
1

The ACID Model Checker and Code Generator for transaction processing

Anakreon Mentis Panagiotis Katsaros

Department of Informatics, Aristotle University of Thessaloniki

54124 Thessaloniki, Greece
tel.: +30-2310-998532, fax: +30-2310-998419

{anakreon, katsaros}@csd.auth.gr

Abstract
Traditional transaction processing aims in delivering
the ACID properties (Atomicity, Consistency, Isola-
tion, Durability), that in our days are often relaxed,
due to the need for transaction models that suit mod-
ern computing environments and workflow manage-
ment applications. Typical examples are the require-
ments of long-running transactions in mobile comput-
ing or in the web, as well as the requirements of busi-
ness-to-business collaborative applications. However,
there is lack of tools for automatically verifying cor-
rectness of transaction model implementations. This
work presents the ACID Model Checker and Code
Generator, which plays a vital role in developing cor-
rect simulation models for the ACID Sim Tools envi-
ronment. In essence, our contribution introduces an
approach for automatically generating provably cor-
rect implementations of transaction management, for
the transaction model of interest.

Key Words – transaction & concurrency control,
modelling simulation & evaluation techniques, fault
tolerance, model-checking

1. Introduction

In network centric information systems, where applica-
tions are partitioned into several tiers (e.g. presenta-
tion, logic and data), transactions offer the mechanisms
needed to reach a mutually-agreed outcome, which
will be observed consistently across the transaction
participants. Transaction processing is expected to
offer the typical or relaxed ACID guarantees (Atomic-
ity, Consistency, Isolation and Durability) [1] in di-
verse and often heterogeneous computational envi-
ronments with different requirements.

In web information systems for example, there is a
need to reduce the amount of concurrency within an
application, due to the unpredictable network latency.
The solutions that cope with this problem [2] belong to

a category of transaction models that are called ad-
vanced transaction models. In mobile computing,
transaction processing faces frequent disconnections
between clients and servers, as well as rigid resource
constraints in processing power, memory and battery
capacity. Moreover, there is a need to transfer respon-
sibility of transaction management from one server to
another upon handoffs. As a consequence of these
problems, we are interested in transaction models [3],
where resources acquired within a transaction can be
released, before the transaction is completed (e.g.
nested transactions, split-join transactions etc).

Implementing transaction processing is a complex
task, due to the need to handle both synchronous and
asynchronous transaction events that implies immense
bookkeeping to achieve the intended behavior.

To the best of our knowledge, the ACID Model
Checker and Code Generator is the first attempt to
cope with this problem, by automatic verification of
the transaction model of interest and by generating
event management code. The presented tool was de-
veloped in the framework of ACID Sim Tools [4, 5],
which is an integrated simulation environment for
studying the performance and recovery tradeoffs in
transaction processing architectures (e.g. [6] and [7]).

However, our contribution can potentially ease the
development of transaction management systems and
its applicability extends beyond ACID Sim Tools. The
fundamental difference of our approach, when com-
pared with a widespread model checker like SPIN [9,
10], is the capability of generating code for the man-
agement of transaction events. In fact, instead of veri-
fying an abstract model of the transaction processing
system, we provide a verified implementation of it.

This is similar to the compiler generators’ concept,
where the tool checks the syntax specification and sub-
sequently generates a complete parser by integrating
appropriate user-supplied code.

Section 2 lays the foundations for a state-machine
based specification of a transaction model. This speci-
fication is necessary both for model-checking and code

2

generation. In section 3, we present the adopted ap-
proach for defining the transaction events generated by
the operations declared in the described specification.
This definition is required for verifying the intended
transaction guarantees. Section 4 describes the path
exploration algorithm for proving the correctness prop-
erties of interest. Section 5 shows the model checking
of correctness properties for a 2PC protocol implemen-
tation. Section 6 describes the code generation for the
ACID Sim Tools environment and the paper concludes
with an overview of the overall contribution and the
future research prospects.

2. Specification of transaction models

A transaction model is defined in terms of different
roles, where each role is specified as a non-
deterministic state machine. The two roles encountered
in the 2PC protocol, for example, are the transaction
coordinator and the worker. In nested transactions, we
distinguish between parent and child transactions, thus
resulting in four different roles, i.e. two roles for the
parent transactions and another two roles for the child
transactions. In most advanced transaction models we
normally have more than two roles.

Non-determinism generally provides a convenient
form of specification and therefore it is also used by
the input specification languages of most well-known
model checkers [9, 10]. In our case, non-deterministic
role specification is the only feasible approach, be-
cause state transitions in transaction models may be
determined based on information that is available only
at runtime. For example, when the coordinator in the
2PC protocol collects the workers’ votes for an ongo-
ing transaction, either sends the decision made for the
transaction (if it has already got all workers’ votes) or
waits for the remaining votes. As we will see in Sec-
tion 4, our analysis resolves this non-determinism by
taking into account the already executed state transi-
tions.

In a role specification, the alphabet of the state ma-
chine is the set of all possible transaction events. Be-
yond the change in the current state, a transition for a
given event also invokes one or more operations. An
invoked operation in turn, creates or cancels transac-
tion events or simply performs an assigned computa-
tion.

The transition relations for all roles are specified in
a text file with five (5) comma-separated columns:

Role: The first column defines the state machine, in
which the specified transition is part of. If we re-
fer to the simplest transaction model, i.e. the 2PC
protocol with only two roles, these roles are rep-
resented by “c” for the coordinator and “w” for

the worker. The wildcard symbol “_” is used in
transitions that belong to all transaction roles.

Source state: The state where the transition is en-
abled.

Event: The transaction event which triggers the
transition. It represents a message from those in-
cluded in the transaction protocol.

Next state: The target state for the specified transi-
tion.

Operations: A list of operation names that may be
accompanied by one or more identifiers enclosed
in brackets. The identifiers represent parameter
names (e.g. message receiver, reference to a
transactional job), that are used as placeholders
for code generation. The first operation parameter
is implicitly considered to be a unique transaction
identifier, which is not written in the specifica-
tion. In the provided list, operation names are
separated by “ : ”. We use the character “–” for
defining transitions with no operations.

We provide a specification excerpt taken from the
2PC implementation for the ACID Sim Tools:

//when a lock is acquired
1 _, ST_LOCK, LOCKED, ST_JOB, startJob
2 c, ST_EMPTY

,
INIT, ST_INIT, sendInitLog:

scheduleTimeout
3 c, ST_VOTES, OUTCOME_ASKED, ST_VOTES, -
4 c, ST_VOTES, VOTE_LOGGED, ST_VOTES, collectVote{id}
5 w, ST_WAIT, START_JOB, ST_LOCK, workerLock{job}
6 w, ST_JOB JOB_FINISHED, ST_WAIT, removeJobMes-

sage{msg}

Line 1 defines a state transition that applies to all
transaction roles. When the transaction participant is in
state ST_LOCK and receives message LOCKED, then
the state machine moves to state ST_JOB and the tran-
sition invokes the operation named startJob that starts
a transactional job.

Line 2 defines a state transition from ST_EMPTY
that for all roles specifies the initial state. This transi-
tion includes an event called INIT, which is the only
event that is not caused by an operation of some transi-
tion. In fact, this event is sent by the transaction man-
agement system to start the processing of a transaction.
Operation sendInitLog appends a log entry in stable
storage for recovery purposes. If the log entry is suc-
cessfully stored, the coordinator state machine receives
the event INIT_LOGGED, which is not shown in the
given excerpt.

The transition of line 3 is a typical example of a
message that is ignored. Transitions that do not have
any impact in the execution of the specified model are
required to be explicitly defined, in order to ensure that
there are no neglected transitions that may be feasible
in certain circumstances. One of the uses of the ACID
Model Checker is to detect forgotten state transitions,

3

which may be attributed to design flaws or specifica-
tion omissions.

Table 1 describes all states of the specification of
the 2PC protocol. Figure 1 visualizes the state transi-
tions of a 2PC worker and Figure 2 shows the coordi-
nator state machine (that also acts as a worker for the
jobs processed locally). Vertices of the shown graphs
represent the states of the corresponding roles, while
edges signify state transitions caused by the event that
labels the transition. Every transaction starts in the
initial state called ST_EMPTY and its execution is
completed at the final state called ST_FINISH.

Table 1: States of the 2PC transaction protocol

Role State Description

Both ST_ABORT Wait for the ABORT log entry to be
stored

Both ST_COMMIT_LOG Wait for the COMMIT log entry to be
stored

Both ST_JOB Wait for a job to complete

Both ST_LOCK Wait until a lock is acquired

Both ST_LOG_END Wait for the “END” log entry to be
stored

Both ST_RECOVER Recovering the object states after an
abort

Both ST_WAIT Wait for the next job or enter the voting
phase

c ST_INIT Transaction processing was just started
at the coordinator’s site

c ST_VOTES Collecting votes from the workers

c ST_FABORT The transaction is aborted due to recov-
ery from failure

c ST_AKN_ABORT Wait for abort acknowledgment from
the workers

c ST_WAK Abort and acknowledgment of the deci-
sion are pending

c ST_WAKR Abort, recovery and acknowledgment of
the decision are pending

w ST_VOTE Prepare to vote for the transaction

w ST_DEC Wait for the decision from the coordina-
tor

w ST_WAR Abort and recovery are pending

The specification shown in this section suffices for
generating code for the management of transaction
events. This code, together with the user-provided
code for the named operations yields a complete im-
plementation of the 2PC transaction model. However,
the provided information allows only trivial checks,
such as the existence of unreachable states. For more
sophisticated checks we also need to provide informa-
tion regarding the creation and cancelling of transac-
tion events, as a consequence of state transition opera-
tions.

Figure 1. State machine for the worker in a 2PC
transaction

3. Specification of transaction events

Beyond the INIT event, which is sent by the transac-
tion management system, all other events are created
by an operation invoked in one or more state transi-
tions. This ensures that every possible event is a con-
sequence of a past state transition. For model checking
purposes, path exploration requires that apart from the
state transition relation described in the previous sec-
tion, we also have to complement the specification
with the events generated or cancelled in each state
transition operation. All operations that either create or
cancel an event are specified in a text file with four (4)
comma-separated columns:

Operation name: The name of the operation, with-
out the parameters (if any). If an operation is in-
voked in state transitions of different roles, then a
separate line is used for each role.

Event: The name of a transaction event. If the in-
voked operation creates an event selected from a
set of alternatives, then all possible events are
enumerated and are separated by “|”. If the opera-
tion cancels an event the event name is prefixed
by “-” (e.g. -TIMEOUT).

4

Figure 2. Non-deterministic state machine for the coordinator in a 2PC transaction

Receiver: The role of the event consumer (in 2PC

it may be either “c” or “w”).
Sender: The event producer, which may be either a

specified role or any other implementation spe-
cific component. In 2PC for example, the neces-
sary transaction processing components are con-
currency control denoted by lc[r] and stable stor-
age, denoted by lg[r], where r ∈ {“c”, “w”}).

A specification excerpt taken from the 2PC imple-
mentation for the ACID Sim Tools follows:

1 startJob, JOB_FINISHED, c, c
2 startJob, JOB_FINISHED, w, w
3 sendInitLog, INIT_LOGGED, c, lgc
4 workerLock, LOCKED, w, lcw
5 cancelTimeout, -TIMEOUT, c, c
6 nextWorkerJob, FIRST_JOB | START_JOB w, c

Lines 1 and 2 demonstrate a typical case of an op-

eration invoked by state transitions of two different
roles. Moreover, we see that in both cases the pro-
duced event JOB_FINISHED is created and consumed
by the same role, therefore representing a message sent
to the role itself. In line 3, as a consequence of the in-
vocation of operation sendInitLog by the coordinator
role (see line 2 of previous specification excerpt), the
“lgc” component replies with event INIT_LOGGED.
Here, we note that we are only interested in specifying

the events consumed by the defined roles and for this
reason we do not need to include the event that causes
“lgc” to respond with INIT_LOGGED (i.e. the coordi-
nator’s state transition (ST_EMPTY, INIT) →
ST_INIT). Line 5 shows an operation that cancels an
event. When the shown operation is invoked, if TIME-
OUT has been previously produced, then this event is
cancelled and is never consumed. Finally, line 6 shows
an operation that non-deterministically produces either
the event named FIRST_JOB or the event
START_JOB.

At this point, we have a complete specification of
the transaction model of interest, with two sources of
non-determinism. The first source is the role specifica-
tion, where non-determinism is introduced as dis-
cussed in the previous section and the second source is
the operations with non-deterministic event produc-
tion, as the one shown in line 6. Path exploration for
model checking correctness properties is possible, only
if these two kinds of non-determinism are resolved.

4. Path exploration

Path exploration was implemented in Haskell. It is
based on computing the reachability graph for the

5

synchronized product of the role state machines [8].
Reachable states are accessed,
• through the manipulation of a list of produced

transaction events, that from now on will be
called future event list (fev)

• by consuming all events in fev that are produced
by implementation specific components – i.e. not
roles – in FIFO order. At the same time, reach-
able states include all possible event interleavings
in fev, for all events produced by the specified
roles

• by synchronizing the cartesian product of the de-
fined state machines, on the basis of a set of syn-
chronizing events [8] including all messages ex-
changed by the protocol participants.

Figure 3. Reachability graph for the synchronized

product of the role state machines

Let us consider the partial reachability graph de-
rived from the synchronized product of roles “c” and
“w” shown in Figure 3 that basically displays the first
transitions of the coordinator role for 2PC (specifica-
tion of section 2). All edges are labelled with pairs,
where the first item denotes the consumed event that
causes the transition and the second item is the updated
fev list. Event TIMEOUT in the fev of the first transi-
tion is produced by “c” and INIT_LOGGED is pro-
duced by the “lgc” component. The reachability graph
includes all possible interleavings between the two
events in the list:
• One possible transition takes place by first con-

suming the TIMEOUT event. The event is re-
moved from the previous fev and its name be-
comes the first item of the new transition label.
The updated fev now includes ABORT_LOGGED
that is produced by the operation invoked by the
executed transition.

• The other transition takes place by first consum-
ing the INIT_LOGGED event.

The fev of the first mentioned transition now in-
cludes two events sent by an implementation specific
component that is not a role, but provides log re-
cording in stable storage. These two events in fev will
be consumed in FIFO order. Figure 4 shows the com-
plete reachability graph for the synchronized roles in
2PC. The graph justifies the need for automatic verifi-
cation, due to the considerable complexity that is evi-

dent even in the simple case of the 2PC transaction
model.

6

7

A path is a sequence of state transitions and is
maximal, if the source state of the first transition is an
initial role state and there is no event to be consumed
from the target state of the last transition in the path.

If a transaction correctness property is violated in a
non-maximal path, say path, this does not imply that
the property is also violated in some maximal path
prefixed by path, because path does not represent a
complete execution. Therefore, all correctness proper-
ties are checked upon the maximal paths of the syn-
chronized product, which are computed by the recur-
sive algorithm path_explorer.

We note that path_explorer utilizes two user-
defined predicates in steps 1 and 2 to resolve the two
sources of non-determinism discussed previously.

Our tool detects all non-deterministic state transi-
tions and operations and prompts the user to define an
appropriate predicate over path. The non-determinism
is thus resolved according to the semantics of the
transaction model. In 2PC, we have only five (5) cases
of non-determinism caused by the state transitions of
the coordinator (c) and one (1) caused by an operation.

For example, when role c collects the votes, it may
either decide the outcome of the ongoing transaction or
wait for the votes of the remaining workers. For model
checking purposes it suffices to assume the minimum
number of participants materializing the interaction
between the roles. An appropriate predicate examines
the previous transitions recorded in path and deter-
mines if the required number of votes is collected.

The non-determinism of operation nextWorkerJob
(see the specification excerpt of section 3) that pro-
duces either the event FIRST_JOB or START_JOB, is
resolved by examining if the event FIRST_JOB exists
in path. If FIRST_JOB is found in path, then the
operation produces the event START_JOB, otherwise
the event FIRST_JOB is produced. From our experi-
ence, the definition of the discussed predicates is
straightforward.

5. Model checking transaction guarantees

The ACID Model checker detects two kinds of specifi-
cation errors. Structural errors include unreachable
states, unreachable transitions and incomplete defini-
tion of a transition relation. Protocol specific correct-
ness properties are expressed by user-defined func-
tions of type path → Bool written in Haskell. Func-
tion f: path → Bool should return True, if the path
violates the property of interest. Let

{ }Truepf_pathspinv =∈=)(:max
be the set of invalid paths, with respect to some cor-
rectness properties. The checked properties are not
violated, if inv is the empty set. Otherwise, the ele-

ments of inv represent counterexamples of violated
properties.

In 2PC, let us consider the correctness property:
“Workers conform to the decision of the coordina-
tor, which is either commit or abort.”

The two predicates shown in the following Haskell
code excerpt, when combined by OR, result in a predi-
cate that verifies the aforementioned property.

Beyond the function exists, we have also defined
function preceed, which is used to express temporal
relations. Other correctness properties that were veri-
fied are:
• Workers and the coordinator reach exactly one of

two possible decisions – abort or commit.
• The commit decision can be reached, only if all

participants have voted “commit”.
• Participants eventually reach a decision, even in

the presence of communication or system fail-
ures.

6. Code generation for the ACID Sim Tools

Although the code generation described in current sec-
tion is specific to the ACID Sim Tools framework, we
believe that the general principles are the same for any
potential implementation of a transaction management
system.

The ACID Sim Tools framework provides a state-
machine-guided transaction execution mechanism. Our
mechanism uses the verified event management code,
which is automatically generated from the provided
descriptions that were introduced in sections 2 and 3.

At runtime, the transaction execution mechanism
monitors an ongoing transaction in terms of the trav-
ersed protocol-specific states of the provided state-
machine. The performed state transitions invoke the
code of the associated operations that are implemented
in the class hierarchies of ACID Sim Tools for simulat-
ing essential services like for example log recording in
stable storage, handling of lock requests for concur-
rency control and so on.

8

Figure 5. Class hierarchy for the state-machine-
guided execution mechanism

For every new transaction request, the receiver co-

ordinates the execution of the requested transaction
and first creates a new instance of the class Coordi-
natorTransactionFsm, which acts as a transac-
tion execution monitor. The class hierarchy of Figure 5
provides all abstractions needed for monitoring the
execution of the simulated transactions. The base class
is called Fsm and implements read and write access to
the current state. TransactionFsm provides access
to additional information related to the transaction
class, the set of jobs executed on the server and to data
that are used for drawing statistics.

When a transaction monitor controls the actions
performed in a coordinator module, it is an instance of
class CoordinatorTransactionFsm that encap-
sulates also a pointer to a Transaction object, the
number of transaction managers expected to acknowl-
edge the decision for the transaction and two sets of
identifiers: the first set representing the transaction
managers that have already acknowledged the decision
and the second set representing the transaction manag-
ers that voted for the transaction outcome.

We noted that the provided specifications for the
generation of transaction execution monitors define
non-deterministic state machines. Non-deterministic
state transitions are detected by our code generation
tool, when the transaction specification includes two or
more transitions that are triggered from the same out-
going state for a given event name. The generator pro-
duces an appropriate handler method that returns the
next state by resolving non-determinism at runtime.
This particular method is named by concatenating the
label of the outgoing state with the event name that
causes non-determinism and accepts as parameter a
CoordinatorTransactionFsm in case of coor-
dinator processing or a TransactionFsm in case of
worker processing. As an example, if there is non-
determinism at the state ST_VOTES for the event
VOTED, the generated handler method is called re-
solveVotesVoted.

7. Conclusion

The ACID Model Checker and Code Generator makes
it possible to deliver provably correct implementations

of traditional or advanced transaction models. We pre-
sented the adopted approach for specifying, model
checking and eventually generating code for the man-
agement of the transaction events. Our proposal was
demonstrated by the implementation of the 2PC trans-
action model in the ACID Sim Tools framework. We
described how the well-known 2PC correctness prop-
erties are verified in our tool.

In the near future, we plan to release the ACID
Model Checker and Code Generator as open source
software available at the ACID Sim Tools web site [4].
Also, we are going to investigate the possibility to util-
ize the constructs of the ACTA formalism [11] for the
specification and verification of advanced transaction
models in our state machine based approach.

References

[1] Weikum, G. and G. Vossen, Transactional Information
Systems, Morgan Kaufmann Publishers, San Francisco,
2002

[2] Little, M., Freund, T., A comparison of Web services
transaction protocols, on developerWorks (online:
http://www.ibm.com/developerworks/webservices/librar
y/ws-comproto/), 2003

[3] Serrano-Alvarado, P., Roncancio, C., Abiba, M., A
survey of mobile transactions, Distributed & Parallel
Databases, Vol. 16 (2), 2004, pp. 193-230

[4] ACID Sim Tools Site, http://mathind.csd.auth.gr/acid/
html/index.html (last access: 31st of January 2009)

[5] Mentis, A., Katsaros, P. and Angelis, L. ACID Sim
Tools: A simulation framework for distributed transac-
tion processing architectures, In Proc. of the 1st Int.
Conf. on Simulation Tools & Techniques (Simulation
Works Industry Track), Marseille, France,
(http://proceedings-online.org/?eudlQuery=Simulation
Works%2008), 2008

[6] Object Management Group, Transaction Service Speci-
fication, version 1.3, OMG Technical Committee Docu-
ment ptc/2003-03-08, March 2003

[7] Sun Microsystems, Enterprise JavaBeans, Version 2.1
(Final Release), Nov. 2003

[8] Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit,
A., Petrucci, L., Achnoebelen, Ph., McKenzie, P. Sys-
tems and Software Verification, Springer, 2001

[9] The SPIN Model Checker web site, http://spinroot.com/
spin/whatispin.html (last access: 31st of January 2009)

[10] Ben-Ari, M. Principles of the Spin Model Checker,
Springer, 2008

[11] Chrysanthis, P., Ramamritham, K. Synthesis of ex-
tended transaction models using ACTA, ACM Transac-
tions on Database Systems, Vol. 19 (3), 1994, pp. 450-
491

