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Abstract 
Traditional transaction processing aims in delivering 
the ACID properties (Atomicity, Consistency, Isola-
tion, Durability), that in our days are often relaxed, 
due to the need for transaction models that suit mod-
ern computing environments and workflow manage-
ment applications. Typical examples are the require-
ments of long-running transactions in mobile comput-
ing or in the web, as well as the requirements of busi-
ness-to-business collaborative applications. However, 
there is lack of tools for automatically verifying cor-
rectness of transaction model implementations. This 
work presents the ACID Model Checker and Code 
Generator, which plays a vital role in developing cor-
rect simulation models for the ACID Sim Tools envi-
ronment. In essence, our contribution introduces an 
approach for automatically generating provably cor-
rect implementations of transaction management, for 
the transaction model of interest. 
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1. Introduction 
 

In network centric information systems, where applica-
tions are partitioned into several tiers (e.g. presenta-
tion, logic and data), transactions offer the mechanisms 
needed to reach a mutually-agreed outcome, which 
will be observed consistently across the transaction 
participants. Transaction processing is expected to 
offer the typical or relaxed ACID guarantees (Atomic-
ity, Consistency, Isolation and Durability) [1] in di-
verse and often heterogeneous computational envi-
ronments with different requirements. 

In web information systems for example, there is a 
need to reduce the amount of concurrency within an 
application, due to the unpredictable network latency. 
The solutions that cope with this problem [2] belong to 

a category of transaction models that are called ad-
vanced transaction models. In mobile computing, 
transaction processing faces frequent disconnections 
between clients and servers, as well as rigid resource 
constraints in processing power, memory and battery 
capacity. Moreover, there is a need to transfer respon-
sibility of transaction management from one server to 
another upon handoffs. As a consequence of these 
problems, we are interested in transaction models [3], 
where resources acquired within a transaction can be 
released, before the transaction is completed (e.g. 
nested transactions, split-join transactions etc). 

Implementing transaction processing is a complex 
task, due to the need to handle both synchronous and 
asynchronous transaction events that implies immense 
bookkeeping to achieve the intended behavior.  

To the best of our knowledge, the ACID Model 
Checker and Code Generator is the first attempt to 
cope with this problem, by automatic verification of 
the transaction model of interest and by generating 
event management code. The presented tool was de-
veloped in the framework of ACID Sim Tools [4, 5], 
which is an integrated simulation environment for 
studying the performance and recovery tradeoffs in 
transaction processing architectures (e.g. [6] and [7]).        

However, our contribution can potentially ease the 
development of transaction management systems and 
its applicability extends beyond ACID Sim Tools. The 
fundamental difference of our approach, when com-
pared with a widespread model checker like SPIN [9, 
10], is the capability of generating code for the man-
agement of transaction events. In fact, instead of veri-
fying an abstract model of the transaction processing 
system, we provide a verified implementation of it.  

This is similar to the compiler generators’ concept, 
where the tool checks the syntax specification and sub-
sequently generates a complete parser by integrating 
appropriate user-supplied code. 

Section 2 lays the foundations for a state-machine 
based specification of a transaction model. This speci-
fication is necessary both for model-checking and code 
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generation. In section 3, we present the adopted ap-
proach for defining the transaction events generated by 
the operations declared in the described specification. 
This definition is required for verifying the intended 
transaction guarantees. Section 4 describes the path 
exploration algorithm for proving the correctness prop-
erties of interest. Section 5 shows the model checking 
of correctness properties for a 2PC protocol implemen-
tation. Section 6 describes the code generation for the 
ACID Sim Tools environment and the paper concludes 
with an overview of the overall contribution and the 
future research prospects.     
 
2. Specification of transaction models 
 
A transaction model is defined in terms of different 
roles, where each role is specified as a non-
deterministic state machine. The two roles encountered 
in the 2PC protocol, for example, are the transaction 
coordinator and the worker. In nested transactions, we 
distinguish between parent and child transactions, thus 
resulting in four different roles, i.e. two roles for the 
parent transactions and another two roles for the child 
transactions. In most advanced transaction models we 
normally have more than two roles. 

Non-determinism generally provides a convenient 
form of specification and therefore it is also used by 
the input specification languages of most well-known 
model checkers [9, 10]. In our case, non-deterministic 
role specification is the only feasible approach, be-
cause state transitions in transaction models may be 
determined based on information that is available only 
at runtime. For example, when the coordinator in the 
2PC protocol collects the workers’ votes for an ongo-
ing transaction, either sends the decision made for the 
transaction (if it has already got all workers’ votes) or 
waits for the remaining votes. As we will see in Sec-
tion 4, our analysis resolves this non-determinism by 
taking into account the already executed state transi-
tions. 

In a role specification, the alphabet of the state ma-
chine is the set of all possible transaction events. Be-
yond the change in the current state, a transition for a 
given event also invokes one or more operations. An 
invoked operation in turn, creates or cancels transac-
tion events or simply performs an assigned computa-
tion. 

The transition relations for all roles are specified in 
a text file with five (5) comma-separated columns: 

Role: The first column defines the state machine, in 
which the specified transition is part of. If we re-
fer to the simplest transaction model, i.e. the 2PC 
protocol with only two roles, these roles are rep-
resented by “c” for the coordinator and “w” for 

the worker. The wildcard symbol “_” is used in 
transitions that belong to all transaction roles. 

Source state: The state where the transition is en-
abled.  

Event: The transaction event which triggers the 
transition. It represents a message from those in-
cluded in the transaction protocol. 

Next state: The target state for the specified transi-
tion.  

Operations: A list of operation names that may be 
accompanied by one or more identifiers enclosed 
in brackets. The identifiers represent parameter 
names (e.g. message receiver, reference to a 
transactional job), that are used as placeholders 
for code generation. The first operation parameter 
is implicitly considered to be a unique transaction 
identifier, which is not written in the specifica-
tion. In the provided list, operation names are 
separated by “ : ”. We use the character “–” for 
defining transitions with no operations. 

We provide a specification excerpt taken from the 
2PC implementation for the ACID Sim Tools: 
 

//when a lock is acquired 
1 _, ST_LOCK, LOCKED, ST_JOB, startJob 
2 c, ST_EMPTY

, 
INIT, ST_INIT, sendInitLog: 

scheduleTimeout 
3 c, ST_VOTES, OUTCOME_ASKED, ST_VOTES, - 
4 c, ST_VOTES, VOTE_LOGGED, ST_VOTES, collectVote{id} 
5 w, ST_WAIT, START_JOB, ST_LOCK, workerLock{job} 
6 w, ST_JOB JOB_FINISHED, ST_WAIT, removeJobMes-

sage{msg} 
 

Line 1 defines a state transition that applies to all 
transaction roles. When the transaction participant is in 
state ST_LOCK and receives message LOCKED, then 
the state machine moves to state ST_JOB and the tran-
sition invokes the operation named startJob that starts 
a transactional job.  

Line 2 defines a state transition from ST_EMPTY 
that for all roles specifies the initial state. This transi-
tion includes an event called INIT, which is the only 
event that is not caused by an operation of some transi-
tion. In fact, this event is sent by the transaction man-
agement system to start the processing of a transaction. 
Operation sendInitLog appends a log entry in stable 
storage for recovery purposes. If the log entry is suc-
cessfully stored, the coordinator state machine receives 
the event INIT_LOGGED, which is not shown in the 
given excerpt. 

The transition of line 3 is a typical example of a 
message that is ignored. Transitions that do not have 
any impact in the execution of the specified model are 
required to be explicitly defined, in order to ensure that 
there are no neglected transitions that may be feasible 
in certain circumstances. One of the uses of the ACID 
Model Checker is to detect forgotten state transitions, 
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which may be attributed to design flaws or specifica-
tion omissions. 

Table 1 describes all states of the specification of 
the 2PC protocol. Figure 1 visualizes the state transi-
tions of a 2PC worker and Figure 2 shows the coordi-
nator state machine (that also acts as a worker for the 
jobs processed locally). Vertices of the shown graphs 
represent the states of the corresponding roles, while 
edges signify state transitions caused by the event that 
labels the transition. Every transaction starts in the 
initial state called ST_EMPTY and its execution is 
completed at the final state called ST_FINISH. 

 
Table 1: States of the 2PC transaction protocol 

 

Role State Description 

Both ST_ABORT Wait for the ABORT log entry to be 
stored 

Both ST_COMMIT_LOG Wait for the COMMIT log entry to be 
stored 

Both ST_JOB Wait for a job to complete 

Both ST_LOCK Wait until a lock is acquired 

Both ST_LOG_END Wait for the “END” log entry to be 
stored 

Both ST_RECOVER Recovering the object states after an 
abort 

Both ST_WAIT Wait for the next job or enter the voting 
phase 

c ST_INIT Transaction processing was just started 
at the coordinator’s site 

c ST_VOTES Collecting votes from the workers 

c ST_FABORT The transaction is aborted due to recov-
ery from failure 

c ST_AKN_ABORT Wait for abort acknowledgment from 
the workers 

c ST_WAK Abort and acknowledgment of the deci-
sion are pending 

c ST_WAKR Abort, recovery and acknowledgment of 
the decision are pending 

w ST_VOTE Prepare to vote for the transaction 

w ST_DEC Wait for the decision from the coordina-
tor 

w ST_WAR Abort and recovery are pending 

 
The specification shown in this section suffices for 
generating code for the management of transaction 
events. This code, together with the user-provided 
code for the named operations yields a complete im-
plementation of the 2PC transaction model. However, 
the provided information allows only trivial checks, 
such as the existence of unreachable states. For more 
sophisticated checks we also need to provide informa-
tion regarding the creation and cancelling of transac-
tion events, as a consequence of state transition opera-
tions. 

 
 

Figure 1. State machine for the worker in a 2PC 
transaction 

 
3. Specification of transaction events 
 
Beyond the INIT event, which is sent by the transac-
tion management system, all other events are created 
by an operation invoked in one or more state transi-
tions. This ensures that every possible event is a con-
sequence of a past state transition. For model checking 
purposes, path exploration requires that apart from the 
state transition relation described in the previous sec-
tion, we also have to complement the specification 
with the events generated or cancelled in each state 
transition operation. All operations that either create or 
cancel an event are specified in a text file with four (4) 
comma-separated columns: 

Operation name: The name of the operation, with-
out the parameters (if any). If an operation is in-
voked in state transitions of different roles, then a 
separate line is used for each role. 

Event: The name of a transaction event. If the in-
voked operation creates an event selected from a 
set of alternatives, then all possible events are 
enumerated and are separated by “|”. If the opera-
tion cancels an event the event name is prefixed 
by “-” (e.g. -TIMEOUT). 
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Figure 2. Non-deterministic state machine for the coordinator in a 2PC transaction 

 
Receiver: The role of the event consumer (in 2PC 

it may be either “c” or “w”). 
Sender: The event producer, which may be either a 

specified role or any other implementation spe-
cific component. In 2PC for example, the neces-
sary transaction processing components are con-
currency control denoted by lc[r] and stable stor-
age, denoted by lg[r], where r ∈ {“c”, “w”}). 

A specification excerpt taken from the 2PC imple-
mentation for the ACID Sim Tools follows: 
 

1 startJob, JOB_FINISHED, c, c 
2 startJob, JOB_FINISHED, w, w 
3 sendInitLog, INIT_LOGGED, c, lgc 
4 workerLock, LOCKED, w, lcw 
5 cancelTimeout, -TIMEOUT, c, c 
6 nextWorkerJob, FIRST_JOB | START_JOB w, c 
 
Lines 1 and 2 demonstrate a typical case of an op-

eration invoked by state transitions of two different 
roles. Moreover, we see that in both cases the pro-
duced event JOB_FINISHED is created and consumed 
by the same role, therefore representing a message sent 
to the role itself. In line 3, as a consequence of the in-
vocation of operation sendInitLog by the coordinator 
role (see line 2 of previous specification excerpt), the 
“lgc” component replies with event INIT_LOGGED. 
Here, we note that we are only interested in specifying 

the events consumed by the defined roles and for this 
reason we do not need to include the event that causes 
“lgc” to respond with INIT_LOGGED (i.e. the coordi-
nator’s state transition (ST_EMPTY, INIT) → 
ST_INIT). Line 5 shows an operation that cancels an 
event. When the shown operation is invoked, if TIME-
OUT has been previously produced, then this event is 
cancelled and is never consumed. Finally, line 6 shows 
an operation that non-deterministically produces either 
the event named FIRST_JOB or the event 
START_JOB. 

At this point, we have a complete specification of 
the transaction model of interest, with two sources of 
non-determinism. The first source is the role specifica-
tion, where non-determinism is introduced as dis-
cussed in the previous section and the second source is 
the operations with non-deterministic event produc-
tion, as the one shown in line 6. Path exploration for 
model checking correctness properties is possible, only 
if these two kinds of non-determinism are resolved.   
 
4. Path exploration 
 
Path exploration was implemented in Haskell. It is 
based on computing the reachability graph for the 
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synchronized product of the role state machines [8]. 
Reachable states are accessed, 
• through the manipulation of a list of produced 

transaction events, that from now on will be 
called future event list (fev) 

• by consuming all events in fev that are produced 
by implementation specific components – i.e. not 
roles – in FIFO order. At the same time, reach-
able states include all possible event interleavings 
in fev, for all events produced by the specified 
roles 

• by synchronizing the cartesian product of the de-
fined state machines, on the basis of a set of syn-
chronizing events [8] including all messages ex-
changed by the protocol participants. 

           

 
Figure 3. Reachability graph for the synchronized 

product of the role state machines 
 

Let us consider the partial reachability graph de-
rived from the synchronized product of roles “c” and 
“w” shown in Figure 3 that basically displays the first 
transitions of the coordinator role for 2PC (specifica-
tion of section 2). All edges are labelled with pairs, 
where the first item denotes the consumed event that 
causes the transition and the second item is the updated 
fev list. Event TIMEOUT in the fev of the first transi-
tion is produced by “c” and INIT_LOGGED is pro-
duced by the “lgc” component. The reachability graph 
includes all possible interleavings between the two 
events in the list:  
• One possible transition takes place by first con-

suming the TIMEOUT event. The event is re-
moved from the previous fev and its name be-
comes the first item of the new transition label. 
The updated fev now includes ABORT_LOGGED 
that is produced by the operation invoked by the 
executed transition.    

• The other transition takes place by first consum-
ing the INIT_LOGGED event.  

The fev of the first mentioned transition now in-
cludes two events sent by an implementation specific 
component that is not a role, but provides log re-
cording in stable storage. These two events in fev will 
be consumed in FIFO order. Figure 4 shows the com-
plete reachability graph for the synchronized roles in 
2PC. The graph justifies the need for automatic verifi-
cation, due to the considerable complexity that is evi-

dent even in the simple case of the 2PC transaction 
model. 
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A path is a sequence of state transitions and is 
maximal, if the source state of the first transition is an 
initial role state and there is no event to be consumed 
from the target state of the last transition in the path. 

If a transaction correctness property is violated in a 
non-maximal path, say path, this does not imply that 
the property is also violated in some maximal path 
prefixed by path, because path does not represent a 
complete execution. Therefore, all correctness proper-
ties are checked upon the maximal paths of the syn-
chronized product, which are computed by the recur-
sive algorithm path_explorer. 

We note that path_explorer utilizes two user-
defined predicates in steps 1 and 2 to resolve the two 
sources of non-determinism discussed previously. 

Our tool detects all non-deterministic state transi-
tions and operations and prompts the user to define an 
appropriate predicate over path. The non-determinism 
is thus resolved according to the semantics of the 
transaction model. In 2PC, we have only five (5) cases 
of non-determinism caused by the state transitions of 
the coordinator (c) and one (1) caused by an operation.  

For example, when role c collects the votes, it may 
either decide the outcome of the ongoing transaction or 
wait for the votes of the remaining workers. For model 
checking purposes it suffices to assume the minimum 
number of participants materializing the interaction 
between the roles. An appropriate predicate examines 
the previous transitions recorded in path and deter-
mines if the required number of votes is collected.  

The non-determinism of operation nextWorkerJob 
(see the specification excerpt of section 3) that pro-
duces either the event FIRST_JOB or START_JOB, is 
resolved by examining if the event FIRST_JOB exists 
in path. If FIRST_JOB is found in path, then the 
operation produces the event START_JOB, otherwise 
the event FIRST_JOB is produced. From our experi-
ence, the definition of the discussed predicates is 
straightforward.  
 
5. Model checking transaction guarantees 
 
The ACID Model checker detects two kinds of specifi-
cation errors. Structural errors include unreachable 
states, unreachable transitions and incomplete defini-
tion of a transition relation. Protocol specific correct-
ness properties are expressed by user-defined func-
tions of type path → Bool written in Haskell. Func-
tion f: path → Bool should return True, if the path 
violates the property of interest. Let 

{ }Truepf_pathspinv =∈= )(:max  
be the set of invalid paths, with respect to some cor-
rectness properties. The checked properties are not 
violated, if inv is the empty set. Otherwise, the ele-

ments of inv represent counterexamples of violated 
properties. 

In 2PC, let us consider the correctness property: 
“Workers conform to the decision of the coordina-
tor, which is either commit or abort.” 

The two predicates shown in the following Haskell 
code excerpt, when combined by OR, result in a predi-
cate that verifies the aforementioned property. 

 

 
 

Beyond the function exists, we have also defined 
function preceed, which is used to express temporal 
relations. Other correctness properties that were veri-
fied are: 
• Workers and the coordinator reach exactly one of 

two possible decisions – abort or commit. 
• The commit decision can be reached, only if all 

participants have voted “commit”. 
• Participants eventually reach a decision, even in 

the presence of communication or system fail-
ures. 

 
6. Code generation for the ACID Sim Tools 
 
Although the code generation described in current sec-
tion is specific to the ACID Sim Tools framework, we 
believe that the general principles are the same for any 
potential implementation of a transaction management 
system. 

The ACID Sim Tools framework provides a state-
machine-guided transaction execution mechanism. Our 
mechanism uses the verified event management code, 
which is automatically generated from the provided 
descriptions that were introduced in sections 2 and 3. 

At runtime, the transaction execution mechanism 
monitors an ongoing transaction in terms of the trav-
ersed protocol-specific states of the provided state-
machine. The performed state transitions invoke the 
code of the associated operations that are implemented 
in the class hierarchies of ACID Sim Tools for simulat-
ing essential services like for example log recording in 
stable storage, handling of lock requests for concur-
rency control and so on. 
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Figure 5. Class hierarchy for the state-machine-
guided execution mechanism 

 
For every new transaction request, the receiver co-

ordinates the execution of the requested transaction 
and first creates a new instance of the class Coordi-
natorTransactionFsm, which acts as a transac-
tion execution monitor. The class hierarchy of Figure 5 
provides all abstractions needed for monitoring the 
execution of the simulated transactions. The base class 
is called Fsm and implements read and write access to 
the current state. TransactionFsm provides access 
to additional information related to the transaction 
class, the set of jobs executed on the server and to data 
that are used for drawing statistics.   

When a transaction monitor controls the actions 
performed in a coordinator module, it is an instance of 
class CoordinatorTransactionFsm that encap-
sulates also a pointer to a Transaction object, the 
number of transaction managers expected to acknowl-
edge the decision for the transaction and two sets of 
identifiers: the first set representing the transaction 
managers that have already acknowledged the decision 
and the second set representing the transaction manag-
ers that voted for the transaction outcome. 

We noted that the provided specifications for the 
generation of transaction execution monitors define 
non-deterministic state machines. Non-deterministic 
state transitions are detected by our code generation 
tool, when the transaction specification includes two or 
more transitions that are triggered from the same out-
going state for a given event name. The generator pro-
duces an appropriate handler method that returns the 
next state by resolving non-determinism at runtime. 
This particular method is named by concatenating the 
label of the outgoing state with the event name that 
causes non-determinism and accepts as parameter a 
CoordinatorTransactionFsm in case of coor-
dinator processing or a TransactionFsm in case of 
worker processing. As an example, if there is non-
determinism at the state ST_VOTES for the event 
VOTED, the generated handler method is called re-
solveVotesVoted. 
 
7. Conclusion 
 

The ACID Model Checker and Code Generator makes 
it possible to deliver provably correct implementations 

of traditional or advanced transaction models. We pre-
sented the adopted approach for specifying, model 
checking and eventually generating code for the man-
agement of the transaction events. Our proposal was 
demonstrated by the implementation of the 2PC trans-
action model in the ACID Sim Tools framework. We 
described how the well-known 2PC correctness prop-
erties are verified in our tool.   

In the near future, we plan to release the ACID 
Model Checker and Code Generator as open source 
software available at the ACID Sim Tools web site [4]. 
Also, we are going to investigate the possibility to util-
ize the constructs of the ACTA formalism [11] for the 
specification and verification of advanced transaction 
models in our state machine based approach. 
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