instantiated from the OS kernel library, through the translation of

the XML-based network configuration file that determines also the com-

ponents’ parameterization and their interconnection.

3. Transformation for the construction of the System Model. The DSL

mapping onto the system’s nodes is manually edited
1
. It is used for trans-

forming the Application and OS/Kernel models into a System Model. Ap-

propriate BIP glueing code is generated from the defined mapping to con-

nect the OS kernel model with the application model.

4. Code generation. The design and mapping definitions in DSL are used

for generating code. The code can be either node-specific, i.e. ready to

be deployed onto the distributed IoT system, or node-agnostic, if there

is need for further validation within the OS simulator (Cooja). In any

case, the code is deployed/simulated according to the specified application

mapping onto the system’s nodes.

5. State-space exploration. The verification of qualitative properties derived

from functional requirements takes place by state-space exploration with

the BIP tools. In case of a property violation, the original DSL definition

(and the auto-generated BIP model) has to be repaired.

6. Calibration. The runtime characterization of the IoT application takes

place by executing the generated code on the nodes and within the system

environment. All influential hardware/ software constraints are identified

and subsequently added to the BIP System Model.

7. Statistical model checking. The validation of quantitative properties

derived from functional and non-functional requirements takes place by

SMC. If a property is not satisfied at the required level of confidence, the

DSL definition has to be repaired.

8. Fault injection. The robustness of the BIP System Model is analyzed

1
The computation of the optimal solution would have to be based on a parametric mapping

definition

Chapter 5. Application modeling for rigorous design of IoT systems 103

by considering various error behaviours, such as loss of bandwidth and

radio interference as additive noise. The former increases packet losses

and out-of-order deliveries and the latter causes error-prone access to the

wireless medium and increases packet collisions [132]. For this analy-

sis, additional components with the error behaviour are added, and fur-

ther parameterization through proper runtime error measurements is re-

quired [126].

The design flow is iterated upon any change in the application’s description or

in its mapping, which follows the previous verification and validation step. The

Step 8 takes place only when there are specific robustness requirements for the

system under design.

In any case, the step 4 precedes the verification and validation of require-

ments, in order to enable the calibration of the system’s model in step 6. This

process aims to augment the model with timing information for computations

and communications from executions of the actual system. The timing infor-

mation for computations is derived from executing an application process on a

system node. Communication times are induced by functions that use commu-

nication resources. In general, these times depend on the system’s interactions

with the environment, and on various interference factors that are not known

in advance. In these cases, we can apply a probability distribution fitting tech-

nique, whereas the functional BIP model is transformed into a stochastic BIP

model through the introduction of probabilistic variables that represent stochas-

tic time evolution [123]. When the software runs to the completion of events and

if it is possible to justify the absence of any interference, the measured execu-

tion times can be approximated by fixed times that are incorporated into the

BIP System model.

104 Chapter 5. Application modeling for rigorous design of IoT systems

5.4 Case study

5.4.1 General description

The design of a building automation SCC application with digital and analog sen-

sors is now illustrated using the BIP model-based design flow of Figure 5.2. The

application controls the temperature and detects motion in offices using passive

infrared (PIR) sensors. A ZIG001 Temperature-Humidity sensor is installed in

each office, along with the low power MS-320LP PIR, both from Zolertia
2
. A

zone-controller (acting as Client) reads temperature measurements (shown as

t in Figure 5.3) and turns on a thermostat, if the temperature exceeds the de-

sired level (t > ub∨ t < lb). During non-office hours, the controller runs into the

energy-saving mode, and the desired temperature is reduced. If there is motion

detected (Figure 5.4) during non-office hours, an intrusion alarm is activated.

The intrusion alarm notifies the subscribed devices inside or outside the build-

ing (e.g. smartphones). If there is motion during office-hours, the lights switch

on.

working_hour

t<lb

t>ub

set_desired_level(ub,lb)

t < ub & t > lb

working_hour

timezone_change

activate_thermostat

se
t_

d
es

ir
ed

_
le

v
el

(u
b
,l

b
)

ac
ti

v
at

e_
th

er
m

o
st

at

Figure 5.3: State flow for tem-

perature control by the zone-

controller (temperature t should

be in [lb,ub])

working_hours

trigger_alarm

unsubscribe subscribe

switch_on_lights

motion_detected

working_hours

Figure 5.4: State flow for motion

detection by the zone-controller

(alarm triggered in non-office

hours)

The system consists of 5 nodes with the zone-controller acting as client of 4

REST servers using CoAP (Figure 5.5). Each server owns a temperature resource

for a ZIG001 and a motion resource for a MS-320LP PIR. The client runs two

2
http://wiki.zolertia.com/wiki/index.php/Z1_Sensors

Chapter 5. Application modeling for rigorous design of IoT systems 105

Thing (S)

Thing

Thing

Thing

(S)

(S)

(S)

Zone controller

Thermostat

(C)

(S)

(C)

Server id 2

Server id 1

Server id 3

Server id 4

Client id 0

Figure 5.5: Node topology with clients and servers in the building automation

system

Contiki processes, one for sending unicast GET requests to the servers and one

for periodically observing their motion resource. The GET requests are sent with

a fixed transmission period of 1s. The observation of a resource begins with a

registration request and is cancelled with a de-registration request. Upon the

state change of a resource, the server sends a CoAP notification to the registered

client, which acts according to the time of day. Message receipts should be

acknowledged by the server. However, if the client does not receive a response

within a deadline, the request is re-transmitted.

Figure 5.6: Client process of the building automation application

Figure 5.6 depicts the behaviour of the client process’s body for receiving

106 Chapter 5. Application modeling for rigorous design of IoT systems

temperature measurements
3
. A cycle of measurements starts upon a TIMERcycle

event (timer expires). The process then sends a request (unicast message) to

a server, and asks to be polled for contacting another server, until all servers

have been contacted. For each request, a deadline timer is set (setTimerresp)

for waiting the response. If the deadline expires and no response has been

received, the client resends the request to the same server up to a maximum

number of attempts. When the response of a server is received (TCPIP event) the

temperature is read and if it differs more than two degrees from the desired level,

the thermostat is turned on. The client starts a new cycle, when all servers have

sent measurements or the maximum number of attempts has been reached.

5.4.2 Application of the BIP design flow

We focus now on the individual steps of the design flow in Figure 5.2, for the

outlined SCC application.

Step 2: synthesis of the OS/kernel model

The case study was based on the detailed modeling of the Contiki OS by taking

into account all kernel interactions with the application layer and the network.

This allowed us to deliver the first OS kernel library [130].

Step 3: construction of the System Model

The generated BIP system model for the case study (4850 lines of code) consists

of 30 atomic components for the AppModel and 26 components for the ConKer-

nel; it includes 430 connectors and 805 transitions. The time step of the model

was based on the transmission time per bit through the Contiki network stack.

This is given as the inverse of the data rate of a Contiki network access point.

The smallest transmitted data unit is one symbol (4 bits) and its transmission

3
To ease readability, a simplified view of the behaviour is shown from that derived as in Fig-

ure 5.7. Guards are shortened (e.g. POLL instead of ev==POLL) and transitions not relevant

to the application logic are omitted (e.g. the EXIT event handling, the msgSnt and timerSet
transitions of the templates of Figure C.2 that respectively follow sndMsg and setTimer.

Chapter 5. Application modeling for rigorous design of IoT systems 107

time is:

symbolPeriod =
4

dataRate
(5.1)

For an access point to a wireless medium operating at the 2.4 GHz band, the

data rate is 250 kbps and from (5.1) the symbol period is 16µs. Thus, our

timing abstraction ignores delays smaller than the inverse of this data rate,

which is 4µs. This adjustment allows for a much more fine-grained timing model

compared to the one of the Cooja simulator, which is in the ms scale. Every

parameter of the model that is associated with a time delay can be quantified

with an adequate degree of fidelity.

Step 5: state-space exploration

IoT applications are prone to event scheduling delays. Thus, clients set dead-

lines for expected responses before re-sending the requests. Each deadline is

tuned, such that it is feasible to receive a response and avoid sending redundant

requests. For the case study, the following functional requirements were for-

malised as qualitative properties that were checked by state-space exploration:

Functional Requirement FR1 The client reaches PROCESS_END.

FR2 The client never sends redundant messages to a server.

FR3 The client collects measurements from each sensor at least once in a spec-

ified period.

FR1 specifies a liveness property stating that the client shall terminate. The

property is violated if the process does not exit by itself and neither receives an

EXIT message from another process, i.e. the corresponding actions are omitted

in the code or they are not reachable at runtime. For FR2, a deadline must

be set, in which the client obtains a response and avoids sending redundant

requests. Every such request is monitored by the observer automaton in Fig-

ure 5.10; the property may not be satisfied due to node communication and

event scheduling delays that invalidate the set deadline. FR3 implies finding a

period for sensing the environment, in which the client will have collected all

necessary measurements.

108 Chapter 5. Application modeling for rigorous design of IoT systems

The scenario considered for the state-space exploration involved a limited

number of messages to be sent by the two client processes. Specifically, two GET

requests, a registration and a de-registration request are sent to each server.

Moreover, the GET requests could be attempted twice. The above scenario is

sufficient for the generation of all the necessary interaction interleavings that

are relevant to the verification of requirements FR1 to FR3.

Step 6: calibration

Calibration was performed based on the execution of the generated code. The

temperature distribution was fitted using several measurements taken at ran-

dom instants during the course of a day. For the motion detection, we fitted

a normal distribution with mean µ = 1.5 Volts
4

and standard deviation σ = 1.5

Volts (we used the distribution fitting method in [133]).

The System Model was augmented with timing information for computations

and communications measured in executions of the system. Specifically, (i)

the time for the packets’ IP header compression/decompression was measured

by linking the Contiki OS with the 6LoWPAN protocol implementation of the

HC1/HC2 encoding mechanisms [134], whereas (ii) the time for pre- and post-

buffering of each message transmission was measured by locating a message

and copying its fields from/to the buffers
5
. These time costs are fixed, because

the computations are applied to a fixed size input and they do not interfere with

other computations until they finish.

Steps 7 and 8: statistical model checking and fault injection

A key functional requirement for an SCC application is to achieve its ultimate

control objective:

4
Motion detection is sensitive to the distance, which impacts the sensor’s voltage level. Here

we observe the current voltage level of the sensor and not its binary output. A threshold 0.5

V was used with the sensor generating a motion event when the current voltage level is higher

than the mean value augmented by the threshold (1.5 + 0.5 = 2V).

5
The model’s time step was much larger than the time taken to store the messages in the

transmission/reception buffers.

Chapter 5. Application modeling for rigorous design of IoT systems 109

FR4 Room temperature is maintained within [-2,2] C degrees difference from a

user-defined level.

FR4 depends on the temperature variability of the system environment in

combination with the client’s ability to collect data sufficiently often to act on

time (data collection is prone to delays). This requirement was formalised as

a stochastic temporal property in PBLTL [135] and the property was validated

with the SMC-BIP tool. Moreover, the following key non-functional requirements

refer to the performance of the building automation system:

Non Functional Requirement NFR1 Rapid detection of movement during non-

working hours, based on the PIR’s voltage level.

NFR2 Memory saving by properly sizing the message buffers used by the Contiki

network stack in each node.

NFR3 Avoidance of overflows in the asynchronous event queue of each node.

NFR4 Relatively low collision rate in the channel, in order to avoid extensive

latencies, which deteriorate the network performance and increase the

probability of packet losses.

The mentioned non-functional requirements were formalised as stochastic

temporal properties in PBLTL, which were accordingly validated on the cali-

brated BIP system model.

Regarding the fault injection (step 8 of Figure 5.2), we used the FaultHandler

component in Figure 5.11 for studying the system tolerance to extensive band-

width loss. The FaultHandler was parameterized using probabilistic distribu-

tions derived from the analysis of debugging traces [130] obtained from execut-

ing the code on the node topology of Figure 5.5.

5.4.3 Domain Specific Language for Contiki REST applica-

tions

The DSL for our model-based flow allows specifying a REST Contiki applica-

tion in a single design definition file. This file is used as input to auto-generate

110 Chapter 5. Application modeling for rigorous design of IoT systems

both the BIP model and the C code to be deployed on Contiki nodes; in essence,

it ensures the consistency between the BIP model and the application code

across the design flow of Figure 5.2.

The language constructs used in REST Contiki applications are encoded into

XML elements, and include essential control flow constructs, as well as actions

for node communication and event scheduling. All these affect the validity of

important functional and non-functional requirements for resource-constrained

applications. Each element corresponds to a BIP code template and a tem-

plate of Contiki C code. The BIP model and the C code are generated through

a structure-preserving translation. Thus, every single part of the application

model (port, component, data) can be traced to an XML element.

A REST Contiki application is represented by a <RESTapp> element (List-

ing 5.1) enclosing <module> elements (+ denotes one or more elements). A

module contains client and server processes that will be loaded in one Contiki

node and is identified by an id.

1 <RESTapp>
2 <module>+
3 (<client> | <server>)+
4 </module>
5 </RESTapp>

Listing 5.1: DSL syntax for a REST Contiki applica-

tion

A client process is encoded as shown in Listing 5.2 and includes optional poll

and exit handlers (? = 0 or 1 elements), a block of initial actions (init) and a

repeating body of actions. The body includes wait actions that enclose event

handlers (onEv elements) for specific event types. A wait action causes the

process to block until an event is received. If an incoming event is an EXIT or

POLL or if it matches one of the enclosed event types, the corresponding handler

is invoked.

Listing 5.3 shows the template that generates the Contiki code for a client

process. The template contains placeholders for the code of the process’s

main elements (e.g. exit, poll and body). The wait is represented with a

Chapter 5. Application modeling for rigorous design of IoT systems 111

1 <client>+
2 <poll> action+ </poll>?
3 <exit> action+ </exit>?
4 <init> action+ </init>
5 <body>
6 (action*
7 <wait>
8 <onEv evType="MSG">*
9 action*

10 </onEv>
11 </wait>
12 action*)+
13 </body>
14 </client>

Listing 5.2: DSL syntax for

client

1 PROCESS_THREAD() {
2 PROCESS_EXITHANDLER(/* exit */)
3 PROCESS_POLLHANDLER(/* poll */)
4 PROCESS_BEGIN();
5 /* init */
6 while (true) { /* body */
7 . . .
8 PROCESS_YIELD();
9 if (ev == MSG){

10 . . .
11 }else if(...){ }
12 . . .
13 }
14 PROCESS_END(); }

Listing 5.3: Contiki code tem-

plate for client

initcall yield call

[ev==EXIT]

yield

[other ev]

[ev==POLL]

poll

[ev==MSG]

onEv

exit

end

Figure 5.7: BIP template for the client (all event handlers of Listing 5.2 are

composed in a single automaton)

PROCESS_YIELD blocking statement and alternative if branches for the en-

closed event handlers.

The BIP component for the client is generated using the template in Fig-

ure 5.7. After the component starts (called), it performs the init actions and

proceeds with the body loop. The wait is represented by: a) a yield port leading

to a waiting state, b) a call port receiving an event, c) internal transitions (exe-

cuted atomically with their preceding transition) that begin each event handler,

d) an internal transition that returns to the waiting state, if the event doesn’t

match a handler. When the handler is finished, the component performs ac-

tions that follow the wait and eventually repeats the body. If an exit handler

was activated, the component exits the body (end port), after the handler has

finished.

More details for the DSL syntax are provided in Appendix C.1. Additionally, a

complete design of an IoT system includes the mapping of application modules

112 Chapter 5. Application modeling for rigorous design of IoT systems

to the system nodes. The DSL syntax for defining this mapping is shown in List-

ing 5.4; this information is used for generating the BIP system model (process

step 3 of Figure 5.2).

Each node’s network configuration (network-config) determines a set of pa-

rameters, which are defined in our XML-based specification [131] (an exam-

ple file is given in [130]), with default values that may be overwritten in auto-

generated Contiki header files (e.g. uipopt.h). The same values are also used

for the parameterization of the node’s network stack model in BIP. For example,

one such parameter is the maximum backoff exponent, which influences the

network’s waiting time, before another attempt to occupy the channel after a

collision occurrence. The complete list of configurable parameters is provided

in Appendix C.3.

1 <architecture>
2 <node ip="string" module="QName">+
3 network-config?
4 </node>
5 </architecture>

Listing 5.4: DSL syntax for application

deployment

5.4.4 BIP models for Contiki WPAN systems

Figure 5.8 outlines the BIP model structure for Contiki WPAN systems. In

overall, the System model comprises two layers, the REST Application Model

(AppModel) and the Contiki Kernel (ConKernel). The Application Model consists

of BIP components for the REST modules that define the client-server inter-

actions and their constraints, as they are derived from step 1 of Figure 5.2.

Based on the REST modules mapping to Contiki nodes, the System Model in-

tegrates the application model with the BIP components from the OS kernel

library and the network stack, for communication through the channel. For the

lower level hierarchy we use phrase structure rules, where each rule refers to a

BIP compound (shown in “<” and “>”) in the left and its constituents (enclosed

components) in the right part:

Chapter 5. Application modeling for rigorous design of IoT systems 113

RESTful Application Model

RESTModule 1 RESTModule N

OS N

Network

Contiki Kernel Model

ProtStack 1 ProtStack N

Shared Channel

H1

P1 Pk

Hj

OS 1

R1

Rn

H1

P1 Pk

Hj R1

Rn

Figure 5.8: BIP model structure for Contiki WPAN systems

〈SystemModel〉 ::= 〈AppModel〉 〈ConKernel〉
〈AppModel〉 ::= 〈RestModule〉+
〈RestModule〉 ::= Process+ (Resource ResHandler+)*

〈ConKernel〉 ::= 〈OS〉+ 〈Network〉
〈OS〉 ::= Scheduler Timer CommHandler

〈Network〉 ::= 〈ProtStack〉+ Channel

〈ProtStack〉 ::= MsgSender MsgReceiver

The <AppModel> consists of several <RestModule>, which contain pro-

cesses, REST resources and their handlers. <ConKernel> includes one <OS>

component for each node, and the <Network>, which encompasses compo-

nents for the network stacks of each node and the communication medium

(channel). The interactions between <RestModule> and <OS> are detailed

in Appendix C.2. <OS> handles the scheduling of communication, within a

node and among nodes. Specifically, it includes a Scheduler, a Timer and a

CommHandler [130]). The granularity of behaviour in components ensures that

all interleavings of events in a DSL definition are taken into account.

114 Chapter 5. Application modeling for rigorous design of IoT systems

The Scheduler maintains a FIFO queue with the posted asynchronous events,

boolean flags with poll requests and a call stack with the active processes,

i.e. those that were called and subsequently paused after having posted a

synchronous event. When a synchronous event has been handled, the call stack

is used to transfer the control to the right active process. A cycle is initiated

periodically (period pscheduler), in which the Scheduler first sends the requested

poll events and then dispatches an asynchronous event from the FIFO. The

cycle is completed, when the call stack is emptied. If the queue is full, an error

is returned to the process.

The Timer receives timing requests from<RESTModule> processes and stores

them in a stack. All requests have a mode, which allows setting, resetting,

restarting and stopping a timer. The time advancing is modeled through an

interaction that synchronizes all model components. The granularity of a time

step affects the simulation efficiency and analysis scalability, and it is therefore

determined by a configurable parameter. The remaining time for the next timing

interaction is computed separately for each component, and the time advances

directly by the minimum number of time steps amongst all components [130].

The CommHandler models the TCP/IP processing and interacts with<Network>

(packets are stored in a transmission buffer TxBuffer or a reception buffer

RxBuffer). <ProtStack> includes the MsgSender (Figure 5.9) and MsgReceiver

components, for message transmission (resp. reception) with the CoAP or HTTP

protocol. Channel (Figure 5.9) implements behaviour for message transmission

and for resolving collisions in simultaneous transmission requests.

The network stack’s performance is modelled by proper parameterization of

the <Network>. We have the fixed and the modifiable parameters (with default

values), shown in Appendix C.3.

Chapter 5. Application modeling for rigorous design of IoT systems 115

s0	

sndPacket	

NB:=0	

s1	

s2	

s3	

busy	

.ck	

[t<CCA]	

t:=t+1	

elapsed	

[t=backoff]	

t:=0	

s5	

free	

s8	

endT	

[t=tdata]	

	
 startTrans
beginT	

[t=CCA	
 ||	
 eval=1]	

t:=0	

.ck	

[t<backoff]	

t:=t+1	

.ck	

[t<tdata]	

t:=t+1	

	
 backoff=distVal*aUnitBackoffPeriod L0

beginT	

nodeNum:=nodeNum+1	

endT	

nodeNum=nodeNum-­‐1	

sending	

[nodeNum	
 	
 	
 	
 1]	

L1

busy	

nodeNum:=nodeNum+1	

beginT	

busy	
 endT	
 free	

nodeNum	

L2

free	

nodeNum=nodeNum-­‐1	

newTrans	

[nodeNum=0]	

beginT	
 eval	

endT	
 busy	
 free	

.ck	
 sndPacket	
 pkt	

if	
 (nodeNum	
 	
 	
 	
 1)	
 then	
 eval:=1	
 else	
 eval:=0	

busy	

[eval=0]	

≤

≤

Figure 5.9: Example BIP components and their interactions - Channel (left)

and ProtStack.MsgSender (right)

5.4.5 Calibration

The System Model omits characteristics, which can be measured only during

the code execution on the nodes and within the system environment. This infor-

mation includes the characterization of sensor data and HW/SW performance

factors, like the time or other resource costs to be quantified at runtime. In the

former case, we need to derive probabilistic distributions that fit to measure-

ments of sensor data. In the latter case, it is necessary to employ performance

characterization methods, such as the process profiling technique [130] that al-

lows measuring isolated blocks of code. The values obtained from this analysis

are injected as parameters to the System Model and we eventually obtain the

Calibrated System Model (Step 6 of Figure 5.2). We omit the specifics of this

step, which is explained in [130], as it falls out of the scope of this thesis.

5.4.6 State-space exploration

For the state-space exploration, each property is formalised as an observer

automaton [37] monitoring the events in the BIP model that are relevant to the

property, i.e. a set of interactions. Every such event triggers a state transition,

116 Chapter 5. Application modeling for rigorous design of IoT systems

which may cause the observer to reach an error control location with no outgoing

transitions. If the error location is reached, the property is violated. Observers

are attached to the model using broadcast connectors, which allow the model’s

components to trigger the observers by excluding the other way round. Thus,

observers do not interefere with the model and our analysis is sound. To avoid

state explosion, it suffices the exploration to be limited to execution scenarios

that generate all relevant event interleavings for the examined properties.

As an example, Figure 5.10 shows the observer automaton for the require-

ment: The client never sends redundant messages to a server. The error is

reached from s2 and s3. In s2, the client has sent a request (Cli_sndMsg port)

that has been acknowledged (NetwCli_recvAck port), while the server has not yet

transmitted (NetwSrv_transmit port) or aborted the transmission (NetwSrv_endSnd

port) of response. In s3, the response has been transmitted to the client, but

it has not yet been received (Cli_getMsg port). Any request sent while in one of

these two locations is considered redundant.

s0 s1

Err

s2s3

Cli_sndMsg

NetwCli_endSnd

NetwCli_rcvAck

NetwSrv_endSnd

NetwSrv_transmit

Cli_getMsg

Cli_sndMsg Cli_sndMsg

Figure 5.10: Example observer automaton for the formal verification of a qual-

itative property

(no redundant service requests)

Figure 5.11: Example FaultHandler automaton - packet is ignored if fail = 1

Chapter 5. Application modeling for rigorous design of IoT systems 117

5.4.7 Fault injection

The fault injection (Step 8 of Figure 5.2) is used when there are requirements

for the robustness of the IoT system. One such requirement is the tolerance

of extensive bandwidth loss, which assumes fault behaviour for studying the

impact of consecutive long packet delays or packet losses.

As an example, Figure 5.11 depicts a FaultHandler component that receives

the transmitted packets (recv port) and decides whether they will be delivered

to their destination. This choice is handled through the NORMAL and LOSS

locations, which represent the successful transmission and the case of delayed

or lost packets. The FaultHandler remains in each location, for as long as the

number of consecutive transmissions is positive. This number is chosen from

two probabilistic distributions, λsuccess and λloss. The FaultHandler is added to

the Calibrated System model, which is then validated using SMC.

5.4.8 Experiments and results

The state-space exploration took place within the Contiki 16.04 environment

running on a workstation with an Intel i5-3230M CPU@2.60GHz (4 processors),

6GB RAM and 500GB HDD. The SMC experiments were conducted within the

Instant Contiki 2.6 environment running in a virtual machine with one CPU

core, 1GB RAM and 9GB hard drive.

FR1 was verified as a bounded liveness property using an observer automaton

that monitors whether the client has reached PROCESS_END before the system

model terminates. For FR2, we checked whether the property holds for the

temperature monitoring process, using various deadlines (112ms, 160ms and

800ms). The requirement was satisfied for a 160ms deadline, if the motion

detection process was not observing simultaneously and it was violated for a

112ms deadline. These results show that the it is less likely for the client to

get responses within short deadlines, thus it sends more redundant requests.

However, it was possible to get all responses at short deadlines, provided that

the motion detection process was not simultaneously consuming network and

118 Chapter 5. Application modeling for rigorous design of IoT systems

node processing resources. The FR3 was satisfied for a period of 5.6s, even if

the motion detection was operating.

100 150 200 250

18

20

22

24

26

28

30

Temperature observations

D
eg

re
es

 (
C

el
ci

us
)

Desired temperature

Sensed temperatureA

C

Figure 5.12: Temperature observations (in Celcius) for our building automa-

tion application

For FR4, we checked φ1 = |RecvDegree− InputDegree| ≤ 2, where RecvDegree

is the temperature sensed by the ZIG001 sensors and InputDegree is the desired

temperature level. We found that P(φ1) = 0.6, due to the zone-controller respon-

siveness to temperature changes and fluctuations attributed to external factors.

Figure 5.12 shows part of the obtained observations, with the temperature often

exceeding the acceptable range, like in point A. Such a rapid change might be

attributed to an abrupt change in the environment, as the opening of a window.

In point C, the desired temperature has been changed, the zone-controller has

perceived the change and the temperature was then reduced by the thermostat.

For the non-functional requirements NFR1 - NFR4, we analysed two sets of

execution scenarios: the first set was obtained using the Calibrated System

Model (step 7 of Figure 5.2) and the second set by including the FaultHandler

component of Figure 5.11 (step 8 of Figure 5.2).

For the second set of execution scenarios, Figure 5.13 shows the transmis-

sion time of messages for all servers upon changes in the motion resource. These

times are classified in three categories (shown in different colours), namely the

minimum observed, the average and the worst-case time. We observe that the

Chapter 5. Application modeling for rigorous design of IoT systems 119

Figure 5.13: Transmission times (ms) for motion detection with faults injected

in the Calibrated System Model

worst-case times are significantly different from the two other times, i.e. when

there are no collisions or message delays, except from Server 1. This happens

because Server 1 does not encounter additional transmission delays, since it is

the first to which the zone-controller sends the room’s temperature and there are

no additional messages to transmit/receive, before the motion resource change

messages.

The SMC experiments for NFR1 - NFR4 generated the following results:

NFR1 We checked the property φ2 = TPIR ≤ Ttrans, where TPIR is the worst-case

message transmission time for the motion resource and Ttrans the period for a

regularly transmitted message, i.e. a client request for the temperature resource

(1s). In the first set of experiments, TPIR did not exceed 32 ms, hence P(φ2) = 1.

In the second set with the presence of the FaultHandler, a higher number of

packet collisions occurred with TPIR being approximately 63ms (server ID=2 in

Figure 5.13). Nevertheless, the property still holds, since TPIR remains smaller

than Ttrans.

NFR2 We checked the property φ3 = (size(RxBuffer)<B) in the first set of exper-

iments, where B is a bound for the reception buffer size of the protocol stack
1
. B

1
The bound on the reception buffer size can be adjusted by the parameter

MAX_NUM_QUEUED_PACKETS of the Contiki kernel; the default value is 2.

120 Chapter 5. Application modeling for rigorous design of IoT systems

depends on pscheduler (cf. Section 5.4.4), which affects the rate in which the Ms-

gReceiver removes messages from the buffer. When pscheduler = 10µs, P(φ3) = 1

if B = 2. When pscheduler = 10ms, B would have to be 10, so that P(φ3) = 1. Thus,

pscheduler must be small enough to avoid adjusting the reception buffer size.

NFR3 We have analysed the property: φ4 = (size(FIFO)<MAX), where size(FIFO)

represents the size of the Scheduler’s FIFO queue and MAX = 10. This property

holds true (P(φ4) = 1) in both sets of experiments.

NFR4 We analysed the property: φ5 = (NC ≤ 1), where NC is the number of

re-transmissions following a collision. In the first set of experiments we had

P(φ5) = 0.75, which implies a limited number of collisions. In the second set of

experiments, we observed a significant collision rate that resulted in P(φ5) = 0.5.

5.5 Discussion

5.5.1 Benefits of the BIP design flow

The design flow of Figure 5.2 supports the progressive development of IoT WPAN

systems using BIP models that capture both functional and non-functional sys-

tem aspects. BIP is component-based, which is essential for enhanced produc-

tivity through reuse of model artifacts. The building automation case study in

Section 5.4 aimed to test the effectiveness of our approach. Through the in-

vested effort, it was possible to deliver tools (DSL and code generator) and a

component library with model fragments for the Contiki OS and the network

stack. Table 5.1 reports figures for the required effort and the size of the model

and code artifacts for the case study. Each row refers to a particular step of the

design flow, but the effort for steps 2 and 4 includes development work, which

was done once for the tools and the library of components but can be reused in

similar projects.

Table 5.2 reports statistics on the complexity of the generated models. A

substantial difference appears between the complexities of the models for the

Application and the OS/kernel (ConKernel). This is due to the detailed modeling

Chapter 5. Application modeling for rigorous design of IoT systems 121

Step of Figure 5.2 Effort Scope Product Code

(lines)

1. App design definition 4 days Application-specific DSL 120

2. Network configuration 6 hours Reusable XML 70

2. IoT comp. lib. & ConKernel 7 weeks Reusable BIP models 2530

3. App mapping & transform. 4 hours Application-specific DSL 40

4. Code generation 8 weeks Reusable C 1168

6. Calibration 4 days Reusable BIP model 70

8. Fault injection 3 days Reusable BIP model 70

Table 5.1: Effort and design artifacts for the building automation case study

Model Components Connectors Transitions Code

(lines)

Application model 30 130 223 856

OS/kernel model (ConKernel) 26 300 582 3924

System model 56 430 805 4780

Calibrated system model 56 430 820 4850

Fault model 5 13 25 70

Table 5.2: BIP model statistics for the building automation case study

Step (Fig-

ure 5.2)

Verified properties

Satisfied

properties

(without

faults)

Satisfied

properties

(with

faults)

CPU time Memory

(MB)

State-space

exploration

Deadlock-freedom

FR1

FR2

FR3

3

3

3

3

N/A 5h 13 min 4500

Statistical

model

checking

FR4

NFR1

NFR2

NFR3

NFR4

60%

100%

100%

100%

75%

55%

100%

100%

100%

50%

2h 10 min

1h 35 min

1h 21 min

0h 24 min

5h 4 min

956

720

630

780

918

Table 5.3: State-space exploration and statistical model checking statistics for

the building automation model

of the Contiki OS and network stack functionalities in the library of model

components. We thus ensure that all relevant events for the analyzed properties

are taken into account, whereas the models should be also valid for additional

properties that may be of interest in other Contiki WPAN systems.

Table 5.3 presents statistics for the used resources in steps 5 and 7 of Fig-

ure 5.2, i.e. the state-space exploration and the SMC of the building automation

122 Chapter 5. Application modeling for rigorous design of IoT systems

model. The verification of deadlock-freedom and the properties for FR1 - FR3

consumed 4.5GB of RAM and was completed in 5h 13 min. ‘Note that the CPU

time for the SMC of the properties for FR4 and NFR1 - NFR4 varies depending

on the confidence and precision parameters used for statistical model checking.

A comparison of BIP’s SMC efficiency with the Cooja simulation is certainly

interesting (recall that the granularity of our model’s time step is in the order of

a few µs, whereas Cooja’s time step is in the order of ms). For this purpose, we

conducted simulations of the building automation system during office hours,

as well as when it is operating over the whole day including office and non-office

hours. The results are shown in Table 5.4.

Simulated time Cooja simulation BIP SMC

8h 1h 03min 1h 20 min

24h 3h 27min 3h 02min

Table 5.4: Simulation time for the building automation model

Here, it is important to recall that Cooja works with a fixed time step advance

of the simulation clock, while the BIP simulation advances the clock directly to

the time of next event, for all system nodes (cf. Section 5.4.4). The reported

CPU times for BIP SMC include as many experiment replications as necessary

for providing an accurate verdict.

From the system design point of view, the benefits of our approach stem from

the motivating principles in Section 5.3; an informative comparison with other

design methods is exposed below.

5.5.2 Limitations

The design flow limitations in its present form concern with its applicability

scope, the expectations for experience of its users on formal methods, the de-

gree of process automation and some scalability issues related to the model

complexity, the size of systems under design and the supported analyses.

The current applicability scope is the Contiki-based WPAN systems, due to

the available model fragments in our IoT component library. For widening the

Chapter 5. Application modeling for rigorous design of IoT systems 123

application to other Contiki system architectures, it is essential to enrich the

component library, as well as to customize the specification file for the network

configuration and the translation for the synthesis of the OS/kernel model (step

2 of Figure 5.2). If the focus is extended to other types of applications than

Contiki REST, or to other IoT operating systems, then there is need to modify

or even create a new DSL. This implies adaptations or respectively new imple-

mentations for the translator used in step 1, the model transformation in step

3 and the code generator in step 4 of Figure 5.2.

If the analysis is restricted to the requirements of our building automation

system, there is no need for formal method experience by the designers. For

additional requirements concerning timing, memory or thermal aspects, there is

still need for some basic knowledge on automata, in order to formulate the new

requirements in terms of the BIP system model. For requirements focusing on

other aspects, say for example the energy consumption, we need to add appro-

priate power models for quantifying the energy resources used in computations

and communications during the execution of system model. Related work in

this direction has been presented in [136].

The degree of process automation is, as always, a matter of balancing usabil-

ity and flexibility concerns in the provided tool support. We opted to limit the

automation to steps 1, 2, 3 and 4 of Figure 5.2, while retaining the ability to

manually edit the BIP model during steps 5, 6, 7 and 8, in order to have more

space for experimentation during our analyses.

Finally, for the scalability to larger IoT systems, it is important to note that

our analyses took place for a limited number of nodes. This is due to the detailed

representation of interactions within the ConKernel model, since it was gener-

ated from our component library in step 2 of Figure 5.2. Such detailed modeling

is essential for the state-space exploration and for calibrating the model with

sufficient accuracy; it allows validating very diverse requirements and opens

prospects for additional requirements in future works. Moreover, for IoT sys-

tems of a larger size there is no need for a BIP model that will include all of

the system’s nodes; for the state-space exploration we only need a model with

124 Chapter 5. Application modeling for rigorous design of IoT systems

representative instances of those types of nodes, which suffice to generate all

relevant interleavings of events for the properties. For far more complex IoT ap-

plications and possible SMC scalability issues, the BIP model can be abstracted

using automated stochastic abstraction techniques [137] for identifying those

events that are significant for the properties of interest.

5.5.3 Comparison with competitive design methods

The design of IoT systems involves rapidly evolving technologies, diverse appli-

cations and a fragmented landscape of operating systems/middleware with var-

ious development tools. The major incentives for a model-based design process

are: (i) the overall design complexity, due to the high heterogeneity of inter-

connected things and their interaction modes, and (ii) especially for IoT WPAN

systems, the limited computational and energy resources. System models allow

reasoning about certain properties of the system’s behaviour, and serve as a

specification that will lead to a physical implementation of the system, which is

compliant with the model. They also provide a means for exploration of different

design alternatives. The Flex-eWare model [138] is a general purpose compo-

nent model for distributed embedded systems that aims to unify model driven

and component-based software engineering across many different application

domains. This is achieved by integrating generic elements in its metamodel

that are instantiated by model libraries. All other design methods in this com-

parison focus on specific IoT system architectures or application domains.

Table 5.5 summarizes the main characteristics of the design/analysis meth-

ods found in related bibliography and compares them with the BIP design flow of

Figure 5.2. Most approaches are model-based, but only the BIP flow and [139]–

[144] are grounded on languages with formal semantics.

The validation of quantitative specifications or the robustness analysis of

systems is supported by some methods, but only [143] and the BIP flow support

the verification of qualitative properties, with the latter covering all categories.

Moreover, most methods do not cover the entire design cycle (including code

Chapter 5. Application modeling for rigorous design of IoT systems 125

Table 5.5: Logical comparison of design-time analyses and methods for IoT

Focus Scope Qualit.

propert.

Quantit.

propert.

Robust.

analys.

DSL & tool

[127] cloud-centric

IoT

app design 7 7 7 Aneka

Platform-as-a-

Service

[139] REST

\Contiki or

TinyOS

systems

model-based, app

design, sys.

design, code

gener., deployment

7 7 7 graphical

Matlab tools,

network/hw-in-

the-loop

simulation

[145] Sense\Comp.

\Control apps

model-based, app

design, code

gener., deployment

7 7 7 DSL, progr.

framework

generator,

runtime,

scenario

simulator

[146] Android &

JavaSE

devices with

MQTT

model-based, app

design, sys.

design, code

gener., deployment

7 7 7 DSL, compi-

ler, linker,

runtime system

[147] iSense OS for

WSNs

code gener. 7 7 7 DSL

[148] services for

WSNs (inc.

REST)

app design 7 7 7 programming

language

[149] services for

WSNs (inc.

REST)

model-based, app

design, sys.

design, code

gener., deployment

7 7 7 middleware,

network

simulation

[150] services for

WSNs (inc.

REST)

model-based, app

design

7 7 7 DSL

[140] WSN analysis model-based,

performance

\dependability

7 3 3 WSN topolo- gy

(GUI), tra- ce

analysis

[141] Arduino,Ra-

spberry Pi

(POSIX),

Robot OS

model-based, app

design, sys.

design, code gener.

7 3 7 ThingML (DSL),

stat. model

checking

[142] WSN analysis model-based,

performance &

dependability

7 7 3 DSL, analytical

& behavioural

simulation

[143] REST Contiki

Android

WSAN

systems

model-based,

service

choreography,

deployment

3 7 7 D-LITe

middleware,

DSL, BeC
3

tool

(consiste- ncy

check)

[144] REST

\Contiki

WSAN

systems

model-based,

functional design,

service

choreography,

deployment

7 3 7 EMMA mi-

ddleware, ma-

pper (GUI),

satisfiability

solver

BIP

de-

sign

flow

REST

\Contiki

WPAN

systems

model-based, app

design, sys.

design, code

gener., deployment

3 3 3 DSL, simul.,

state explor.,

stat. model

checking

126 Chapter 5. Application modeling for rigorous design of IoT systems

generation and deployment) with the notable exceptions of [139], [141], [143],

[144] and the BIP design flow. Some methods are limited to the analysis of WSN

systems.

In terms of the tools that support the various forms of analysis, most of the

approaches in Table 5.5 provide or utilize various simulation frameworks with

the notable exception of the BIP flow along with [140], [141], [143], [144], which

support statistical model checking and/or other formal analyses. Finally, a

noteworthy number of the shown methods aim to the generation of code for

REST services running on the Contiki OS or other operating system.

Chapter 6

Conclusions and future work

6.1 Advancements with respect to state of the art

This thesis presented methodologies and tools for rigorous design of systems.

Such an approach aims to derive a system implementation from a set of high-

level models by applying a sequence of semantics-preserving transformations.

The goal is to tackle the complexity of design by ensuring system requirements,

while eliminating the need for a-posteriori verification through correctness-by-

construction techniques (property enforcement by design, model-based code

generation). The three main contributions of this thesis provide new techniques

for how to derive and validate a functional application model, from a set of

system requirements or from programs written in an application programming

language.

In Chapter 3, we proposed a model-based design flow and tool for the formal-

ization and the early validation of system requirements with respect to system

design. We have introduced requirement boilerplates that are associated with

property patterns, which capture them in formal terms. The overall process is

built on top of correctness-by-construction techniques that open a new perspec-

tive in the field. The incrementally built design model in BIP provides evidence

of design correctness and consistency among requirements, or else, it guides

the revision of requirements. Through the analyzed case study, we managed to

enforce by design almost all functional system requirements. The key advan-

tage of our architecture-based approach is that verification at system level was

127

128 Chapter 6. Conclusions and future work

avoided. Instead, we needed to verify the safety properties of a small number of

architecture styles with limited state space.

Our incremental approach differs from other approaches [47]–[50] in that it

shifts the focus from requirements’ allocation and system decomposition based

on ad-hoc decisions, to the requirements’ formalization and their enforcement

through formal BIP architectures. These models are directly applicable to the

system design model, thus ensuring correctness-by-construction. Also, as op-

posed to other approaches [26], [27], [60], Requirement Engineer is guided based

on the boilerplate to property pattern associations throughout the formalization

of properties.

In Chapter 4, we showed an approach for deriving BIP models based on a

compositional execution semantics for programs written in workflow languages .

Our approach was instantiated for the BPEL web service composition language.

Compositionality here tackles the combinatorial problem of defining semantics

for each possible combination of nested statements. The execution semantics of

each nesting language construct is specified using safety properties for the BIP

component that represents it. Properties are enforced using BIP architecture

styles. Through a code generation tool that translates BPEL programs into BIP

models we applied our semantics definition to arbitrary-sized programs. The is

also used for verifying BPEL programs. We verify essential correctness and other

functional properties of the application. Verification is only one of the possible

uses of our semantics definition. In [87], our model was extended towards

enabling the configuration of information flow policies for BPEL processes.

Multiple works reviewed in [82] define formal execution semantics in various

formalisms. However, only a few of them feature a tool [94], [100], [102]. The

key advantage of our approach is that we focus on the compositional definition,

such that it is possible to define each construct’s execution semantics indepen-

dently of its enclosing or enclosed constructs. Moreover, our compositionality is

founded on a correct-by-construction methodology, that guarantees translation

correctness, with respect to concretely defined requirement specifications.

Chapter 5 introduces an approach for maintaining the consistency between

Chapter 6. Conclusions and future work 129

the BIP system model and the application code across the rigorous design steps.

To this end, we developed a domain-specific language (DSL), which was used in

the rigorous design of resource-constrained RESTful IoT applications for WPAN

systems with nodes running the Contiki OS. Our DSL is a means for a design

definition of the IoT application and its deployment mapping. This design def-

inition is also used for auto-generating the code to be deployed to the system

nodes, thus preserving the properties of the validated BIP models. Our rigorous

design approach was applied to a building automation application. We verified

functional requirements related to service responsiveness, whereas our analysis

also included important extra-functional requirements.

The BIP design flow, compared to other formal model-based approaches [139]–

[142], supports the validation of qualitative properties, which is a very important

specification category for IoT and distributed systems in general. The proposed

DSL language is a novel specification language that allows taking into account

the execution semantics of IoT applications that largely depends on components

of the running OS.

In overall, the discussed contributions to the rigorous system design ap-

proach address the following issues:

• early validation of system requirements and design towards reducing the

validation testing during the late stages of development;

• automated generation of functional application models that preserve the

semantics of programs written in programming languages with nesting

syntax (we focused on BPEL);

• how to maintain the consistency between the system model and the ap-

plication code across the rigorous design steps using a domain-specific

language (we focused on resource-constrained IoT system design).

130 Chapter 6. Conclusions and future work

6.2 Future research prospects

Although we provided evidence that our approaches can drastically reduce the

complexity of modern system design, significant challenges remain to be ad-

dressed. In future work, we plan to deal with such difficulties that arise from

the adoption of rigorous design in a realistic industrial context.

In the context of the architecture-based design from system requirements,

we will work on the automatic construction of atomic components for the initial

design model. Moreover, we will extend the framework with more architecture

styles and a larger set of classes in the conceptual model. Finally, for the

representation of domain knowledge, we need to develop a domain ontology, like

the one in [151], to allow for a more fine-grained interpretation of requirements.

The incorporation of an ontology was left as future work, since building a rich

domain ontology requires dedicated work by domain experts.

For the design of workflow programs, which are data-intensive, it is worth to

consider using the secureBIP extension [152], as a means for the analysis and

synthesis of security configurations that can ensure data integrity and event

non-interference. Moreover, it is also possible to extend our translator to han-

dle other composition languages. For instance, by using BIP as a multilanguage

host framework we can analyze the behavioral correctness of service choreogra-

phies.

Considering the proposed flow for IoT systems, we intend to provide sup-

port for additional extra-functional requirements, related to energy consump-

tion [136], [153] and security aspects. For the latter, it has been planned to

extend the design flow with BIP components that model security mechanisms

of the Contiki OS [154], for being able to identify vulnerabilities and verify the

IoT system’s protection against malicious attacks, such as node spoofing [155]

and denial of service [156].

Appendix A

A.1 Derived Property Patterns

A.1.1 Prefixes

The prefixes that contain events define necessary and sufficient preconditions

that trigger beg(M).

States are used in prefixes as additional necessary preconditions that enable

beg(M).

P1: if e1, ... From the P1 template, the properties P1.1 and P1.2 are derived,

expressing that

• the observation of the event enables beg(M), i.e., “globally, the event should

be observed before an observation of beg(M), formulated as:

P1.1: globally, occ(e1) precedes beg(M)

• the observation of the event triggers beg(M), i.e., “globally, beg(M) is ob-

served after the observation of the event”, formulated as:

P1.2: globally, beg(M) responds to occ(e1)

P3: while s2, ... From the P3 template, the property P3.1 is derived, expressing

that the state is a necessary precondition, i.e., “beg(M) is observed only whenever

the state is observed”, formulated as:

P3.1: between beg(M) and X beg(M),obs(s1) exists

131

132 Appendix A.

A.1.2 Suffixes

Suffixes impose additional constraints to the occurrence of beg(M).

S1: ...before e2 From the S1 suffix, which should be used always in combi-

nation with a prefix, the S1.1 property is derived, expressing that event e2 is a

deadline for the occurrence of beg(M), i.e.,“after an observation of the prefix, the

event e2 is not observed before beg(M).”, which is formulated as:

S1.1: between obs(P) and beg(M), occ(e2) is absent

S2: ...sequentially From the S2 suffix, the S2.1 property is derived, express-

ing that the main specification is executed in a sequential manner, i.e., “after

the observation of beg(M), end(M) is observed before a consecutive observation of

beg(M).”, which is formulated as:

S2.1: between beg(M) and beg(M), end(M) exists

A.2 Case study

A.2.1 Functional architecture

• CDMS status: CDMS’s status reporting to the EPS subsystem

• HK PL: HK data generation for the PL subsystem

• HK COM: HK data generation for the COM subsystem

• HK EPS: HK data generation for the EPS subsystem

• HK CDMS: HK data generation for the CDMS internals

• Payload: payload operations’ management

• Error Logging: hardware errors’ logging

• Flash Memory: data management in flash memory

• I2C_sat: communication through I2C_sat bus

Appendix A. 133

A.2.2 Physical architecture

The physical architecture for the case study is identical to the functional archi-

tecture (cf. A.2.1).

A.2.3 Initial design model

Figure A.1 shows a high level view of the initial design model. Such a high level

design model depicts the component ports and their in-between connectors.

A.2.4 Requirements and properties of the running example

We present here the requirements and the derived properties of the CubETH

running example.

HK-02: ‘ HK_PL shall handle HK data from the PL subsystem every TBD sec-

onds, as long as the handling of HK data is enabled. ’

P2: if 〈e1: [TBD] seconds pass 〉 and 〈s1: HK for PL is enabled 〉

M1: 〈f1: HK PL 〉 shall 〈a1: handle HK data from PL 〉

Derived Properties:

HK-02-P2.1 globally, occ(e1)∧ obs(s1) precedes beg(a1)

HK-02-P2.2 globally, beg(a1) responds to occ(e1)∧ obs(s1)

Attribute values based on the resulting model:

obs(s1): HK_PL.enabledHK_PL,

occ(e1): Environment.HKPL_TBD_pass ,

beg(a1): HK_PL.beginHK

HK-03: ‘ While the PS for the PL subsystem is not enabled, HK_PL shall transmit

the HK data of the PL subsystem through the TC/TM service. ’

P3: while 〈s1: PS for PL is not enabled 〉

M1: 〈f1: HK PL 〉 shall 〈a1: transmit HK data through the TC/TM service 〉

134 Appendix A.

Figure A.1: The high level initial design model for the CubETH case study.

Derived Properties:

HK-03-P3.1 globally, obs(s1) precedes beg(a1)

HK-03-P3.2 globally, beg(a1) responds to obs(s1)

Attribute values based on the resulting model:

obs(s1): HK_PL.disabledPS_PL,

beg(a1): HK_PL.ask_I2C_TTC

Appendix A. 135

HK-04: ‘ HK_PL shall write HK data to the flash memory, if PS for the PL

subsystem is enabled. ’

P3: while 〈s1: PS for PL is enabled 〉

M1: 〈f1: HK PL 〉 shall 〈a1: write HK data to the flash memory 〉

Derived Properties:

HK-04-P3.1 globally, occ(e1) precedes beg(a1)

HK-04-P3.2 globally, beg(a1) responds to obs(s1)

Attribute values based on the resulting model:

obs(s1): HK_PL.enabledPS_PL,

beg(a1): HK_PL.mem_write_req

HK-05: ‘ HK_PL shall contact the EPS for a restart of the PL subsystem after a

failure persists for [TBD] sec.’

P1: if 〈e1: a failure of subsystem * persists for [TBD] sec 〉,

M1: 〈f1: HK PL 〉 shall 〈a1: contact the EPS for a restart of PL 〉

Derived Properties:

HK-05-P1.1 globally, occ(e1) precedes beg(a1)

HK-05-P1.2 globally, beg(a1) responds to obs(s1)

Attribute values based on the resulting model:

occ(e1): Environment.HKPL_failurePers

beg(a1): HK_PL.I2C_ask_EPS

and their properties

136 Appendix A.

A.2.5 Final design model

Figure A.2: The high level final design model for the CubETH case study.

In the high level view of the final design model, compared to that of the

initial design in Figure A.1, additional connectors have been added for property

enforcement. Specifically, these connectors were added between the Error

Logging component and other components of the model.

Appendix A. 137

HK PL

Figure A.3: The HK PL component (The HK COM and HK EPS are also like HK
PL)

The requirements for the HK PL component are shown in Section A.2.4.

138 Appendix A.

HK CDMS

Figure A.4: The HK CDMS component

The requirements for the HK CDMS component are similar to the HK-02, HK-

03 and HK-04 requirements (of HK PL component) shown in Section A.2.4.

Appendix A. 139

CDMS status

Figure A.5: The CDMS status component

CDMS-02: ‘ The CDMS_status shall periodically reset the internal and external

watchdogs and contact the EPS subsystem with a “heartbeat”. ’

P1: 〈e1: if [TBD] seconds pass 〉

M2: 〈f1: CDMS_status 〉 shall 〈a1: reset the internal and external watchdogs 〉

and 〈a2: contact the EPS subsystem with a “heartbeat” 〉

140 Appendix A.

Error Logging

Figure A.6: The Error Logging component

Log-02: ‘ Error_logging shall log each hardware error to the RAM.’

P1: if 〈e1: a hardware error is produced 〉

M1: 〈f1: Error_logging 〉 shall 〈a1: log the error to the RAM 〉

Log-03: ‘ Error_logging shall not log two errors simultaneously. ’

M1: 〈f1: Error_logging 〉 shall 〈a1: log the error to the RAM 〉

S3: sequentially

Appendix A. 141

Payload

Figure A.7: The Payload component

PL-01: ‘ When in IDLE mode, PL shall load a scenario to the board. ’

P3: while 〈s1: in IDLE mode 〉

M1: 〈f1: PL 〉 shall 〈a1: load a scenario to the board 〉

PL-02: ‘ In SCENARIO_READY, PL has loaded a scenario to the board. ’

P1: if 〈e1: PL has finished loading a scenario to the board 〉

M3: 〈f1: PL 〉 shall 〈s2: be in SCENARIO_READY mode 〉

PL-03: ‘ In SCENARIO_READY, PL shall execute a scenario to the board. ’

P3: while 〈s2: in SCENARIO_READY mode 〉

M1: 〈f1: PL 〉 shall 〈a12: execute a scenario to the board 〉

PL-04: ‘ In STARTED mode, a PL scenario has been executed. ’

P1: if 〈e2: PL has finished executing a scenario 〉

M3: 〈f1: PL 〉 shall 〈s3: be in STARTED mode 〉

142 Appendix A.

PL-05: ‘ In STARTED mode, PL shall check the status of the board’s internals. ’

P3: while 〈s3: in STARTED mode 〉

M1: 〈f1: PL 〉 shall 〈a3: check the status of the board’s internals 〉

PL-06: ‘ If the board status is full, PL shall be in the RESULT_READY mode. ’

P2: if 〈e3: the board status is found full 〉 and 〈s5: there is data to be transferred

from the board 〉

M3: 〈f1: PL 〉 shall 〈s4: be in RESULT_READY mode 〉

PL-07: ‘ In RESULT_READY, PL shall transfer data from the board to the flash

memory. ’

P3: while 〈s4: in RESULT_READY 〉

M1: 〈f1: PL 〉 shall 〈a4: transfer data from the board to the flash memory 〉

PL-08: ‘ PL shall be back to IDLE mode, whenever PL aborts a board operation. ’

P1: if 〈e4: PL has finished aborting a board operation 〉

M1: 〈f1: PL 〉 shall 〈s1: be in IDLE mode 〉

PL-09: ‘ PL shall not be processing two (128,1) telecommands simultaneously. ’

M1: 〈f1: PL 〉 shall 〈a6: process (128,1) telecommands 〉

S2: sequentially

PL-10: ‘ PL shall not be processing two (128,4) telecommands simultaneously. ’

M1: 〈f1: PL 〉 shall 〈a7: process (128,4) telecommands 〉

S2: sequentially

PL-11: ‘ PL shall not be processing two (128,5) telecommands simultaneously. ’

M1: 〈f1: PL 〉 shall 〈a8: process (128,5) telecommands 〉

S2: sequentially

PL-12: ‘ PL shall not perform two status verification tests simultaneously. ’

M1: 〈f1: PL 〉 shall 〈a9: perform status verification tests 〉

S2: sequentially

Appendix A. 143

Flash Memory

Figure A.8: The Flash Memory component

Mem-01: ‘ Flash memory shall process read and write operations sequentially. ’

M1: 〈f1: Flash_memory 〉 shall 〈a1: process operations 〉

S2: sequentially

Mem-02: ‘ For a write operation, the flash memory writes blocks of data the

device, until all data has been written. ’

P3: while 〈s1: a write operation is being processed 〉

M1: 〈f1: Flash_memory 〉 shall 〈a2: write data to the device 〉

Mem-03: ‘ For a read operation, the flash memory reads each block of data from

the device and performs the Cyclic redundancy check (CRC), until all data has been

read. ’

P3: while 〈s2: a read operation is being processed 〉

M2: 〈f1: Flash_memory 〉 shall 〈a3: read data from the device 〉 and 〈a6:

perform the CRC 〉

Mem-04: ‘ Each read operation returns its finishing status. ’

P1: if 〈e1: a read operation begins 〉

M1: 〈f1: Flash_memory 〉 shall 〈a4: return the operation’s finishing status 〉

S1:before 〈e4: it has finished 〉

144 Appendix A.

Mem-05: ‘ Each write operation returns its finishing status.’

P1: if 〈e2: a write operation begins 〉

M1: 〈f1: Flash_memory 〉 shall 〈a5: return the operation’s finishing status 〉

S1:before 〈e5: it has finished 〉

Mem-07: ‘ If CRC fails, the Flash memory shall reread the data from the flash

memory, as long as the number of read attempts is less or equal to [MAX_FM_-

READS]. ’

P2: if 〈e3: CRC fails 〉 and 〈s3: the same data has been read [MAX_FM_-

READS] times or less 〉

M1: 〈f1: Flash_memory 〉 shall 〈a6: continue reading data from the device 〉

Mem-08: ‘ If CRC fails, the Flash memory shall abandon the reading operation,

as long as the number of read attempts exceeds [MAX_FM_READS]. ’

P2: if 〈e3: CRC fails 〉 and 〈s4: the same data has been read more than

[MAX_FM_READS] times 〉

M1: 〈f1: Flash_memory_read 〉 shall 〈a7: abort the read operation 〉

Appendix A. 145

I2C_sat

Figure A.9: The I2C_sat component

The funcitonality of the I2C_sat component is taken into account in the

model, though it is not specified in the requirements. The component imple-

ments the I2C protocol, which is specified in [41].

Appendix B

B.1 Variables for process state

B.1.1 The state of service interactions

The lifetime of service interactions spans across the execution of multiple activity

components. Therefore, we use variables in the data components of scopes

that allow sharing information about the state of service interactions. These

variables store:

• the (url) location of remote services of partner links that influences the

routing of incoming messages. Partner links may or may not be initialized

(by the scope or copy components) when they are accessed, in which

case a fault is thrown.

• the correlation sets; these are sets of correlation properties, i.e. variables

that are instantiated and accessed by activity components for service in-

teractions (receive, reply, invoke, listen). A fault (correlation vio-

lation) is thrown upon attempts to (i) initialize already initialized sets, (ii)

access uninitialized sets, (iii) send a message not matching the initialized

sets.

• the information for routing messages to each listening receive compo-

nent
1
; this information consists of a partner link, a service operation, as

well as a list of correlation set values and their mappings to message parts.

1
this refers to enabled IMA according to the BPEL terminology

147

148 Appendix B.

A fault is thrown if the routing information of receive components are

conflicting (i.e., they match the same messages) or ambiguous (i.e., they

can both match a message).

• a request identifier for each incomplete incoming synchronous request
2
;

this identifier is set by the receive component and encodes its associ-

ated partner link, service operation and possibly some internal transaction

identifier
3
; each reply component attempts to erase the request identifier

to which it replies. A fault is thrown if: (i) a receive component attempts

to set a duplicate request identifier (conflicting request), (ii) a reply does

not find its associated request identifier (missing request), or (iii) a scope

about to end detects an incomplete synchronous request (missing reply).

B.1.2 BPEL variables

The variables for a BPEL process may have been defined globally or within

scopes. They store the content of messages or any other information that is

shared among the activities of a scope, and are often used in conditions that in-

fluence the control flow. Their data types are either XML types or WSDL message

types with partitions, called parts. In the BIP model, these variables are stored

within the data components using separate BIP variables for each of their parts;

they are read and assigned by activity components such as copy, receive,

listn, invoke, reply and loopctrl using their read and write ports.

For the values of BPEL variables, we have adopted a data abstraction ap-

proach using symbols. This allows identifying variables that have not been

initialized, and assignments with the same expression which is needed to detect

every time that the variables change value. The same default symbol is assigned

to all variables that have not been initialized. Each activity component with as-

signment semantics (e.g. copy, receive) evaluates the symbol to be assigned

- let us call it right-value - to some BPEL variable, referred to as left-value. First,

the symbols used in the right-value are being read:

2
this refers to open IMA according to the BPEL terminology

3
this refers to the BPEL messageExchange attribute

Appendix B. 149

• if they correspond to BPEL variables, then they are retrieved from data

components;

• if they are BPEL message inputs or external data, then their values are

represented by distinct symbols.

To the left-value is then assigned the hash code for the string given by concate-

nating the retrieved symbols with the static parts of the right-value.

150 Appendix B.

B.2 Compositional semantics for BIP compounds

B.2.1 BIP compound for sequence

Definition B.2.1. A sequence composite encloses n components act1. . .actn.

The following safety properties have to be satisfied:

- if sequence is started, so does act1.

- acti is started only if acti−1 is finished.

The safety properties of Def. B.2.1 and the general properties are fulfilled by

the Sequential style of Figure B.1. The style has a coordinator P which enforces

a sequential order of execution between two parameters A1 and A2. Thus for

the coordination of n > 2 parameters, Sequential style must be applied hierar-

chically n-1 times. The first and second property of Def. 4.4.1 are implemented

by two rendezvous between the P.start and A1.start ports (resp. of A1.fin and

A2.start ports). Note that fin ports are linked by connectors twice in A1: first,

in order to synchronize the fin and start of successive components, and second,

to synchronize the fin of both components at the end of their processing. The

rendezvous between the A1.rvs and A2.rvsd ports enforce the order of compen-

sation, which is the reverse of the order of execution. In case A1 abort ports, it

can cause A2 to be disabled by triggering one of the abort ports. This coordi-

nation, though it is not applied to sequence, it is needed for using the style to

other components with similar semantics (e.g. the act composite).

Figure B.1: Sequential style

Appendix B. 151

The connectors in Figure B.1 that connect the dsbl, term and fin ports are

used to enforce the general safety properties in Section 4.4. These connectors

exist also in the Prioritized Alternative, Non-Prioritized Alternative, Repetitive

and Parallel Repetitive styles, though they are omitted from the diagrams. The

connectors of rvs and rvsd ports for these styles are placed as shown in Fig-

ure 4.6. In all these style there is one coordinating component which is branch-

ing bisimilar to the P component shown in Figure 4.6. This ensures branching

bisimilarity between the observable behavior of the styles and the empty com-

ponent.

B.2.2 BIP compound for if

Definition B.2.2. An if composite encloses one condctrl component and

n components act1. . .actn. Let us consider the condctrl ports acc1 . . .accn

and rej1 . . . rejn, for accepting an activity component (resp. rejecting it). The

following safety properties have to be satisfied:

- acti is started only if it is accepted by the condctrl.

- if condctrl rejects an acti , then acti is disabled.

The Conditional alternative style of Figure B.2 is used to enforce the safety

properties of Def. B.2.2. The style has one CN and n A parameters. The coor-

dinator P plays the same role as in the previously described styles. The con-

nectors that enforce the general safety properties are omitted from Figure B.2.

Parameters A are assumed to be branching bisimilar with empty, whereas CN

is assumed to be branching bisimilar to the behavior with which it is depicted

in Figure B.2. The first property of Def. B.2.2 is fulfilled by n broadcast con-

nectors between each CN.selcti and Ai .start for i = 1 . . .n. The second property

is satisfied by a single broadcast connector between CN.rej and all Ai .disable.

Broadcast connectors were chosen, so that CN is not blocked after the termi-

nation of the if composite, upon which all Ai are terminated while CN doesn’t

enable termination. As a result, CN must be able to perform, for example, selcti

even if Ai cannot start. Finally, it is worth to mention that the effects of disabling

152 Appendix B.

some Ai do not depend on race conditions, thus the same results are produced

whether Ai is disabled before, during, or after the execution of some Aj.

Figure B.2: Conditional alternative style

B.2.3 BIP compound for pick

Definition B.2.3. A pick composite encloses n components act1. . .actn and n

components λ1. . .λn (each being either listn or timer). λ components export

the ports ev and off , for receiving an event (i.e. message or timing event) and,

respectively, stop waiting. The following safety properties need to be satisfied:

- if pick is started, so do all Li .

- acti is started only if the event of Li arrives.

- At most one acti is started.

Figure B.3: Alternative style

The Alternative style (Figure B.3) is used to enforce the safety properties of

Def. B.2.3. The style has n M parameters, n A parameters and a coordinator P.

The behavior of L and A is assumed to be branching bisimilar to empty. The

first property of B.2.3 is fulfilled by a single rendezvous that connects the P.start

Appendix B. 153

and the Li .start ports, while the second is realized by the rendezvous between

the Li .ev and Ai ports.start. The third property is satisfied by the coordinator P

and its rendezvous connection with the Li .ev port, which allows only one such

port to be executed. Subsequently, P disables the A components and closes the

L components through a broadcast connector triggered by the tOff port. Note

that the A that started will not be disabled, since it is not in the initial state.

The broadcast connector allows the interaction to be executed, even if this A is

not able to participate.

B.2.4 BIP compound for loop

Definition B.2.4. A loop composite encloses one loopctrl component and

n components, act1. . .actn, standing for n repetitions of the loop body activity.

Let us consider the loopctrl’s ports beg1 . . .begn, end and break, for begin-

ning a loop’s execution, receiving its end and breaking from loop, respectively.

The following safety properties have to be satisfied:

- acti is started only if loopctrl begins the i−th loop execution.

- if break occurs, the acti of all remaining loop executions are disabled.

Figure B.4: Repetitive style

Note that we use a different activity component to maintain each repetition’s

state, since the loop’s activity compensation will have to run for each repetition

separately.

The Repetitive style (Figure B.4) is used to enforce the safety properties of

Def. B.2.4. The style contains one parameter LP, n parameters A and a coor-

dinator P. The first property is satisfied by the broadcast from LP.begi to the

154 Appendix B.

Ai .start port, whereas the second property is realized by the broadcast from

LP.break to all Ai .dsbl ports.

Definition B.2.5. A parallel loop composite encloses one loopctrl com-

ponent and n components scope1. . .scopen, standing for n parallel repetitions

of the loop body scope. Let us consider the loopctrl’s ports beg1 . . .begn, for

beginning i parallel loop executions, and break for breaking from loop, respec-

tively. Also, the ports fail and succ used by loopctrl to receive the successful

(resp. unsuccesssful) completion of every scope. The following safety proper-

ties have to be satisfied:

- if loopctrl begins i loop executions, scope1. . .scopei are started.

- if loopctrl breaks from loop, all terminatable scopei are terminated.

- if scopei completes, loopctrl is notified whether completion was suc-

cessful or not.

Figure B.5: Parallel Repetitive style

The Parallel repetitive style (Figure B.5) is used to enforce the safety properties

of Def. B.2.5. The style contains one parameter LP, n parameters S and a

coordinator P. The first property is satisfied by the broadcast from LP.begi to the

start ports of S1. . .Si . Number i is evaluated by loopctrl. The second property

is fulfilled by the broadcast from LP.break, which is executed by loopctrl in

3 cases: (a) if i = 0 in state 1 (b) if the number of completed S in state 2 is the

minimum needed for the loop and (c) if all S in state 2 are completed. It depends

on the loopctrl whether it counts all completed S to to the minimum needed,

or only those that finished successfully. Finally, the third property is fulfilled

by the rendezvous connectors between each Si .succ and LP.succ (resp. fail)

Appendix B. 155

B.2.5 BIP compound for act

Definition B.2.6. An act composite is used to enclose a specific activity compo-

nent, say acti, one target and/or one source component. Let us consider

the target’s port abort, for preventing the execution of actc due to target

links, and the source’s ports: read1 . . . readm , for reading values used in the

evaluation of m source links (also evaluating the links), and set1 . . .setm , for

setting the evaluation’ results to the m links. The following safety properties

have to be satisfied:

- actc is started only if (target has finished) and (target has not pre-

vented acti).

- source is started only if acti has finished.

- source evaluates a link only if (acti has not been disabled or terminated)

and (neither acti or source has thrown a fault).

Figure B.6: Status mngmt style

Figure B.7: Reading of links in

act component

Figure B.8: Writing of links in

act component

156 Appendix B.

For the properties of Def. B.2.6 two architecture styles were combined, namely

the Sequential and the Status mngmt styles. The Sequential style is used for

the first two properties of Def. B.2.6, that are ensured through the sequential

execution of target, acti and source and the ability of target to abort the

sequence. Status mngmt (Figure B.6) is used to enforce the third property of

Def. B.2.6. The style has m parameters B, and k parameters A, which get and

set the status, respectively. A coordinator Status is used to maintain n status

values using a different state for each status value. There are no assumptions

for A, while B are assumed to be branching bisimilar to the behavior shown in

Figure B.6. According to the third property of Def. B.2.6 there will be two sta-

tuses: the norm, which is set by default, and the stop which is set when acti

is disabled, or terminated, or if some component (acti or source) has thrown

a fault. For applying the style, source will be used as operand for B, whereas

both source and acti will be operands for A. Figure B.7 shows the result of

applying the two sequential architectures, whereas Figure B.8 shows the result

of applying the Status mngmt in act composite.

B.2.6 Architectures of the components in PROC and scope

The scope encloses composite components with applied architectures that co-

ordinate their constituent components. We describe the architectures used in

each of the norm, evhlrs, faulthlrs and comphlr, though we omit the

expected safety properties and implementation details.

The norm composite encloses a main activity (act) and a component that

contains event handlers (evhlrs). Two coordinating components are attached,

namely the scinit and the scfin, that perform initialization and finalization

actions at the beginning (resp. at the end). of norm. For example, scfin

checks whether open IMAs are left after act and evhlrs have finished. The

Sequential style is applied, so that scinit and act are executed sequentially,

whereas the Parallel style is applied to the Sequential’s result and the evhlrs.

Finally, the Sequential style is applied again on the the Parallel’s result and

scfin. The scinit and scfin are weakly bisimilar to empty, thus they are

Appendix B. 157

valid operands for these styles. One extra connector is used, that turns off

event handlers (evhlrs.turnOff port), so that no new events are handled after

act has finished (act.fin). Note that if norm is inside PROC it will contain the

process’ starting activity, which in this case must first finish before evhlrs is

started. This enables evhlrs to use input received by the starting activity (e.g.

for the definition of expected events).

The evhlrs composite encloses a single empty component handles in the

trivial case where there are no expected events to handle. In all other cases, it

encloses n event receiving components (i.e. a timer or listn) and m = 2×n

evscope components that handle the incoming events. Each event receiving

component is associated with two evscope components that will handle one

event occurrence each. For our verification purposes, it is sufficient to consider

just two occurrences of each event, thus we use only two evscopes per event.

Two evscopes can materialize all the interleavings that are necessary to cap-

ture concurrency issues due to parallel handling of the same event. All event

receivers are started when evhlrs is started (i.e. Parallel style) and they start

one of their associated evscopes upon receiving an event. Event receivers can

receive subsequent events, until evhlrs is turned off (i.e. all the non-started

evscopes are then disabled). Afterwards, evhlrs is considered finished when

all evscopes are finished. The evscopes can be concurrently compensated.

The behavior of evscope is quite similar to scope, since they share the same

structure and connectors. Their difference lies in that evscope treats the event

receiver as if it were an enclosed component even though it is not. According

to that, evscope will handle any fault thrown by the event receiver and allows

the event receiver to write to variables and access the correlation sets of the

evscope.

The faulthlrs composite encloses n catch and their associated n act

components. Also, a scfin component is attached, as the one used in norm.

The Alternative style is applied so that only one catch can trigger its associ-

ated act when faulthlrs is started. Specifically, upon faulthrs.startFH a

rendezvous of all catch.start ports is invoked in which each catch exports a

158 Appendix B.

string that characterizes the faults that it can handle. The rendezvous connec-

tor performs a computation which decides on a catch that triggers its act (i.e.

all other catch and act are then disabled). The fault occurrence is stored as

a local variable in catch, so that it can be thrown again by faulthlrs if a

rethrow component is executed within act. The Sequential style is applied so

that scfin is started after the result of Alternative style is finished.

The comphlr composite encloses an act and a scfin coordinated by the

Sequential style. The termhlr composite encloses a single act, thus it has no

coordination needs.

Appendix B. 159

B.3 Models for basic activities and other atomic

components

The models for basic activities and the other atomic components of Table 4.2

are presented here. Note that in the components’ figures we omit to include all

the term ports, in order to keep them uncluttered.

invoke

The invoke component performs a service invocation and it has two variants

based on whether it invokes a one-way or a request-response operation. Fig-

ure B.9 shows the ports included in both variants with solid line and the ports

that are specific to each variant with dashed and dotted lines, respectively. The

intern port is used for the component’s internal transitions. The used ports are:

• read, to read the partner link and the variables (and correlation sets), for

preparing the message.

• snd_msg, to send the invocation message;

• rcv_msg, when the invocation’s response is received

• write, to store the message and the retrieved correlation sets.

The component throws possible correlation violation (cs_viol), uninitialized part-

ner role (unin_role), uninitialized variable (unin_var) and selection failure (slct_fail)

faults during the preparation of the request message. From these faults, the

first three can be detected, while the last one is non-deterministically thrown.

For the response message, the component throws also the mismatched assign-

ment (mis_assg) fault non-deterministically. Also, if the received response cor-

responds to a fault message (flt_msg) then this fault is thrown by the invoke.

reply

The reply component (Figure B.10) handles the response of a synchronous

operation.

160 Appendix B.

s0 s1 s2 s3

s6

s5 s4

s7s8

start

dsbl

term

rvs

rvsd

fin

allow

term

read

fault

[unin_role ∨ unin_var

∨ cs_viol ∨ slct_fail]

sndMsg

rcvMsg

intern

write

fault

[cs_viol

∨ flt_msg

∨ slct_fail

∨ mis_assg]

done

variants:
oneway
¬ oneway

INVOKE

Figure B.9: The invoke component with two variants.

The used ports are:

• chk_ima, to check that such a request is waiting for response.

• read, to read variables and correlation sets for preparing the message

• close_ima, to remove request from the waiting list.

• snd_msg, to send the response message;

The component detects and throws possible correlation violation (cs_viol) and

uninitialized variable (unin_var) faults. Also, it throws non-deterministically

the mismatched assignment (mis_assg), selection failure (slct_fail), and missing

request (miss_req) faults.

s1 s2 s3 s4

s5

s6s7s8s9

start

dsbl

term

rvs

rvsd

fin

allow

term

chk_ima

read

close_ima

snd_msg

fault

[miss_req]
fault

[unin_var
∨ cs_viol
∨ mis_assg

∨ slct_fail]

done

REPLY

Figure B.10: The reply component.

listn

The listn component is ommited, since it is similar to the receive. Namely,

listn is different in that: (i) it can receive multiple messages with one open

listening endpoint, and (ii) it can be turned off, when it shouldn’t receive any

more messages.

Appendix B. 161

copy

The copy component (Figure B.11) handles the assignment to a BPEL variable

(or a partner link). The component reads the source variable stored in some

data component (read port) and evaluates its value. If no fault occurs, it

assigns the value to the target variable, found in some data component (write

port). Note that if the copy assigns from a literal value, the read port has no

effect.

The component detects and throws possible uninitialized variables (unin_var),

and uninitialized partner role (unin_role) faults. Also, it throws the mismatched

assignment (mis_assg), selection failure (slct_fail), and invalid selection (inval_slct)

faults non-deterministically. These faults may or may not be thrown based on

the source and target variables’ variant, which can be a variable, a partner link,

a literal value or an expression.

s1 s2 s3 s4

s5s6s7

start

dsbl

term

rvs

rvsd

fin

allow

term

read

write fault

[unin_var ∨ unin_role ∨
slct_fail ∨ inval_xpr ∨
mis_assg]

done

COPY

Figure B.11: The copy component with two variants.

compensate

The compensate component (Figure B.12) controls the compensation of one or

many scopes. Such a component reside only within the act of the components

faulthlrs, comphlr and termhlr. The used ports are:

• compensate, to start the compensation of some scope(s).

• infault, to receive a fault from the compensated scopes.

• endrvrs, to be notified about the end of compensation.

• termcomp, to abruptly terminate the compensation.

162 Appendix B.

The component rethrows, through the fault port, any fault of the compensated

scope. Thus, these faults can be handled by the compensate’s enclosing scope.

s1 s2 s3 s4

s5s6s7s8

start

dsbl

term

rvs

rvsd

fin

compensate

term

infault

endcomp
termcomp

endcompfault

COMPENSATE

Figure B.12: The compensate component.

throw , rethrow

The throw component (Figure B.13) is used to throw an explicit internal fault,

through the fault port. On the other hand, the rethrow component (Fig-

ure B.14) has a slightly different role; It is placed within faulthlrs in order to

to rethrow the fault that was originally caught. For this reason, the rethrow

component uses the rethrow port that has different semantics from the throw

port and it is handled differently by the scope’s glue: initially the transferred

fault is unknown and it is assigned at the scope level, after it is retrieved by the

scope’s controller which stores the caught faults.

s1 s2 s3

s4s5s6

start

dsbl

term

rvs

rvsd

fin

allow

term fault

done

THROW

Figure B.13: The throw com-

ponent.

s1 s2 s3

s4s5s6

start

dsbl

term

rvs

rvsd

fin

allow

term rethrow

done

RETHROW

Figure B.14: The rethrow
component.

exit

The exit component (Figure B.15) fires the exit port, that causes the whole

process’s interruption.

Appendix B. 163

s1 s2 s3

s4s5s6

start

dsbl

term

rvs

rvsd

fin

allow

term exit

done

EXIT

Figure B.15: The exit component.

valid

The valid component (Figure B.16) validates a variable against its data type

(XML schema). Since our modelling assumes only symbolic values for variables,

the component cannot detect the invalid variables (inval_var) fault, thus the fault

is thrown non-deterministically.

s1 s2 s3 s4

s5s6s7

start

dsbl

term

rvs

rvsd

fin

allow

term

read

fault

[inval_var]
intern

done

VALID

Figure B.16: The valid component.

timer

The timer component (Figure B.17) is used to model the BPEL activities onAlarm

and wait that handle the firing of a time-out. The time-out is specified using

either a duration (relative timestamp) or a date (absolute timestamp). Also, the

time-out for onAlarm may be periodic, if a time period is given. All the timer

components of the model are synchronized (tick port) so that they update their

remaining time accordingly: upon each tick, one timer expires (whichever is

closer to expire), while this timer’s remaining time is reduced by the other

timers remaining times. The used ports are:

• read, to read the variables for evaluating the timer’s expressions.

164 Appendix B.

• tick, to synchronize with other timers.

• trigger, when there is a time-out.

• tOff, when it is turned off.

The component can detect a possible uninitialized variable (unin_var) fault, while

it throws the invalid expression value (inval_xpr) fault non-deterministically.

s1 s2 s3

s4s5s6

start

dsbl

term

rvs

rvsd

fin
tOff

read
t:=expr;

tOff

term

tick
t:=t-adv;

trigger
[t==0]

intern
[repeat>-1]

t:=repeat;

intern

tOff

fault
[unin_var ∨
inval_xpr]

TIMER

Figure B.17: The timer component.

loopctrl

The loopctrl component for the while and repeatUntil activities are shown

in Figure B.18 and Figure B.19 respectively. Both components have the same

interface, though their behaviors differ, based on whether the first execution

depends on a decision or not. The used ports are:

• read, to read the variables for evaluating the conditions.

• trigger, to start the loop body activity;

• done_in, when the loop body activity is finished.

• tOff, to exit the loop.

The component can detect a possible uninitialized variable (unin_var) fault, while

it throws the invalid expression value (inval_xpr) fault non-deterministically.

Appendix B. 165

s1 s2 s3 s4

s6s7

start

dsbl

term

rvs

rvsd

fin

read

term

trigger

tOff

[¬expr]

fault

[unin_var ∨
inval_xpr]

done_in
WHILE_LOOPCTRL

Figure B.18: The loopctrl component for the while activity.

s1 s2 s3

s4

s6 s5s7

start

dsbl

term

rvs

rvsd

fin

trigger

term

done_in

fault

[unin_var ∨
inval_xpr]

read

trigger

tOff

[¬expr]

UNTIL_LOOPCTRL

Figure B.19: The loopctrl component for the repeatUntil activity.

The loopctrl for the forEach and the parallel forEach activities are shown

in Figure B.20 and Figure B.21 respectively. The components have the same

interface, though their behaviors differ slightly. The used ports are:

• read, to read the variables for evaluating the expressions.

• trigger, to start the loop body scope;

• succ, when the loop body scope is successfully finished.

• fail, when the loop body scope is finished but not successfully.

• tOff, to exit the loop.

The component can detect a possible uninitialized variable (unin_var) fault, while

it throws the invalid expression value (inval_xpr) fault non-deterministically.

166 Appendix B.

s1 s2 s3 s4

s6s7 s5s8

start

dsbl

term

rvs

rvsd

fin

read

term

trigger

tOff

[i≥N]
fault

[unin_var ∨
inval_xpr]

trigger

fault

[unin_var ∨
inval_xpr]

succ

i:=i+1;
fail
if(¬succOnly)

i:=i+1;

read

tOff

[i≥min(C,N)]

FOREACH_LOOPCTRL

Figure B.20: The loopctrl component for the forEach activity.

s1 s2 s3 s4

s6s7 s5s8

start

dsbl

term

rvs

rvsd

fin

read

term

trigger

tOff

[i≥N]
fault

[unin_var ∨
inval_xpr]

intern

fault

[unin_var ∨
inval_xpr]

succ

i:=i+1;
fail
if(¬succOnly)

i:=i+1;

read

tOff

[i≥C]

PARFOREACH_LOOPCTRL

Figure B.21: The loopctrl component for the parallel forEach activity.

condctrl

The condctrl component (Figure B.22) handles a decision for the execution of

one out of N components. The used ports are:

• readi , to read the variables for evaluating expression i.

• triggeri , to start component i;

• tOffi , to disable component i.

The component can detect a possible uninitialized variable (unin_var) fault, while

it throws the invalid expression value (inval_xpr) fault non-deterministically.

Appendix B. 167

s1 s2 s3 s4

...

...

...

s6

s5

s7

start

dsbl

term

rvs

rvsd

fin

read1

term

tOff1

[expr1]

trigger1

read2

tOff2

[expr2]

trigger2

fault

triggerN

tOffN

fault

CONDCTRL

Figure B.22: The condctrl component.

168 Appendix B.

B.4 Translation times for test programs

Figure B.23: Regression analysis of translation times for test programs

(x axis is the number of states, y axis in ms)

Appendix C

C.1 Language for Contiki REST application design

definition (DSL)

This Appendix refers to the DSL syntax and BIP templates, for client actions,

which are not mentioned in Section 5.4.3. Moreover, a server process in DSL

and its Contiki template are presented.

1 <while boolExp="bool-expr">
2 action+
3 </while>
4

5 <if boolExp="bool-expr">
6 action+
7 <elseif boolExp="bool-expr">*
8 action+
9 </elseif>

10 <else>?
11 action+
12 </else>
13 </if>
14

15 <wait>
16 <onEv evType="event-type"?
17 cond=""? >*
18 action+
19 </onEv>
20 </wait>

Listing C.1: DSL syntax for

structured actions

. . .

. . .

[while]

action+[¬while]

[if]
[elseif1]

[else]

action+
action+

action+

yield called

yield

[other]

[onEv1] [onEvN]

action+ action+

Figure C.1: BIP templates for

actions in Listing C.1

The actions can encode control flow structures with nested actions, such

loops, conditionals or event handlers. We call these actions structured and their

syntax is defined in Listing C.1. Moreover, Figure C.1 shows the corresponding

BIP template for each of them.

A set of basic actions including timeout, event dispatching, message commu-

nication, block of code etc. have been also encoded, whose syntax is presented

169

170 Appendix C.

1 <timeout timer="QName"
2 command="set|rset|rstrt|stop"
3 (var="QName"|val="unsign-int")? />
4

5 <postEv mode="syn|asyn"
6 evType="event-type"
7 process="QName"?
8 var="QName"? />
9

10 <sndReq server="QName"
11 resource="QName"
12 params="QName-list"?
13 method="put|get|post|del"
14 (contentType="txt|json|xml"
15 var="QName")? />
16

17 <getResp/>
18

19 <exit />
20

21 <code> <!--C/C++ code--> </code>

Listing C.2: DSL syntax for

basic actions

setTimer timerSet

postSyn resume

postAsyn

sndMsg msgSnt

getMsg

postAsyn yield

internal / code();

Figure C.2: BIP templates for

actions in Listing C.2

in Listing C.2. The BIP behaviour that is instantiated for these actions is shown

in Figure C.2, where each action is modelled by the activation of one or two

successive ports. For a <timeout>, the process first sets a timer (timerSet port)

and waits until the timer is set by Contiki (timerSet port). The <postEv> ac-

tion corresponds either to a synchronous or an asynchronous posting. After

synchronous posting (postSyn port), the process is blocked until be allowed to

resume (resumr port) by the Contiki. This is in contrast with the asynchronous

posting, which does not block the process. With the <sndReq> action, the pro-

cess creates a message to be sent by Contiki (sndMsg port) and it is notified

when the message is sent (msgSnt port). The <getResp/> action (getMsg port)

is used when receiving a response message, whereas with the <yield/> action

(yield port) the process yields. With an <exit/> action, the process posts asyn-

chronously an EXIT event for itself and yields. The process is called, when the

EXIT event is scheduled to occur and the exit handler is then triggered. Except

from the aforementioned actions, the DSL provides also the <code> element

that allows for custom actions which are specified using C/C++ code. In BIP,

this element is represented by an internal action (no port is activated) that calls

the function with the specified code.

A server process description (Listing C.3) includes a set of (periodic or ape-

riodic) resource handlers, with handlers for their supporting COAP methods.

Appendix C. 171

The “autoStart” value
1

defines whether the process will be initiated by default,

or upon an event by another process. Listing C.4 shows the Contiki syntax

of a server process. At the bottom of the template (lines 13-19), there is the

definition of a process, which lives only to start a REST engine and activate the

resources. The REST engine (whose code is included in the server’s source file)

is a predefined Contiki process that implements a REST server, i.e. it invokes

the server’s resource handlers either periodically, or upon an incoming request.

The communicated messages are passed between the REST engine and the han-

dlers with the req and resp variables. The template includes two resources, one

aperiodic (line 2) and one periodic (line 6). Resource handlers are implemented

as a [resource_id]_handler function.

1 <server id="..."
2 autoStart="[true|false]"? >+
3 <resource_handler
4 resource_id="..." >+
5 <method id="[get|post|put|

del]{1,4}"/>+
6 <code> <!--C/C++ code--> <

/code>
7 <periodic period="int" >
8 <!--C/C++ code-->
9 </periodic>?

10 </resource_handler>
11 </server>

Listing C.3: DSL syntax

for a REST server

1 RESOURCE(res1,/*methods*/,...);
2 void res1_handler(REQUEST* req,
3 RESPONSE* resp)
4 { }
5

6 PERIODIC_RESOURCE(res2,/*period*/,...);
7 ... /* res2 handler */
8 void res2_periodic_handler(REQUEST* req,
9 RESPONSE* resp)

10 { }
11 /* other resources and handlers */
12

13 PROCESS(server, ...);
14 AUTOSTART_PROCESSES(&server);
15 PROCESS_THREAD(server, ...){
16 PROCESS_BEGIN();
17 /* start rest engine process */
18 /* activate resources */
19 PROCESS_END();}

Listing C.4: Contiki code tem-

plate for a REST server

C.2 BIP interactions of the RestModule model with

the OS model

In <AppModel>, each <RESTModule> interacts with the <OS> component as

it is shown in Figure C.3. For simplicity, only the OS interactions with one

process are depicted. Every process is modelled as an atomic component with

application-specific behaviour.

1
The “autoStart” attribute is used for both servers and clients, although it was not shown in

Section 5.4.3

172 Appendix C.

called

resume

ends

yields

call

called

resume

ends

yields

postAsyn

postSyn

pollReqyields

ends
resume OS

msgSnt dlvrMsg

ticksndPacket recvPacket

postSyn

postAsyn

procPoll

msgSnt getMsgsndMsg

setTimer request

setTimer

postSyn

procPoll

postAsyn

msgSnt getMsgsndMsg

setTimer

Process NProcess 1

RESTModule

Figure C.3: The RestModule for a Client and its interactions with the OS

A process is called (called port), when the OS dispatches an event to it. After

the event is handled, the process’s execution yields (yield port). Posted syn-

chronous or asynchronous events to other processes are passed through the

postSyn and postAsyn ports. For a synchronous event, the process resumes

execution (resume port) upon the end of event handling. Each process may

request polling for itself or other processes and can set deadlines using timers

(setTimer port) or send a message (sndMsg port). The <ConKernel> acknowl-

edges the completion of setting a timer or transmitting a message (timerSet,

msgSnt ports). When the process execution is finished, the end port is enabled.

The model details for the invocations of REST resource handlers are discussed

in [126]. In current model, the supported resource types are periodic, event and

actuator.

C.3 Network stack model parameters

The model parameters in Table C.1 can be adjusted through the network con-

figuration XML specification (input in step 2). Some parameters concern with

Appendix C. 173

the exponential backoff mechanism of the IEEE 802.15.4 standard or the time-

out for a packet receipt. Moreover, there are parameters like macMinBE, mac-

MaxBE, macMaxCSMABackoffs and macMaxFrameRetries that affect the net-

work throughput and the number of channel collisions. Parameter values de-

pend on the transmission time of one symbol (4 bits), denoted by symbolPeriod.

This time is computed from equation (5.1).

Model parameter Value

aUnitBackoffPeriod 20∗symbolPeriod
CCA duration

1
8∗symbolPeriod

macMaxCSMABackoffs 0-5 (default 4)

macAckWaitDuration 54∗symbolPeriod
macMinBE 3

macMaxBE 3-8 (default 5)

aMaxFrameRetries 3

tdata [152,1064]∗symbolPeriod
tack 136∗symbolPeriod

aTurnaroundTime 12∗symbolPeriod
SIFS

2
12∗symbolPeriod

LIFS
2

40∗symbolPeriod

Table C.1: Parameters of the modelled network stack

1
Clear Channel Assessment (CCA) is the time needed to access the communication channel

2
Short Interframe Space (SIFS) is the period required for allowing the MAC layer time to

process the data received in the physical layer for short data frames and Long Interframe Space

(LIFS) is the respective period for long data frames

Bibliography

[1] Joseph Sifakis. “Rigorous System Design”. In: Foundations and Trends

in Electronic Design Automation 6.4 (2013), pp. 293–362.

[2] A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T. H. Nguyen,

and J. Sifakis. “Rigorous Component-Based System Design Using the

BIP Framework”. In: IEEE Software 28.3 (2011), pp. 41–48.

[3] Roy Thomas Fielding. “Architectural Styles and the Design of Network-

based Software Architectures”. AAI9980887. PhD thesis. 2000. isbn: 0-

599-87118-0.

[4] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. “Contiki-a lightweight

and flexible operating system for tiny networked sensors”. In: Local Com-

puter Networks, 2004. 29th Annual IEEE International Conference on.

IEEE. 2004, pp. 455–462.

[5] Brent Hailpern and Padmanabhan Santhanam. “Software debugging,

testing, and verification”. In: IBM Systems Journal 41.1 (2002), pp. 4–

12.

[6] Gary T Leavens and Murali Sitaraman. Foundations of component-based

systems. Cambridge University Press, 2000.

[7] Alan W Brown and Kurt C Wallnan. “Engineering of component-based

systems”. In: Engineering of Complex Computer Systems, 1996. Proceed-

ings., Second IEEE International Conference on. IEEE. 1996, pp. 414–

422.

[8] Saddek Bensalem, Andreas Griesmayer, Axel Legay, Thanh-Hung

Nguyen, Joseph Sifakis, and Rongjie Yan. “D-Finder 2: towards effi-

cient correctness of incremental design”. In: Proceedings of the 3
rd in-

ternational conference on NASA Formal methods. NFM’11. Pasadena, CA:

Springer, 2011, pp. 453–458.

175

176 BIBLIOGRAPHY

[9] Ananda Basu, Saddek Bensalem, Marius Bozga, Paraskevas Bourgos,

and Joseph Sifakis. “Rigorous System Design: The BIP Approach”. In:

Mathematical and Engineering Methods in Computer Science. Ed. by

Zdeněk Kotásek, Jan Bouda, Ivana Černá, Lukáš Sekanina, Tomáš Vo-

jnar, and David Antoš. Berlin, Heidelberg: Springer Berlin Heidelberg,

2012, pp. 1–19.

[10] Anastasia Mavridou, Eduard Baranov, Simon Bliudze, and Joseph

Sifakis. “Configuration logics: Modeling architecture styles”. In: Journal

of Logical and Algebraic Methods in Programming 86.1 (2017), pp. 2 –29.

[11] CMMI Product Team. CMMI for Acquisition, Version 1.2. Tech. rep.

CMU/SEI-2007-TR-017. Software Engineering Institute, Carnegie Mel-

lon University, 2007. url: http://resources.sei.cmu.edu/library/asset-view.cfm?

AssetID=8451.

[12] Alessandro Cimatti, Marco Roveri, Angelo Susi, and Stefano Tonetta.

“Validation of Requirements for Hybrid Systems: a Formal Approach”.

In: 21 (Nov. 2012).

[13] Ananda Basu, Saddek Bensalem, Marius Bozga, Paraskevas Bourgos,

Mayur Maheshwari, and Joseph Sifakis. “Component Assemblies in the

Context of Manycore”. In: 10th Int. Symp. on Formal Methods for Com-

ponents and Objects (FMCO 2011). Ed. by Bernhard Beckert, Ferruccio

Damiani, Frank S. de Boer, and Marcello M. Bonsangue. Vol. 7542. Lec-

ture Notes in Computer Science. 2013, pp. 314–333.

[14] Paul Attie, Eduard Baranov, Simon Bliudze, Mohamad Jaber, and

Joseph Sifakis. “A general framework for architecture composability”.

In: Formal Aspects of Computing 28.2 (2016), pp. 207–231.

[15] Anastasia Mavridou, Emmanouela Stachtiari, Simon Bliudze, Anton

Ivanov, Panagiotis Katsaros, and Joseph Sifakis. “Architecture-based

Design: A Satellite On-board Software Case Study”. In: Proceedings of

the 13th International Conderence of Formal Aspects in Component Soft-

ware. 2016.

[16] Anastasia Mavridou, Eduard Baranov, Simon Bliudze, and Joseph

Sifakis. “Architecture Diagrams: A Graphical Language for Architecture

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8451
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8451

BIBLIOGRAPHY 177

Style Specification”. In: Proceedings 9th Interaction and Concurrency Ex-

perience (ICE). Vol. 223. EPTCS. 2016, pp. 83–97.

[17] Dennis M Buede and William D Miller. The engineering design of systems:

models and methods. John Wiley & Sons, 2016.

[18] Ariel Fuxman, Lin Liu, John Mylopoulos, Marco Pistore, Marco Roveri,

and Paolo Traverso. “Specifying and analyzing early requirements in Tro-

pos”. In: Requirements Engineering 9.2 (2004), pp. 132–150.

[19] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements Engineer-

ing. 3rd. New York, NY, USA: Springer, 2010.

[20] Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone,

Jean-Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-

Vincentelli, Werner Damm, Tom Henzinger, and Kim Guldstrand Larsen.

Contracts for Systems Design: Theory. Research Report RR-8759. Inria

Rennes Bretagne Atlantique ; INRIA, July 2015, p. 86. url: https://hal.

inria.fr/hal-01178467.

[21] Allan Berrocal Rojas and Gabriela Barrantes Sliesarieva. “Automated

Detection of Language Issues Affecting Accuracy, Ambiguity and Ver-

ifiability in Software Requirements Written in Natural Language”. In:

Proceedings of the NAACL HLT 2010 Young Investigators Workshop on

Computational Approaches to Languages of the Americas. YIWCALA ’10.

2010.

[22] Deborah Anne Baker. “The Use of Requirements in Rigorous System

Design”. PhD thesis. University of Southern California, 1982.

[23] Steven P. Miller, Alan C. Tribble, Michael W. Whalen, and Mats P.

E. Heimdahl. “Proving the Shalls: Early Validation of Requirements

Through Formal Methods”. In: International Journal on Software Tools

for Technology Transfer 8.4-5 (2006), pp. 303–319.

[24] Pamela Zave and Michael Jackson. “Four dark corners of requirements

engineering”. In: ACM transactions on Software Engineering and Method-

ology (TOSEM) 6.1 (1997), pp. 1–30.

[25] Ajitha Rajan and Thomas Wahl, eds. CESAR - Cost-efficient Methods

and Processes for Safety-relevant Embedded Systems. Springer Vienna,

https://hal.inria.fr/hal-01178467
https://hal.inria.fr/hal-01178467

178 BIBLIOGRAPHY

2013. isbn: 978-3-7091-1386-8. url: http://www.springer.com/engineering/

production+engineering/book/978-3-7091-1386-8 (visited on 04/26/2013).

[26] Alistair Mavin and Philip Wilkinson. “Big Ears (The Return of "Easy Ap-

proach to Requirements Engineering")”. In: RE 2010, 18th IEEE Interna-

tional Requirements Engineering Conference. 2010, pp. 277–282.

[27] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak.

“Easy Approach to Requirements Syntax (EARS)”. In: Proceedings of the

2009 17th IEEE International Requirements Engineering Conference, RE.

RE ’09. IEEE, 2009, pp. 317–322.

[28] Anastasia Mavridou, Emmanouela Stachtiari, Simon Bliudze, Anton

Ivanov, Panagiotis Katsaros, and Joseph Sifakis. Architecture-based De-

sign: A Satellite On-Board Software Case Study. Tech. rep. 221156.

https://infoscience.epfl.ch/record/221156. EPFL, Sept. 2016.

[29] ECSS-E-ST-10C Working Group. “ECSS-E-ST-10C - System engineering

general requirements”. In: European Cooperation for Space Standardiza-

tion (ECSS), ESA Publications (2009), pp. 1–100.

[30] Mike Mannion, Barry Keepence, and David Harper. “Using viewpoints to

define domain requirements”. In: IEEE software 15.1 (1998), pp. 95–102.

[31] Michael Jackson. “Problem analysis and structure”. In: Engineering The-

ories of Software Construction (Proceedings of the NATO Summer School.

IOS Press, 2000.

[32] ECSS-M-ST-10C Working Group. “ECSS-M-ST-10C - Space project man-

agement: Project planning and implementation”. In: European Coopera-

tion for Space Standardization (ECSS) , ESA Publications (2009), pp. 1–

50.

[33] Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz. “Spec-

ification and Semantic Analysis of Embedded Systems Requirements:

From Description Logic to Temporal Logic”. In: Software Engineering

and Formal Methods: 15th International Conference, SEFM 2017, Trento,

Italy, September 4–8, 2017, Proceedings. Ed. by Alessandro Cimatti and

Marjan Sirjani. Vol. 10469. Lecture Notes in Computer Science. 2017,

pp. 332–348.

http://www.springer.com/engineering/production+engineering/book/978-3-7091-1386-8
http://www.springer.com/engineering/production+engineering/book/978-3-7091-1386-8

BIBLIOGRAPHY 179

[34] BIP tools. http://www-verimag.imag.fr/BIP-Tools,93.html.

[35] Anastasia Mavridou, Joseph Sifakis, and Janos Sztipanovits. “Design-

BIP: A Design Studio for Modeling and Generating Systems with BIP”.

In: Proceedings of the 1st International Workshop on Methods and Tools

for Rigorous System Design (MetRID 2018). 2018.

[36] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio,

Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and

Stefano Tonetta. “The nuXmv Symbolic Model Checker”. In: Computer

Aided Verification. Ed. by Armin Biere and Roderick Bloem. Vol. 8559.

Lecture Notes in Computer Science. Springer International Publishing,

2014, pp. 334–342.

[37] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. “Syn-

chronous Observers and the Verification of Reactive Systems”. In:

Proceedings of the Third International Conference on Methodology and

Software Technology: Algebraic Methodology and Software Technology.

AMAST ’93. Springer, 1994, pp. 83–96.

[38] Andreas Mitschke et al. Requirements Specification Language and Re-

quirements Meta Model. Tech. rep. D_SP2_R2.1_M1. CESAR - Cost ef-

ficient methods and processes for safety relevant embedded systems,

2010.

[39] Odd Ivar Lindland, Guttorm Sindre, and Arne Sølvberg. “Understanding

Quality in Conceptual Modeling”. In: IEEE Software 11.2 (Mar. 1994),

pp. 42–49.

[40] Felix Leung and Narasimha Bolloju. “Analyzing the quality of domain

models developed by novice systems analysts”. In: System Sciences,

2005. HICSS’05. Proceedings of the 38th Annual Hawaii International

Conference on. IEEE. 2005, 188b–188b.

[41] NXP. UM10204: I2C-bus specification and user manual. Standard. June

2007.

[42] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Rep-

resentation and Mind Series). The MIT Press, 2008. isbn: 026202649X,

9780262026499.

http://www-verimag.imag.fr/BIP-Tools,93.html

180 BIBLIOGRAPHY

[43] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. “Patterns

in Property Specifications for Finite-state Verification”. In: Proceedings

of the 21st International Conference on Software Engineering. ICSE ’99.

Los Angeles, California, USA: ACM, 1999, pp. 411–420.

[44] Simon Bliudze, Alessandro Cimatti, Mohamad Jaber, Sergio Mover,

Marco Roveri, Wajeb Saab, and Qiang Wang. “Formal verification of

infinite-state BIP models”. In: 13th International Symposium on Auto-

mated Technology for Verification and Analysis (ATVA ’15). Vol. 9364.

LNCS. Nov. 2015, pp. 326–343. doi: 10.1007/978-3-319-24953-7_25.

[45] Stefano Rossi, Anton Ivanov, Gael Soudan, Volker Gass, Christine Hol-

lenstein, and Markus Rothacher. “CubETH magnetotorquers: Design

and tests for a CubeSat mission”. In: vol. 153. 2015, pp. 1513–1530.

[46] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Panagiotis Kat-

saros, Konstantinos Mokos, Viet Yen Nguyen, Thomas Noll, Bart Postma,

and Marco Roveri. “Spacecraft early design validation using formal meth-

ods”. In: Reliability Engineering & System Safety 132 (2014), pp. 20 –35.

[47] Michael W Whalen, Andrew Gacek, Darren Cofer, Anitha Murugesan,

Mats PE Heimdahl, and Sanjai Rayadurgam. “Your" What" Is My" How":

Iteration and Hierarchy in System Design”. In: IEEE software 30.2

(2013), pp. 54–60.

[48] Sanjai Rayadurgam, John Komp, Lian Duan, Baek-Gyu Kim, Oleg Sokol-

sky, and Insup Lee. “From Requirements to Code: Model Based Develop-

ment of A Medical Cyber Physical System”. In: 9062 (2017), p. 96.

[49] Anitha Murugesan, Michael W Whalen, Sanjai Rayadurgam, and Mats

PE Heimdahl. “Compositional verification of a medical device system”.

In: ACM SIGAda Ada Letters 33.3 (Nov. 2013), pp. 51–64.

[50] Marco Bozzano, Alessandro Cimatti, Anthony Fernandes Pires, D. Jones,

G. Kimberly, T. Petri, R. Robinson, and Stefano Tonetta. “Formal Design

and Safety Analysis of AIR6110 Wheel Brake System”. In: International

Conference on Computer Aided Verification. Ed. by Daniel Kroening and

Corina S. Păsăreanu. Springer. 2015, pp. 518–535.

https://doi.org/10.1007/978-3-319-24953-7_25

BIBLIOGRAPHY 181

[51] Michel D. Ingham, John Day, Kenneth Donahue, Alexander Kadesch,

Andrew Kennedy, Mohammed Omair Khan, Ethan Post, and Shaun

Standley. “A Model-based Approach to Engineering Behavior of Com-

plex Aerospace Systems”. In: Infotech@Aerospace 2012, Garden Grove,

California, USA, June 19-21, 2012. 2012.

[52] Alessandro Cimatti, Michele Dorigatti, and Stefano Tonetta. “OCRA: A

tool for checking the refinement of temporal contracts”. In: Automated

Software Engineering (ASE), 2013 IEEE/ACM 28th International Confer-

ence on. IEEE. 2013, pp. 702–705.

[53] Jamieson M. Cobleigh, George S. Avrunin, and Lori A. Clarke. “Breaking

Up is Hard to Do: An Evaluation of Automated Assume-guarantee Rea-

soning”. In: ACM Transactions on Software Engineering and Methodology

(TOSEM) 17.2 (May 2008).

[54] Martin Böschen, Ralf Bogusch, Anabel Fraga, and Christian Rudat.

“Bridging the Gap between Natural Language Requirements and Formal

Specifications”. In: Joint Proceedings of REFSQ-2016 Workshops, Doctoral

Symposium, Research Method Track, and Poster Track co-located with the

22nd International Conference on Requirements Engineering: Foundation

for Software Quality (REFSQ 2016), Gothenburg, Sweden, March 14, 2016.

2016.

[55] Jinxin Lin, Mark S. Fox, and Taner Bilgic. “A Requirement Ontology for

Engineering Design”. In: Concurrent Engineering 4.3 (1996), pp. 279–

291.

[56] David A Wagner, Matthew B Bennett, Robert Karban, Nicolas Rouquette,

Steven Jenkins, and Michel Ingham. “An ontology for State Analysis: For-

malizing the mapping to SysML”. In: Aerospace Conference, 2012 IEEE.

IEEE. 2012, pp. 1–16.

[57] Werner Damm, Hardi Hungar, Bernhard Josko, Thomas Peikenkamp,

and Ingo Stierand. “Using contract-based component specifications for

virtual integration testing and architecture design.” In: DATE. IEEE,

2011, pp. 1023–1028.

182 BIBLIOGRAPHY

[58] Stefan Farfeleder, Thomas Moser, Andreas Krall, Tor Stalhane, Herbert

Zojer, and Christian Panis. “DODT: Increasing requirements formalism

using domain ontologies for improved embedded systems development.”

In: DDECS. Ed. by Rolf Kraemer, Adam Pawlak, Andreas Steininger,

Mario Schölzel, Jaan Raik, and Heinrich Theodor Vierhaus. IEEE, 2011,

pp. 271–274.

[59] Haruhiko Kaiya and Motoshi Saeki. “Ontology Based Requirements

Analysis: Lightweight Semantic Processing Approach”. In: Proceedings of

the Fifth International Conference on Quality Software. QSIC ’05. IEEE,

2005, pp. 223–230.

[60] Levi Lúcio, Salman Rahman, Chih-Hong Cheng, and Alistair Mavin.

“Just Formal Enough? Automated Analysis of EARS Requirements”. In:

NASA Formal Methods Symposium. 2017, pp. 427–434.

[61] Chih-Hong Cheng, Yassine Hamza, and Harald Ruess. “Structural Syn-

thesis for GXW Specifications”. In: International Conference on Computer

Aided Verification. 2016, pp. 95–117.

[62] Unified Modeling Language Specification, Version 2.5.1. http://www.omg.

org/spec/UML/2.5.1/.

[63] Nenad Medvidovic and Richard N Taylor. “A classification and compari-

son framework for software architecture description languages”. In: IEEE

Transactions on software engineering 26.1 (2000), pp. 70–93.

[64] Eoin Woods and Rich Hilliard. “Architecture description languages in

practice session report”. In: Software Architecture, 2005. WICSA 2005.

5th Working IEEE/IFIP Conference on. IEEE. 2005, pp. 243–246.

[65] Mourad Oussalah, Adel Smeda, and Tahar Khammaci. “An explicit def-

inition of connectors for component-based software architecture”. In:

Engineering of Computer-Based Systems, 2004. Proceedings. 11th IEEE

International Conference and Workshop on the. IEEE. 2004, pp. 44–51.

[66] Rob Van Ommering, Frank Van Der Linden, Jeff Kramer, and Jeff Magee.

“The Koala component model for consumer electronics software”. In:

Computer 33.3 (2000), pp. 78–85.

http://www.omg.org/spec/UML/2.5.1/
http://www.omg.org/spec/UML/2.5.1/

BIBLIOGRAPHY 183

[67] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and

Antony Tang. “What industry needs from architectural languages: A sur-

vey”. In: IEEE Transactions on Software Engineering 39.6 (2013), pp. 869–

891.

[68] Robert Allen and David Garlan. “A formal basis for architectural connec-

tion”. In: ACM Transactions on Software Engineering and Methodology

(TOSEM) 6.3 (1997), pp. 213–249.

[69] Sol Greenspan, John Mylopoulos, and Alex Borgida. “On Formal Re-

quirements Modeling Languages: RML Revisited”. In: Proceedings of the

16th International Conference on Software Engineering. ICSE ’94. Sor-

rento, Italy: IEEE, 1994, pp. 135–147.

[70] Liana Barachisio Lisboa, Vinicius Cardoso Garcia, Eduardo Santana de

Almeida, and Silvio Romero Meira de Lemos. “ToolDAy: A Tool for Do-

main Analysis”. In: Int. J. Softw. Tools Technol. Transf. 13.4 (Aug. 2011),

pp. 337–353.

[71] Azadeh Alebrahim, Maritta Heisel, and Rene Meis. “A structured ap-

proach for eliciting, modeling, and using quality-related domain knowl-

edge”. In: International Conference on Computational Science and Its Ap-

plications. Springer. 2014, pp. 370–386.

[72] Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz. “ReSA

tool: Structured requirements specification and SAT-based consistency-

checking”. In: Computer Science and Information Systems (FedCSIS),

2016 Federated Conference on. IEEE. 2016, pp. 1737–1746.

[73] Philipp Reinkemeier, Ingo Stierand, Philip Rehkop, and Stefan Hen-

kler. “A pattern-based requirement specification language: Mapping au-

tomotive specific timing requirements”. In: Software Engineering 2011

- Workshopband (inkl. Doktorandensymposium), Fachtagung des GI-

Fachbereichs Softwaretechnik, 21.-25.02.2011, Karlsruhe. 2011, pp. 99–

108.

[74] Lars Grunske. “Specification Patterns for Probabilistic Quality Proper-

ties”. In: Proceedings of the 30th International Conference on Software

Engineering. ICSE ’08. Leipzig, Germany: ACM, 2008, pp. 31–40.

184 BIBLIOGRAPHY

[75] Ayoub Nouri, Saddek Bensalem, Marius Bozga, Benoit Delahaye, Cyrille

Jegourel, and Axel Legay. “Statistical Model Checking QoS Properties of

Systems with SBIP”. In: Int. J. Softw. Tools Technol. Transf. 17.2 (Apr.

2015), pp. 171–185.

[76] Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. “Rigorous im-

plementation of real-time systems - from theory to application”. In: Math-

ematical Structures in Computer Science 23.4 (2013), pp. 882–914.

[77] Souha Ben Rayana, Marius Bozga, Saddek Bensalem, and Jacques Com-

baz. “RTD-Finder: A Tool for Compositional Verification of Real-Time

Component-Based Systems”. In: Tools and Algorithms for the Construc-

tion and Analysis of Systems - 22nd International Conference, TACAS

2016, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,

2016, Proceedings. 2016, pp. 394–406.

[78] William Swartout and Robert Balzer. “On the Inevitable Intertwining of

Specification and Implementation”. In: Commun. ACM 25.7 (July 1982),

pp. 438–440. issn: 0001-0782.

[79] Bashar Nuseibeh. “Weaving Together Requirements and Architectures”.

In: Computer 34.3 (Mar. 2001), pp. 115–117.

[80] Paulina Paraponiari and George Rahonis. “On weighted configuration

logics”. In: CoRR abs/1704.04969 (2017).

[81] Chang-ai Sun, Yan Zhao, Lin Pan, Huai Liu, and Tsong Yueh Chen. “Au-

tomated testing of WS-BPEL service compositions: A scenario-oriented

approach”. In: IEEE Transactions on Services Computing 11.4 (2018),

pp. 616–629.

[82] Maurice H Beek, Antonio Bucchiarone, and Stefania Gnesi. “Formal

Methods for Service Composition”. In: Annals of Mathematics, Computing

and Teleinformatics 1.5 (2007), pp. 1–14.

[83] Simon Bliudze and Joseph Sifakis. “A Notion of Glue Expressiveness for

Component-Based Systems”. In: CONCUR 2008 - Concurrency Theory.

Vol. 5201. Lecture Notes in Computer Science. Springer Berlin / Heidel-

berg, 2008, pp. 508–522.

BIBLIOGRAPHY 185

[84] Emmanouela Stachtiari, Anakreon Mentis, and Panagiotis Katsaros.

“Rigorous analysis of service composability by embedding WS-BPEL into

the BIP component framework”. In: Web Services (ICWS), 2012 IEEE 19th

International Conference on. IEEE. 2012, pp. 319–326.

[85] BPEL process modelling tools. http : / / depend . csd . auth . gr / research /

BpelProcessModelling. 2017.

[86] Seema Jehan, Ingo Pill, and Franz Wotawa. “BPEL Integration Testing”.

In: International Conference on Fundamental Approaches to Software En-

gineering. Springer. 2015, pp. 69–83.

[87] Najah Ben Said and Takoua Abdellatif. “A Robust Framework for Secur-

ing Composed Web Services”. In: Formal Aspects of Component Software:

12th International Conference, FACS 2015, Niterói, Brazil, October 14-16,

2015, Revised Selected Papers. Vol. 9539. 2016, p. 105.

[88] Emmanouela Stachtiari, Nikos Vesyropoulos, George Kourouleas, Chris-

tos K Georgiadis, and Panagiotis Katsaros. “Correct-by-construction web

service architecture”. In: Service Oriented System Engineering (SOSE),

2014 IEEE 8th International Symposium on. IEEE. 2014, pp. 47–58.

[89] Saddek Bensalem, Marius Bozga, Benoit Delahaye, Cyrille Jegourel, Axel

Legay, and Ayoub Nouri. “Statistical Model Checking Qos Properties of

Systems with SBIP”. In: Proceedings of the 5th International Conference

on Leveraging Applications of Formal Methods, Verification and Validation:

Technologies for Mastering Change - Volume Part I. ISoLA’12. Heraklion,

Crete, Greece, 2012, pp. 327–341. isbn: 978-3-642-34025-3.

[90] Kai C Wong and W Murray Wonham. “Hierarchical control of discrete-

event systems”. In: Discrete Event Dynamic Systems 6.3 (1996), pp. 241–

273.

[91] Rob J. van Glabbeek and W. Peter Weĳland. “Branching Time and

Abstraction in Bisimulation Semantics”. In: J. ACM 43.3 (May 1996),

pp. 555–600.

[92] OASIS. Web Services Business Process Execution Language Version 2.0.

OASIS, 2007. url: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel- v2.0-

OS.html.

http://depend.csd.auth.gr/research/BpelProcessModelling
http://depend.csd.auth.gr/research/BpelProcessModelling
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

186 BIBLIOGRAPHY

[93] Fabrizio Montesi and Marco Carbone. “Programming Services with Corre-

lation Sets”. In: 9th International Conference on Service-Oriented Comput-

ing (ICSOC), Paphos, Cyprus, December 5-8, 2011 Proceedings. Springer,

2011, pp. 125–141.

[94] Chun Ouyang, Eric Verbeek, Wil M.P. van der Aalst, Stephan Breutel,

Marlon Dumas, and Arthur H.M. ter Hofstede. “Formal semantics and

analysis of control flow in WS-BPEL”. In: Science of Computer Program-

ming 67.2 (2007), pp. 162 –198.

[95] Pavel Parizek and Jiri Adamek. “Checking session-oriented interactions

between web services”. In: Software Engineering and Advanced Applica-

tions, 2008. SEAA’08. 34th Euromicro Conference. IEEE. 2008, pp. 3–

10.

[96] Paul Hudak. “Modular domain specific languages and tools”. In: Software

Reuse, 1998. Proceedings. Fifth International Conference on. IEEE. 1998,

pp. 134–142.

[97] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools. Boston, MA, USA: Addison-Wesley Longman Pub-

lishing Co., Inc., 1986. isbn: 0-201-10088-6.

[98] Matjaz. B. Juric. A Hands-on Introduction to BPEL. http://www.oracle.com/

technetwork/articles/matjaz-bpel1-090575.html. 2017.

[99] Matjaz. B. Juric. A Hands-on Introduction to BPEL, Part 2: Advanced

BPEL. http://www.oracle.com/technetwork/articles/matjaz-bpel2-082861.html.

2017.

[100] Niels Lohmann. “A feature-complete Petri net semantics for WS-BPEL

2.0”. In: International Workshop on Web Services and Formal Methods.

Springer. 2007, pp. 77–91.

[101] Niels Lohmann, Eric Verbeek, Chun Ouyang, and Christian Stahl. “Com-

paring and evaluating Petri net semantics for BPEL”. In: International

Journal of Business Process Integration and Management 4.1 (2009),

pp. 60–73.

http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
http://www.oracle.com/technetwork/articles/matjaz-bpel2-082861.html

BIBLIOGRAPHY 187

[102] Wil M. P. van der Aalst, Marlon Dumas, Chun Ouyang, Anne Rozinat,

and Eric Verbeek. “Conformance Checking of Service Behavior”. In: ACM

Trans. Internet Technol. 8.3 (May 2008), 13:1–13:30.

[103] Idir Aït-Sadoune and Yamine Aït Ameur. “Stepwise Development of For-

mal Models for Web Services Compositions: Modelling and Property Ver-

ification”. In: Trans. Large-Scale Data- and Knowledge-Centered Systems

10 (2013), pp. 1–33.

[104] Barry Norton, Simon Foster, and Andrew Hughes. “A Compositional Op-

erational Semantics for OWL-S”. In: Proceedings of the 2005 International

Conference on European Performance Engineering, and Web Services and

Formal Methods, International Conference on Formal Techniques for Com-

puter Systems and Business Processes. EPEW’05/WS-FM’05. Springer,

2005, pp. 303–317.

[105] Elie Fares, Jean-Paul Bodeveix, and Mamoun Filali. “Design of a BPEL

verification tool”. In: International Workshop on Web Services and Formal

Methods. Springer. 2011, pp. 95–110.

[106] Bernard Berthomieu, Jean-Paul Bodeveix, Mamoun Filali, Hubert Gar-

avel, Frédéric Lang, Florent Peres, Rodrigo Saad, Jan Stoecker, François

Vernadat, P Gaufillet, et al. “The syntax and semantics of Fiacre”. In:

Repport LAAS 07264 (2007).

[107] Gwen Salaun, Lucas Bordeaux, and Marco Schaerf. “Describing and rea-

soning on web services using process algebra”. In: Proceedings. IEEE

International Conference on Web Services, 2004. IEEE. 2004, pp. 43–50.

[108] Roberto Lucchi and Manuel Mazzara. “A pi-calculus based semantics for

WS-BPEL”. In: Journal of Logic and Algebraic Programming 70.1 (2007),

pp. 96–118.

[109] Andrea Ferrara. “Web services: a process algebra approach”. In: Proceed-

ings of the 2nd international conference on Service oriented computing.

ACM. 2004, pp. 242–251.

188 BIBLIOGRAPHY

[110] Samira Tasharofi, Mohsen Vakilian, Roshanak Zilouchian Moghaddam,

and Marjan Sirjani. “Modeling web service interactions using the coor-

dination language Reo”. In: International Workshop on Web Services and

Formal Methods. Springer. 2007, pp. 108–123.

[111] Emmanuel Baccelli, Oliver Hahm, Mesut Gunes, Matthias Wahlisch, and

Thomas C Schmidt. “RIOT OS: Towards an OS for the Internet of Things”.

In: 2013 IEEE Conference on Computer Communications Workshops (IN-

FOCOM WKSHPS). IEEE. 2013, pp. 79–80.

[112] Lars Schor, Philipp Sommer, and Roger Wattenhofer. “Towards a zero-

configuration wireless sensor network architecture for smart buildings”.

In: BuildSys’09. ACM. 2009, pp. 31–36.

[113] J. Beal, D. Pianini, and M. Viroli. “Aggregate Programming for the Inter-

net of Things”. In: Computer 48.9 (2015), pp. 22–30. issn: 0018-9162.

doi: 10.1109/MC.2015.261.

[114] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Otten-

wälder, and Boris Koldehofe. “Mobile Fog: A Programming Model for

Large-scale Applications on the Internet of Things”. In: Proceedings of

the Second ACM SIGCOMM Workshop on Mobile Cloud Computing. MCC

’13. Hong Kong, China: ACM, 2013.

[115] Stefan Nastic, Sanjin Sehic, Michael Vögler, Hong-Linh Truong, and

Schahram Dustdar. “PatRICIA – A Novel Programming Model for IoT Ap-

plications on Cloud Platforms”. In: Proceedings of the 2013 IEEE 6th In-

ternational Conference on Service-Oriented Computing and Applications.

SOCA ’13. IEEE, 2013.

[116] Ryo Sugihara and Rajesh K. Gupta. “Programming Models for Sensor

Networks: A Survey”. In: ACM TOSN 4.2 (Apr. 2008), 8:1–8:29. issn: 1550-

4859.

[117] Angelo P Castellani, Nicola Bui, Paolo Casari, Michele Rossi, Zach

Shelby, and Michele Zorzi. “Architecture and protocols for the internet

of things: A case study”. In: Pervasive Computing and Communications

Workshops (PERCOM Workshops), 2010 8th IEEE International Confer-

ence on. IEEE. 2010, pp. 678–683.

https://doi.org/10.1109/MC.2015.261

BIBLIOGRAPHY 189

[118] Deze Zeng, Song Guo, and Zixue Cheng. “The Web of Things: A Survey

(Invited Paper)”. In: Journal of Communications 6.6 (2011), pp. 424–438.

[119] Walter Colitti, Kris Steenhaut, and Niccolò De Caro. “Integrating Wireless

Sensor Networks with the Web”. In: IP+SN’11. 2011.

[120] Zach Shelby, Klaus Hartke, and Carsten Bormann. “The Constrained

Application Protocol (CoAP)”. In: (2014).

[121] Qing Cao, Tarek Abdelzaher, John Stankovic, Kamin Whitehouse, and

Liqian Luo. “Declarative Tracepoints: A Programmable and Application

Independent Debugging System for Wireless Sensor Networks”. In: Sen-

Sys’08. Raleigh, NC, USA: ACM, 2008, pp. 85–98. isbn: 978-1-59593-

990-6.

[122] Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes, Adam

Dunkels, Thiemo Voigt, Robert Sauter, and Pedro José Marrón. “COO-

JA/MSPSim: interoperability testing for wireless sensor networks”. In:

Proceedings of the 2nd International Conference on Simulation Tools and

Techniques. ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering). 2009, p. 27.

[123] Ayoub Nouri, Marius Bozga, Anca Molnos, Axel Legay, and Saddek

Bensalem. “ASTROLABE: A Rigorous Approach for System-Level Per-

formance Modeling and Analysis”. In: ACM Trans. Embed. Comput. Syst.

15.2 (Mar. 2016).

[124] Richard E. Schantz, Joseph P. Loyall, Craig Rodrigues, and Douglas

C. Schmidt. “Controlling quality-of-service in distributed real-time and

embedded systems via adaptive middleware”. In: Software: Practice and

Experience 36.11-12 (2006), pp. 1189–1208.

[125] Francois Despaux. “Modelling and evaluation of the end to end delay in

WSN”. Theses. Université de Lorraine, Sept. 2015. url: https://hal.inria.

fr/tel-01241044.

[126] Alexios Lekidis, Emmanouela Stachtiari, Panagiotis Katsaros, Marius

Bozga, and Christos K Georgiadis. “Using BIP to reinforce correctness of

resource-constrained IoT applications”. In: International Symposium on

Industrial Embedded Systems (SIES). IEEE. 2015, pp. 1–10.

https://hal.inria.fr/tel-01241044
https://hal.inria.fr/tel-01241044

190 BIBLIOGRAPHY

[127] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. “Internet of Things (IoT): A vision, architectural elements,

and future directions”. In: Future Gen. Computer Systems 29.7 (2013),

pp. 1645–1660.

[128] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Ra-

jamani, and Damien Zufferey. “P: Safe Asynchronous Event-driven Pro-

gramming”. In: ACM SIGPLAN Notices. Vol. 48. 6. ACM, 2013, pp. 321–

332.

[129] Matthias Kovatsch, Simon Duquennoy, and Adam Dunkels. “A low-

power CoAP for Contiki”. In: MASS’11. IEEE. 2011, pp. 855–860.

[130] Alexios Lekidis. “Design flow for the rigorous development of networked

embedded systems”. Theses. Universite Grenoble Alpes, Dec. 2015. url:

https://tel.archives-ouvertes.fr/tel-01261936.

[131] Dalen Abraham, Mohammad Shabbir Alam, Jean-Pierre Duplessis,

Trevor W Freeman, Bill Hanlon, Anton W Krantz, Scott Manchester, and

Benjamin Nick. XML schema for network device configuration. US Patent

7,657,612. 2010.

[132] Gang Zhou, Tian He, Sudha Krishnamurthy, and John A Stankovic. “Im-

pact of radio irregularity on wireless sensor networks”. In: MobiSys’04.

ACM. 2004, pp. 125–138.

[133] Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius

Bozga, and Saddek Bensalem. “Building distributed sensor network ap-

plications using BIP”. In: Sensors Applications Symposium (SAS), 2015

IEEE. IEEE. 2015, pp. 1–6.

[134] Gabriel Montenegro, Nandakishore Kushalnagar, Jonathan Hui, and

David Culler. “Transmission of IPv6 packets over IEEE 802.15. 4 net-

works”. In: RFC 4944 (2007).

[135] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain

Peyronnet. “Approximate probabilistic model checking”. In: International

Workshop on Verification, Model Checking, and Abstract Interpretation.

Springer. 2004, pp. 73–84.

https://tel.archives-ouvertes.fr/tel-01261936

BIBLIOGRAPHY 191

[136] Luca Benini, Robin Hodgson, and Polly Siegel. “System-level power esti-

mation and optimization”. In: Proceedings of the 1998 international sym-

posium on Low power electronics and design. ACM. 1998.

[137] Ayoub Nouri, Balaji Raman, Marius Bozga, Axel Legay, and Saddek Ben-

salem. “Faster Statistical Model Checking by Means of Abstraction and

Learning”. In: RV’14. Springer. 2014, pp. 340–355.

[138] Mathieu Jan, Christophe Jouvray, Fabrice Kordon, et al. “Flex-eWare: a

flexible model driven solution for designing and implementing embedded

distributed systems”. In: Software: Practice and Experience 42.12 (2012),

pp. 1467–1494.

[139] Zhenyu Song, Mihai T Lazarescu, Riccardo Tomasi, Luciano Lavagno,

and Maurizio A Spirito. “High-Level Internet of Things Applications De-

velopment Using Wireless Sensor Networks”. In: IoT. Springer, 2014,

pp. 75–109.

[140] Alessandro Testa, Antonio Coronato, Marcello Cinque, and Juan Car-

los Augusto. “Static verification of wireless sensor networks with formal

methods”. In: Eighth International Conference on Signal Image Technology

and Internet Based Systems (SITIS). IEEE. 2012, pp. 587–594.

[141] Siyuan Xu, Weikai Miao, Thomas Kunz, Tongquan Wei, and Mingsong

Chen. “Quantitative Analysis of Variation-Aware Internet of Things De-

signs Using Statistical Model Checking”. In: Software Quality, Reliability

and Security (QRS), 2016 IEEE International Conference on. IEEE. 2016,

pp. 274–285.

[142] Catello Di Martino, Marcello Cinque, and Domenico Cotroneo. “Auto-

mated generation of performance and dependability models for the as-

sessment of wireless sensor networks”. In: IEEE Transactions on Com-

puters 61.6 (2012), pp. 870–884.

[143] Sylvain Cherrier, Ismail Salhi, Yacine M. Ghamri-Doudane, Stéphane

Lohier, and Philippe Valembois. “BeC3: Behaviour Crowd Centric Com-

position for IoT Applications”. In: Mob. Netw. Appl. 19.1 (Feb. 2014),

pp. 18–32. issn: 1383-469X.

192 BIBLIOGRAPHY

[144] Clément Duhart, Pierre Sauvage, and Cyrille Bertelle. “A Resource Ori-

ented Framework for Service Choreography over Wireless Sensor and

Actor Networks”. In: International Journal of Wireless Information Net-

works 23.3 (2016), pp. 173–186.

[145] Benjamin Bertran, Julien Bruneau, Damien Cassou, Nicolas Loriant,

Emilie Balland, and Charles Consel. “DiaSuite: A tool suite to develop

Sense/Compute/Control applications”. In: Science of Computer Program-

ming 79 (2014), pp. 39–51.

[146] Pankesh Patel and Damien Cassou. “Enabling high-level application de-

velopment for the internet of things”. In: Journal of Systems and Software

103 (2015), pp. 62–84.

[147] Nils Glombitza, Dennis Pfisterer, and Stefan Fischer. “Using state ma-

chines for a model driven development of web service-based sensor net-

work applications”. In: ICSE’10. ACM. 2010, pp. 2–7.

[148] Amirhosein Taherkordi, Frédéric Loiret, Azadeh Abdolrazaghi, Romain

Rouvoy, Quan Le-Trung, and Frank Eliassen. “Programming sensor net-

works using REMORA component model”. In: International Conference

on Distributed Computing in Sensor Systems. Springer. 2010, pp. 45–62.

[149] Christos Antonopoulos, Katerina Asimogloy, Sarah Chiti, Luca

D’Onofrio, Simone Gianfranceschi, Danping He, Antonio Iodice, Stavros

Koubias, Christos Koulamas, Luciano Lavagno, et al. “Integrated Toolset

for WSN Application Planning, Development, Commissioning and Main-

tenance: The WSN-DPCM ARTEMIS-JU Project”. In: Sensors 16 (2016).

[150] Ryo Shimizu, Kenji Tei, Yoshiaki Fukazawa, and Shinichi Honiden.

“Model driven development for rapid prototyping and optimization of

wireless sensor network applications”. In: Proceedings of the 2nd Work-

shop on Software Engineering for Sensor Network Applications. ACM.

2011, pp. 31–36.

[151] Haruhiko Kaiya and Motoshi Saeki. “Using domain ontology as domain

knowledge for requirements elicitation”. In: Requirements Engineering,

14th IEEE International Conference. IEEE. 2006, pp. 189–198.

BIBLIOGRAPHY 193

[152] Najah Ben Said, Takoua Abdellatif, Saddek Bensalem, and Marius Bozga.

“A Model-Based Approach to Secure Multiparty Distributed Systems”.

In: Leveraging Applications of Formal Methods, Verification and Valida-

tion: Foundational Techniques - 7th International Symposium, ISoLA 2016,

Imperial, Corfu, Greece, October 10-14, 2016, Proceedings, Part I. 2016,

pp. 893–908.

[153] Miguel Andres Navarro Patino. “Energy efficiency in data collection wire-

less sensor networks”. PhD thesis. Purdue University, 2016.

[154] Ionela Halcu, Grigore Stamatescu, and Valentin Sgârciu. “Enabling secu-

rity on 6LoWPAN/IPv6 Wireless Sensor Networks”. In: 7th International

Conference on Electronics, Computers and Artificial Intelligence (ECAI).

IEEE. 2015.

[155] Stylianos Basagiannis, Panagiotis Katsaros, and Andrew Pombortsis.

“An intruder model with message inspection for model checking security

protocols”. In: computers & security 29.1 (2010), pp. 16–34.

[156] Tushar Deshpande, Panagiotis Katsaros, Stylianos Basagiannis, and

Scott A Smolka. “Formal analysis of the DNS bandwidth amplification

attack and its countermeasures using probabilistic model checking”. In:

High-Assurance Systems Engineering (HASE), 2011 IEEE 13th Interna-

tional Symposium on. IEEE. 2011, pp. 360–367.

	Abstract
	Περιληψη
	Acknowledgements
	Introduction
	The problem of system design
	Motivation and Contributions
	Rigorous System Design
	Functional modeling
	Functional correctness and thesis contributions
	Our contributions

	Thesis structure

	Background
	The BIP framework
	Architecture-based design in BIP

	Early validation of system requirements and design
	Introduction
	Research objectives
	Context and contributions

	The model-based process
	Requirement specification
	Initial design
	Property derivation
	Architecture instantiation and property enforcement
	Action flow
	Mode management
	Event monitoring
	Mutual exclusion management
	Liveness
	Decision flows for property enforcement

	Tool support
	Evaluation case studies
	CubETH case study
	Telecommand Management of an earth observation satellite

	Related Work
	Discussion

	Compositional execution semantics for BPEL programs
	Introduction
	Correctness of BPEL processes: a motivating example
	BIP model for BPEL processes
	BIP components and model structure for the BPEL activities
	Interface and behavior of activity components
	The state of service interactions
	BPEL variables

	Atomic BIP components

	Compositional semantics definition
	BIP compound for the flow
	BIP compound for the scope and PROC

	Verification of correctness properties
	Essential properties
	Additional correctness poperties

	BPEL to BIP translation
	Experiments on the verification of BPEL programs
	Related Work

	Application modeling for rigorous design of IoT systems
	Introduction
	Background
	Foundations of IoT Systems
	Contiki and REST application programming

	The BIP model-based design flow for IoT systems
	Case study
	General description
	Application of the BIP design flow
	Domain Specific Language for Contiki REST applications
	BIP models for Contiki WPAN systems
	Calibration
	State-space exploration
	Fault injection
	Experiments and results

	Discussion
	Benefits of the BIP design flow
	Limitations
	Comparison with competitive design methods

	Conclusions and future work
	Advancements with respect to state of the art
	Future research prospects

	
	Derived Property Patterns
	Prefixes
	Suffixes

	Case study
	Functional architecture
	Physical architecture
	Initial design model
	Requirements and properties of the running example
	Final design model
	HK PL
	HK CDMS
	CDMS status
	Error Logging
	Payload
	Flash Memory
	I2C_sat

	
	Variables for process state
	The state of service interactions
	BPEL variables

	Compositional semantics for BIP compounds
	BIP compound for sequence
	BIP compound for if
	BIP compound for pick
	BIP compound for loop
	BIP compound for act
	Architectures of the components in PROC and scope

	Models for basic activities and other atomic components
	Translation times for test programs

	
	Language for Contiki REST application design definition (DSL)
	BIP interactions of the RestModule model with the OS model
	Network stack model parameters

	Bibliography

