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Abstract In this work we target horizontal scaling of

NoSQL databases, which exhibit highly varying, unpre-

dictable and difficult to model behavior coupled with

transient phenomena during VM removals and/or ad-

ditions. We propose a solution that is cost-aware, sys-

tematic, dependable while it accounts for performance

unpredictability and volatility. To this end, we model

the elasticity as a dynamically instantiated Markov De-

cision Process (MDP), which can be both solved and

verified using probabilistic model checking. Further, we

propose a range of complementary decision making poli-

cies, which are thoroughly evaluated in workloads from

real traces. The evaluation provides strong insights into

the trade-offs between performance and cost that our

policies can achieve and prove that we can avoid both

over- and under-provisioning.

Keywords cloud elasticity · probabilistic model

checking · quantitative verification · autonomic

computing · PRISM · NoSQL databases

1 Introduction

Cloud computing has arisen as one of the most at-

tractive alternatives for providing computational infras-

tructures for high-demand applications. The quick preva-

lence of clouds is fueled by their capacity of achieving
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economies of scale. One of the main advantages of cloud

computing is that it renders the procurement of expen-

sive computing resources unnecessary, thus lifting the

burden of high upfront investments in proprietary plat-

forms from system developers and owners. This charac-

teristic is complemented by the capacity for on-demand

resource provisioning based on the actual current re-

quirements; this feature is commonly referred to as elas-

ticity, and it is the main focus of this work.

Elasticity is defined as “the degree to which a sys-

tem is able to adapt to workload changes by provisioning

and de-provisioning resources in an autonomic manner,

such that at each point in time the available resources

match the current demand as closely as possible”[25].

Cloud computing extensively leverages virtualization

technology. Most commonly, it provides computational

resources in the form of virtual machines (VMs). Elas-

ticity may be manifested in different forms. It can refer

to runtime modifications of the size, the location or

the number of VMs employed, and the combinations of

these three basic elasticity types. Common examples of

elasticity include the allocation of more memory to a

VM (sizing or scaling-up or vertical scaling), moving a

VM to a less loaded physical machine (migration) and

increasing the number of VMs (scaling out or horizontal

scaling) of an application cluster, respectively. Compre-

hensive surveys on elasticity techniques can be found at

[36] and [13].

In this work we target the third type of elasticity,

horizontal scaling, in a specific setting, namely NoSQL

databases. This setting has the following two charac-

teristics that differentiate it from simple cloud-hosted

applications: (i) Increasing or decreasing the number of

VMs is a key element in adapting to dynamically chang-

ing volumes of user requests. However, the behavior of

the system is unpredictable, significantly varying and
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unamenable to analytical modeling due to the complex-

ity of the underlying mechanisms serving user requests

within a modern database; and (ii) there are significant

transient periods, during which the effects of an hori-

zontal action are not apparent.

A solution to horizontal scaling decision making for

NoSQL databases should have the following character-

istics:

1. To be systematic and dependable. We meet this re-

quirement through a proposal that is based on a

solid theoretical background, namely analysis of Mar-

kov Decision Processes (MDP). Such an approach is

opposed to more ad-hoc solutions that are based on

thresholds (or rules), e.g., [6, 7, 23, 39, 33, 3, 12,

46, 21, 15, 10, 31, 5], which are known to be diffi-

cult to set appropriately [17]. Further, to attain de-

pendability, we resort to continuous verification of

the system MDP model, using probabilistic model

checking [20].

2. To account for performance unpredictability and vola-

tility. Our solution meets this requirement through

runtime model instantiation taking into account the

latest log measurements. As such, it does not rely

on offline modeling or other approaches that silently

assume that the system is fixed, e.g., as in [44, 2, 28,

1, 45].

3. To consider multiple objectives. Horizontal scaling

is an inherently multi-objective problem. More re-

sources are required during periods of peak load

to keep performance within user-defined specifica-

tions. However, additional resources should be em-

ployed in a judicious manner, because they incur

economic cost, either implicitly (e.g., higher energy

bills in private clouds) or explicitly (e.g., more VM

hours in public clouds offering resources using an

hourly-based charging model). Our proposals explic-

itly consider performance and economic cost when

using VMs of a public cloud provider. More specifi-

cally, we aim to minimize the monetary cost keeping

the latency of responses to users below a thresh-

old; this issue has not been investigated for NoSQL

databases to date.

In summary, the contribution of this work is the

first proposal to date for monetary cost-aware hori-

zontal scaling tailored to NoSQL databases. As men-

tioned above, a distinctive feature of our proposal is

that it uses probabilistic model checking at runtime as

the main decision mechanism. Further, it accounts for

unpredictable and volatile system behavior.

An additional strong feature of our approach is that

it follows a decoupled design model, where the underly-

ing system model can support various decision making

policies. Furthermore, we provide full implementation

details covering aspects such as incorporating mecha-

nism to predict future external load, to smooth the in-

coming load requests.

Our work builds on our previous work in [37, 38],

where we have shown the applicability of probabilis-

tic model checking in elasticity decision making. We

have significantly extended our previous work in that

we explicitly consider monetary cost (accounting also

for the commonly used hourly-based charging model)

and we devise novel elasticity decision making policies,

which are proven to significantly outperform the results

in [37, 38]. In summary, our evaluation is based on real

traces and the results show that we can strike a con-

figurable balance between under-provisioning and over-

provisioning. In a scenario, where using no extra ma-

chines leads to performnance violations in more than

50% of the time steps, these violations are decreased

to less than 1%, while using no more than half of the

maximum number of machines on average. More im-

portantly, the different decision policies that we pro-

pose are complementary (i.e., they do not dominate

each other) and can achieve different trade-offs between

performance and cost at a fine level of granularity.

The remainder of the article is structured as follows.

In the next section, we discuss related work. In Section

3, we present the main aspects of interest regarding

the elastic behavior of NoSQL databases. Our modeling

methodology is detailed in Section 4. The novel contri-

bution of our work, i.e., cost-aware policies, is presented

in Section 5. We evaluate our proposals in Section 6.

The conclusions are in Section 7.

2 Related Work

In a nutshell, our proposal differs from other proposals

for horizontal scaling both a) in terms of its decision ap-

proach, that is to employ model checking for runtime

elasticity decisions and not to rely on offline model-

ing; and b) in that it proposes bi-objective cost-aware

horizontal scaling policies tailored to NoSQL, which ex-

hibit unpredictable and volatile behavior even for the

same external conditions, and each elasticity action is

followed by a significant transient period.

We split related work in three parts. First, we dis-

cuss elasticity proposals that are cost-aware but do not

consider the specificalities of NoSQL databases. Then,

we move our attention to proposals for NoSQL databases,

which, however do not consider monetary cost. Third,

we discuss solutions that also employ MDPs and high-

light the differences from our.
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2.1 Cost-aware Elasticity

Monetary costs have been considered in several elastic-

ity proposals. In the simplest case, the horizontal scal-

ing actions are defined as rules that are triggered upon

the violation of a threshold and the monetary cost does

not consider pragmatic issues, such as hourly-based VM

provision. Examples that fall in that category are the

proposals in [11, 46, 22]. In [40], an approach to gener-

ate such rules dynamically is presented.

Another class of related proposals suffers from the

fact that are based on offline model training, as ex-

plained in the introduction. An example is [19], which

does not consider pragmatic charging models either.

Another example is [4], which relies on a PID controller.

Proposals, such as [11, 46, 8, 32], consider a different

version of the problem, where there is a budget limit.

We do not put any constraint on the monetary cost, but

our approach is flexible in that it devises policies that

either minimize that cost or trade it for performance.

Also, the techniques in [11, 46, 8, 4, 43, 27] assume a

different application setting, such as multi-tier web ap-

plications, where it makes sense to consider application

reconfiguration along with horizontal scaling. We con-

sider only the latter targeting NoSQL databases. [46]

examines vertical scaling actions as well. Similarly to

our work, in [43], look-ahead optimization of a weighted

multi-objective function, is used to find the optimal

scaling and/or the optimal application reconfiguration

in terms of cost to performance ratio. In [27], a reac-

tive policy is proposed, where an elastic action is trig-

gered every time a request to a web application queue

exceeds a threshold. Their policy takes into consider-

ation the hourly-charging, as it evaluates the need for

resources for the next hour, utilizing an objective func-

tion, which is optimized using exhaustive search. The

objective function includes both VM cost and SLA vi-

olations (i.e. response latency violations).

There are also proposals that directly target the

cost of the deployment to handle the elasticity [47].

The latter, utilizes both horizontal and vertical scal-

ing to proactively scale the VMs cluster and/or apply

self-healing scaling (i.e. provisioning redundant occu-

pied resources to VMs that are close to be saturated)

as a reactive policy. Linear regression in combination

with a greedy heuristic algorithm is used to solve an

optimization problem which targets to minimize the de-

ployment cost, occupying the least number of resources,

while trying to satisfy more user requests. [9] is framed

in the context of application-level resource provision-

ing, where reactive and proactive heuristic approaches

are proposed to solve an optimization problem, which

tries to find the best trade-off between the allocation

cost and the SLA violations (i.e. response latency).

Finally, [18] approaches cost-aware elasticity from

the data center owner point of view, and as such con-

siders different types of cost, including hardware cost,

license and labour cost, and penalties due to SLA vio-

lations. On the contrary, we view the problem from the

cloud application point of view.

2.2 Elasticity for NoSQL databases

Similar to our work, [45] considers the horizontal scal-

ing of a NoSQL cluster, where the system is described

using a MDP. They propose an indirect solution to the

MDP (i.e. Bellman equation), which uses a Q-Learning

approach. This work has been significantly extended

by our previous work in [37], which, in turn, is ex-

tended hereby. The authors in [1] propose a feedfor-

ward controller for key-value stores, which monitors the

workload and uses a logistic regression model to pre-

dict whether the workload will cause SLA violations

and react accordingly. This controller is combined with

a feedback controller, which monitors the performance

and reacts based on the amount of deviation from the

desired performance specified in the Service Level Ob-

jective (SLO). Nevertheless, it requires offline modeling.

There are also works that combine the horizontal

scaling with other forms of system modifications, such

as system reconfiguration actions [16, 14, 10]. In [16],

neural networks are used to estimate the throughput

and response time of the in-memory data store (i.e. In-

finispan) and then, a controller solves a constraint op-

timization problem to determine an optimal resource

configuration in terms of number of VMs and data repli-

cation degree. [14] uses a rule based policy to define if

a variant of a bin-packing problem should be solved,

to define if a horizontal scaling to the number of VMs

or a scaling in the maximum number of data partitions

per node is needed. [10] targets Cassandra and propose

an approach that utilizes horizontal scaling in combina-

tion with cache size dynamic re-configuration. Finally,

in [42] database migration on multiple cloud providers is

applied, to obtain a trade-off between the deployment

cost and the SLO violations. In all these works, the

horizontal scaling part is less sophisticated than ours,

however, it is interesting to combine horizontal scaling

with additional elasticity actions in the future.

2.3 MDP-based Decision Making

There are also works that utilize MDP modeling to

guide the decision making [24, 35, 34, 45]. In these
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works MDP is only used for the formation and the solu-

tion on an optimization problem. We also utilize MDP

for optimization, however we additionally apply prob-

abilistic model checking for the analysis of the model,

offering a more dependable decision making approach

providing probabilistic guarantees. In [24, 45], authors

propose an indirect MDP solving approach, using Bell-

man equations. [24] propose an approximation to the

optimal Bellman solution, reducing the state space of

the problem. Moreno et al. in [34], utilize PRISM and

PCTL to formulate and solve the MDP model simi-

larly to our approach. In a more recent work Moreno

et al. [35], propose a more efficient MDP model solv-

ing approach based on Alloy models [26], however their

approach is only appropriate for optimization problem

solving and does not allow for probabilistic model anal-

ysis.

3 NoSQL elastic behavior

NoSQL databases are designed to be distributed across

multiple nodes.1 Deploying a NoSQL database across

multiple VMs leads to some form of performance un-

predictability. In this section, we provide experimental

evidence regarding query response variations (i) when

horizontal elasticity takes place, and (ii) when the clus-

ter setup and the external load remain stable.
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Fig. 1 Unstable periods after a scale-out elastic action

Figure 1 refers to a scenario where a Cassandra

database serves requests at a rate of 13000 requests/sec

according to the YCSB (Yahoo! Cloud Serving Bench-

mark) and the number of VMs on which the database

is deployed is progressively increased from 7 up to 10

VMs (green dotted line). In the figure, the blue solid

line presents the response latency. We can see that each

1 In this work, the terms node and VM are used inter-
changeably.
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Fig. 2 Unstable periods after a scale-in elastic actions
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Fig. 3 Latency Distribution for Different Cluster Sizes
(14000 (reqs/sec))

node addition is followed by an unstable period, i.e., a

period with high response latency, which is highlighted

in the diagram. The duration of such a period is approx-

imately 10 mins. During this period, the data allocated

to the new VM are transferred to its memory from their

previous hosts in a lazy manner (i.e. data is transferred

upon request).

Considering the node removals, there are two op-

tions in the NoSQL databases, (i) the instant removal

and (ii) the graceful removal. In the first case, remov-

ing a VM does not lead to data loss due to replication

and the node can be removed as soon as it serves its

pending requests; then a background process kicks-off

to create a new replica for the data previously hosted

on the removed VM. In the second case, the node stops

serving requests and distributes its tuples to the rest

of the server nodes; when this processes finishes, the

node is removed from the cluster. Both options cause

unstable periods mostly due to the network transfer

overhead, however the second one affects more the per-

formance of the system, as the self-healing of the first

case can be applied in a lazy manner. This is the rea-
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son that the second case is recommended to be ap-

plied only in cluster idle hours. In Figure 2, we present

the first case of node removal in the same Cassandra

cluster, where the cluster size is progressively reduced

from 14 to 7 server nodes. The external load remains

9500 reqs/sec throughout the experiment. As can be

observed, when the cluster size to handle the external

load is large enough (i.e. 9-14 server nodes), there are

almost no unstable periods. As the cluster size reduces,

short unstable periods are observed with duration less

than 4 mins. These unstable periods of the cluster need

to be taken into consideration in the elasticity decision

making process, as they can greatly degrade the QoS

offered to the clients.

Another distinctive behavior of cloud-hosted NoSQL

databases is that the latency of responses varies signif-

icantly, even when the number of VMs and the exter-

nal load remain stable. Figure 3 shows the average and

standard deviation values of the latency of responses

for different cluster sizes. The standard deviation of

the response latency is very high, especially for smaller

cluster sizes as the cluster strives to serve an amount

of requests with not enough VMs. As can be inferred

from the figure, it is common larger clusters to perform

better than smaller ones. Taking into account the per-

formance variability during elasticity actions is essential

for developing robust decision policies.

4 Probabilistic Model Checking for Elasticity

Probabilistic model checking is a formal verification

technique for the modeling and analysis of stochastic

systems [30]. In our work, probabilistic models are used

in the decision making process, to describe, drive and

analyze cloud resource elasticity. By utilizing proba-

bilistic models, we are able to capture the uncertain

behavior of systems elasticity. In order to additionally

capture non-determinism, we resort to Markov Decision

Process (MDP) models, which form the basis of our

approach. On top of our MDP models, we build poli-

cies for elasticity decisions with the help of the PRISM

probabilistic model checker [30].

Problem Description: More formally, we target a

bi-objective function as follows: minimize cost through

tuning the number of VMs, provided that the latency

lat is kept below a threshold latthres.

Given that, when user requests are answered in a

bounded time, then the throughput can closely follow

the incoming load, the objective function ensures that

the system copes with the volatile load in a cost-efficient

manner.

4.1 MDP basics

MDPs provide a mathematical framework for model-

ing decision making in situations, where outcomes are

partly random and partly under the control of a deci-

sion maker [41].

An MDP is a tuple

M = (S, sinit, Act, Psas′ , L,R), where

– S = {s0, ..., sn} is a finite set of states;

– sinit is the initial state;

– Act = {a0, ..., am} is a finite set of actions;

– Psas′ = Pr{st+1 = s′|st = s, a ∈ Act} is a transition

probability from state s at step t to state s′ at the

next step due to action a;

– L is a finite set of state labels; and

– R = (rs, ra) is a pair of reward functions, with rs :

S → R≥0 assigning state rewards and ra : S×Act→
R≥0 assigning rewards to all state-action pairs.

The resolution of non-determinism is called a strat-

egy or policy or adversary, and is defined as a function

σ : S → Act, which maps states to concrete actions.

However, in this work, we use the term policy not in

this sense but in the sense of choosing among multi-

ple candidate adversaries (or strategies), as explained

in Section 5.

4.2 High-level model description

In this work we propose a modeling approach, which al-

lows us to map the elasticity problem to a model check-

ing one, applying classical model verifications techniques

to solve it. Figure 4 introduces a simplified representa-

tion of our MDP state space and the enabled actions

in each of the shown states. Every state si corresponds

to the number of VMs that compose the application

cluster (i.e., a NoSQL cluster) with i being equal to the

corresponding number of VMs. We also need to take

into consideration the evolution of the environment. In

our proposal, we periodically monitor the evolution of

the system’s conditions. The period of the activation of

the decision making mechanism, called decision step, is

explicitly captured by the model. To cover the evolution

of the environment through the time, the state space is

conceptually separated in time sections (t, t+1, t+2, ...),

where t is the activation period and each section cor-

responds to a distinct decision step. Overall, each state

refers to a unique combination of cluster size and deci-

sion step, but the opposite does not hold (i.e., each size-

step combination may be covered by multiple states),

as will be explained shortly. An MDP allows to cap-

ture both the non-deterministic and the probabilistic
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Fig. 4 MDP model overview.

aspects of the modeled system. In the elasticity do-

main, we are interested in making decisions over a set of

possible options that give rise to non-determinism, i.e,

adding, removing or maintaining the number of VMs,

according to the system’s behavior monitored online.

Each such option, is a different action in the model.

Actions connect states only from consecutive steps.

After remove and add VM actions, the decision maker

may be idle for a pre-specified time period (i.e. time

period to allow the system to stabilize (see Section 3)).

In Figure 4, s3−4 at t+1 and all other states identi-

fied with si−j represent transient states, i.e. unstable

system states due to a recent change in the number

of active VMs. Transient states need not to be explic-

itly captured if the decision step is shorter than the

transient period; e.g., in the figure we assume that the

decision step is longer of the transient period after VM

removals. Overall, based on the enabled actions at t,

we have three states at t+ 1 including two stable states

s2 and s′3 - if the number of VMs is not changed -

and one transient state. States s3 and s′3 represent a

configuration with 3 VMs, however as the environment

evolves, these two states can behave differently to the

incoming load (e.g. they may receive different incoming

load and/or may be characterized by different response

latency). Also, as we observe, after the s′3 state, the

same pattern is repeated with different time sections

and state naming conventions, with s′3 now being the

current state.

4.2.1 Extended model states to capture variability

In our representation, every state, is labeled by some

measurements specific to NoSQL databases. The most

relevant to our problem is the envisaged latency corre-

sponding to a specific state at a given future step, which

is derived through log measurements. The main prob-

lem encountered is that, as shown in Figure 3, latency

suffers from high variability. To work around this, we

sicurrent

sib1

sib...

sibn

si−j

sl

si′

t t+1

pr
ob1

prob...

probn

add

remno
op

ad
d

rem

no op

add
remove
no op

Fig. 5 Detailed MDP model states.

split each state into smaller ones with more predictable

behavior as shown in Figure 5. In the figure, si can be

any possible stable state of the previous model high-

level view, where each si is in fact represented by n

states (shown as sibm, 1 ≤ m ≤ n, where b stands

for behavior). Transition probabilities are based on the

collected logs.

4.2.2 Rewards and Utility Functions

Our decision making proposal uses state rewards in the

model verification process, which are computed based

on a user-defined utility function. To comply with the

rest of the model, utility functions can be functions of

the number of active VMs, the response latency, the

deployment cost or any other parameters considered in

our model. These utility functions are used to derive

the state rewards in each model instantiation and their

optimization (i.e. maximization or minimization) will
guide the elasticity decision making. Numerous utility

functions can be used in elasticity scenarios. In the next

section, we will present utility functions that penalize

both under- and over-provisioning taking into consid-

eration both performance and cost issues.

4.3 Model instantiation details

At each decision step, a MDP model (illustrated in Fig-

ures 4 and 5) is constructed automatically based on

a template. Thus the instantiated model reflects the

current system and environment conditions. Here, we

briefly outline a series of practical considerations.

We construct the states in Figure 5 in a principled

manner. More specifically, for each time step, we predict

the expected external load. For that external load (al-

lowing for some variations), we extract the past latency

log measurements, for a specific of number of VMs and

we perform a guided clustering procedure. One group
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refers to the latencies that exceed the threshold in the

problem definition, whereas the other ones are clus-

tered using the k-means algorithm. Each latency group

is then mapped to a distinct state. In this work, n is

set to 3. More details are provided in [37].

On the lack of past latency measurements for a spe-

cific state, we generate artificial measurements using

interpolation or extrapolation techniques. The gener-

ated measurements might not be close to the actual

state measurements, leading to inferior decisions, how-

ever once our system gets logs from the missing states,

in the next decision step the optimal decision will be

selected.

As explained above, the model states are instan-

tiated dynamically in each decision step according to

the existing log measurements for the current and the

future external load λ. To predict the latter, any pre-

diction mechanism can be coupled with our approach.

Finally, to tackle sudden and temporal peaks of the

system load, which trigger suboptimal elasticity actions,

we (optionally) utilize smoothing techniques to the in-

coming load. The two main approaches that proved to

be effective in our case studies are: (i) to use the aver-

age value of the incoming load or (ii) to use an expo-

nential weighted moving average (EWMA), assigning

higher significance to the more recent measurements,

given a sliding window.

4.4 Generalization to heterogeneous clusters

In principle, our modeling approach can be naturally

extended to capture heterogeneous clusters. The main

difference is that for each high level state si, we con-

struct as many states as the possible combinations of

VM instances of different types that amount to i. For

a cluster of size i comprising two types of VMs, this

mapping yields i different states. Obviously, this tech-

nique is applicable to settings with a small number of

different VM types due to scalability issues.

4.5 Solving MDP models

There are several ways to solve MDPs. We distinguish

between indirect (based on reinforcement learning) and

direct methods (based on dynamic programming). In-

direct methods are exemplified by the approach in [45],

which relies on online training and convergence of action-

value functions, which, in turn allows to attain optimal

adversaries through greedy actions and a Q-learning-

based reinforcement learning approach. The direct meth-

ods analyze MDPs per se. In our approach, we adopt

direct solutions and we use the PRISM tool to this end,

because we do not only solve the model online but we

also perform online property verification.

The verification of the MDP models is based on

Probabilistic Computation Tree Logic (PCTL) prop-

erties. PCTL allows for probabilistic quantification of

described properties. It is utilized to query the model

checker for the validity, the value or the existence of a

specific condition, considering probabilities, rewards or

combination of them, in the model. PCTL is an expres-

sive logic, that allows the formation of complex prop-

erties to express more complex queries [30].

The elastic decision is based on the optimization of

the expected reward after a specified number of steps

(max steps). This property is expressed in PCTL as

follows:

R{cum reward}[max/min] =? [ F (max steps) ] (1)

The model checking result, which is the results of the

PCTL property verification, is the expected optimized

(maximum or minimum) cumulative reward and the set

of strategies which yield this reward, i.e. functions δ :

S → Act that resolve non-determinism in the MDP by

choosing which action to take in each case.

Typically, more than one strategies belong to the

result set. To derive the elastic action to be enforced,

we may utilize an additional PCTL query that per-

forms quantitative analysis. A typical choice is to se-

lect the first action of the strategy with the least max-

imum expected probability for latency violation. The

used PCTL property for this purpose has the form:

Pmax =? [ F (max steps) & (lat > latthres)] (2)

We verify this PCTL property for every candidate ini-

tial elastic action. This approach forms the basis for our

solutions, which are elaborated in the next section.

5 Policies for Elasticity Decisions

In this section, we present the proposed elasticity deci-

sion making policies, which are summarized in Figure 6.

The purpose of the policies is to specify how to choose

an adversary among multiple candidates. After an ad-

versary has been chosen, then, only its first action is

enforced. The adversaries are reconsidered in each de-

cision step.

In the figure, each rounded rectangle (in blue) cor-

responds to a different policy. The normal rectangles

(in red) correspond to the evaluation of the proper-

ties in the Eq. (1) and Eq. (2). The circles (in red)

correspond to the re-evaluation of the previous proper-

ties after having relaxed the strict optimality criteria,

thus allowing for results with non-optimal rewards and
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Fig. 6 Proposed Decision Policies

probabilities, respectively. The deviation from the op-

timal value is bounded. The rationale of allowing for

sub-optimal policies is to consider alternative strate-

gies that may strike additional trade-offs between cost

and latency threshold violations.

In this work, we propose five new decision policies in

addition to the best-performing one from [37], namenly

ORadv
2. These policies are discussed in turn below and

assume that the utility functions employed during re-

ward computation are to be minimized (as explained

later):

∗ Optimal Reward Advanced (ORadv): The optimal

elastic action is selected based on the lowest cumula-

tive reward, with the least maximum probability of

latency violations. If there are more than one candi-

date actions, the action that removes the most VMs

is selected. On the absence of a remove action, the

one that applies the least change in the number of

VMs is preferred.

1. Bounded Reward Simple (BRsimple): The goal of

this policy is to reduce the deployment cost. To this

end, the remove or no operation action belonging

to the beginning of the strategy with the minimum

sub-optimal reward (i.e. reward up to x% higher

than the optimal reward) is selected. If there are

no such actions, then the optimal elastic action in

terms of Eq. (1) is applied. This policy is activated

only if the optimal elastic action (i.e., the first action

of the optimal strategy) is an addition one.

2. Bounded Reward Economy (BRecon): Similarly to

the previous one, this policy is activated only if

the optimal action is an addition one and chooses

the remove action with a sub-optimal reward (i.e.

not necessarily the minimum sub-optimal one) that

2 This policy was originally proposed in our previous work
[37] named as ADVANCED.

achieves the greatest reduction in the number of

VMs. If there is no such action, no operation is se-

lected (if available).

3. Bounded Reward - Bounded Probability Economy

(BR − BPecon): This policy is also activated if the

optimal action is an addition and adds a quanti-

tative verification step to the previous policy. It

chooses the action with a sub-optimal reward that

is going to remove the greatest number of VMs pro-

vided that its maximum probability of latency vi-

olation (see Eq. (2)) falls below a given threshold.

If there is no remove action returned, then the no

operation action is selected. If no operation action

is candidate, the action that adds the least number

of VMs is selected.

4. Bounded Reward - Bounded Probability Quality (BR−
BPqual): This policy has exactly the opposite logic

compared to the previous one, as it firstly chooses

the action that adds the greatest number of VMs,

then it chooses the no operation action and, as a

last option, it chooses the action, which is going to

remove the least number of VMs. Its rationale is to

proactively add VMs, which are likely to be needed

anyway in the future thus avoiding latency viola-

tions.

5. Bounded Reward - Bounded Probability Stability (BR−
BPstab): This policy tries to balance the previous

two policies and make as small changes as possible.

It prefers the least change in the number of VMs

with a slight preference in the additions. It firstly

chooses the no operation action, if available in the

candidate set (i.e., the strategies with reward up to

x% higher than the optimal. Then it chooses the

action that is going to add the smallest number of

VMs and finally, as its last option, it chooses the

action, which is going to remove the lowest number

of VMs.

5.1 VM charging model awareness

Typical charging models of cloud VMs are per hour; an

example is Amazon EC2 pricing scheme for on-demand

VMs.3 As such, it makes no sense to remove a VM early

after it has been used for another hour, since it is paid

for the complete hour. Our proposed elasticity decision

policies are enhanced with VM running time awareness

to better handle the VM removal process. According to

this enhancement, we only remove VMs that are close to

the completion of a full hour of execution, as we use an

hourly based charging policy for the provisioning of the

VMs. More specifically, a user-defined parameter within

3 https://aws.amazon.com/ec2/pricing/
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each policy defines the running time of a VM before it

becomes eligible for removal. Our default choice is 10

minutes before the completion of a full hour. If there are

more VMs eligible for removal (i.e. having running time

close to an hour) than the decided number of VMs de-

cided to be removed, the VMs with running time closer

to a full hour are selected. Other time units apart from

hours can be supported in a straightforward manner.

5.2 Utility Function Types

The presented decision policies are based on the mini-

mization of a user-defined utility function, which reflect

the specified goal. In our case the goal is to minimize

the deployment cost, while keeping the response latency

of the system below a threshold. Given that latency vi-

olations are due to under-provisioning, our utility func-

tions penalize the fact of activating fewer VMs than

those needed. Although the decision policies above are

orthogonal to the exact utility functions used to com-

pute the rewards, their exact type heavily impacts on

the behavior and efficiency of the policies; this is also

verified by our experiments in the next section. In this

section, we present a specific set of utility functions,

however our models are extensible and can associate

additional variables (e.g., throughput) and utility func-

tions.

More specifically, we have investigated three fami-

lies of utility functions. The first one is termed as NWI,

which stands for Not-Weighted Implicit cost considera-

tion, and assigns a reward to a state sibm according to

the formula below:

NWI(sibm) =

{
1− 1/i if lat(sibm) ≤ latthres
2 if lat(sibm) > latthres

(3)

In NWI, the deployment cost is indirectly consid-

ered through the number of utilized VMs i. lat(sibm)

represents the expected latency for the state sibm.

NWI is applicable to cases of homogeneous resources

only. The following two utility functions address this

limitation, as they directly take into consideration the

cost of every distinct VM type rather than just the

number of occupied VMs.

The NWE utility function, which stands for Not-

Weighted Explicit cost consideration, has a similar form

with the NWI with the difference that the number of

VMs is replaced by the total cost of the deployment.

NWE(sibm) =

{
2− 2/(1 + ˜cost(i)) if lat(sibm) ≤ latthres
20 if lat(sibm) > latthres

(4)

˜cost(i) is the normalized cost of a cluster with i

VMs. More specifically, assuming that we know the

minimum and maximum cost of VM instance types that

can be employed, we normalize the deployment cost

( ˜cost) to the range [0, 1]. To fine-tune the utility func-

tion, we have examined a series of different punishment

values (presented in Figure 13). Setting the punishment

value too high or too low has a negative impact on the

deployment cost or the response latency of the system,

respectively. A punishment value of 20 as employed by

Eq. (4) seems to achieve a more acceptable trade-off.

The third utility function is WEab, which stands for

Weighted Explicit cost consideration. Here, a weighting

scheme is used to provide more configurable trade-offs:

WEab(sibm) =

{
a · ˜cost(i) + b · ˜lat(sibm) if lat(sibm) ≤ latthres
2 if lat(sibm) > latthres.

(5)

a and b are user defined weights with a + b = 1

and ˜lat(sibm) is the normalized response latency. As

there is no upper bound for the latency, we use z-score

normalization; then we transform the [−1, 1] range into

[0, 1], while values less than -1 (resp. greater than 1)

are mapped to 0 (resp. 1).

6 Evaluation of Decision Policies

In this section we compare the efficiency of the decision

policies enabled by our approach, in combination with

the proposed utility functions. As a baseline, we con-

sider the behavior of ORadv, which is shown to outper-

form other policies proposed by third parties, including

the rule-based one from Amazon’s EC2 [37].

6.1 Experimental Setup

We collected real logs from an Apache Cassandra NoSQL

cluster, deployed in okeanos IaaS infrastructure [29].

Then, we ran emulated experiments based on those logs,

to allow for a completely fair comparison between the

various techniques. In order to collect real data from

the Cassandra cluster, we conducted log measurement

experiments using the YCSB benchmark. For our Cas-

sandra NoSQL cluster, we have used 4 client VMs as

load generators with 2 VCPUs and 4GB of RAM and

5GB storage each, and from 8 to 18 Cassandra server

VMs with 2 VCPUs, 2GB of RAM and 20GB storage

each. The Cassandra version was v2.0.9 with 256 vir-

tual nodes per host and a replication factor set to 1.

A (heavily modified) version of YCSB-0.1.4 ran on ev-

ery client VM to produce the load; the modifications

were made to support database metrics reporting on

Ganglia.
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Fig. 8 Latency Distribution for minimum (top) and maxi-
mum (bottm) cluster size for Cassandra dataset

The collected measurements are used firstly, to pop-

ulate the initial logs of each policy, and secondly, to

emulate a real situation. Through emulation, we man-

aged to fairly test each policy on an equal basis, which

could not be done if each policy ran separately in a real

cluster. In our emulation, a time unit corresponds to

the measurement collection period, which was set to 30

secs. We allow an elasticity action to take place every

10 time units, to emulate a system that may modify the

VMs every 5 mins (or 10 mins is cases of add action, to

allow the system to stabilize). As the emulated load is

generated based on the logs, which also act as training

set, we consider that the system is well trained.

Figure 7 depicts the load applied during elastic-

ity experiments. It is a 5 period sinusoidal workload

with 2 plateau periods. The sinusoidal load varies from

4000req/sec to 16000req/sec and the 2 plateau periods

correspond to stable load at 13000req/sec for 1000 time

units each. This load is further randomly perturbed by a

factor of up to ±500req/sec. To tackle load fluctuations,

in all the presented experiments, EWMA is utilized.

Further, an emulated prediction mechanism is used to

predict the incoming load future values, where the un-

certainty is increased as we move further into the fu-

ture (i.e. uncertainty = future step ∗ (±100reqs/sec),

where future step ∈ [0,max steps]). Finally, in every

scale-out action, up to 3 VMs can be added, while dur-

ing scale-in, up to 2 VMs are allowed to be removed in

a single step.

The latency threshold in the utility functions is set

to 50ms. Figure 8 presents the latency distribution in

two characteristic states of the collected dataset, the

minimum number of VMs (top) and the maximum num-

ber of VMs (bottom), where the solid line shows the la-

tency threshold. For the minimum number of VMs (8),

the system can handle load up to about 8000 req/sec.

For the maximum number of active VMs (18), the sys-

tem can handle the full amount of the incoming load.

For all the sub-optimal policies the acceptance per-

centage of the sub-optimal reward (BR) is set to +0.5%

of the optimal reward. The bound for the probability

(BP) for the corresponding policies is set to 5%. For

the WEab utility function, we present three combina-

tions of weights: (i) a=40%, b=60% (WE4060 ), (ii)

a=50%, b=50% (WE5050 ), and (iii) a=60%, b=40%

(WE6040 ).

Finally, for the hourly cost of the VMs, we consider

that the 8 default VMs are provided through a private

cloud infrastructure, hence the cost of these VMs is set

to 0. For the rest 10 VMs, we consider that VMs with

equivalent features, hence the same performance, are

selected from a public cloud provider and more specifi-

cally, we have selected the c3.4xlarge instance of Ama-

zon EC2, with hourly cost set to 0.956 euros. The actual

running time of each experiment in real world amounts

is 131 hours, hence the maximum cost of an experi-

ment (i.e. using the maximum number of VMs (i.e. 18)

throughout the experiment) is 1252.36 euros (i.e. 131

hours × 0.956 euros/hour × 10 charged VMs). The

minimum cost is 0, as only the private cluster’s VMs

can be used. The maximum percentage of latency vi-
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Fig. 9 Aggregated Latency Violations and Deployment Cost for all the utility functions.

olations (i.e. using only the private cluster’s VMs) for

the given incoming load, is 57.9 %.

6.2 Main Experimental Results

Figure 9, presents the experimental results in the form

of the latency violations and monetary costs trade-offs.

Figure 9(a) depicts the conceptual regions covered by

the applications of all the proposed decision policies for

each utility function. The remainder figures zoom in

each such region; for visibility reasons, the axis scaling

in each figure is different, thus they need to be examined

in correlation to Figure 9(a).

The key remarks are summarized as follows:

1. The techniques manage to achieve elasticity actions

that avoid both under- and over-provisioning. When

no additional machines are employed, the percent-

age of violations is 57.9%. As can be seen from the

figures, the policies manage to drop this number

to well below 1%. This is achieved employing ad-

ditional VMs judiciously. If, at all steps, the full

capacity of the cluster is exploited (i.e., 18 VMs),

the monetary cost would be 1252.36 euros, whereas

our solutions correspond to cost as low as 530 euros

(i.e. 58% reduction from the maximum).

2. The behavior of the techniques is utility function-

dependent. This is evident by the different concep-

tual regions (in terms of both boundaries and size)

covered by each utility function in Figure 9(a) and

the different patterns exhibited by the policies in

Figures 9(b)-(f).

3. In general, no decision policy and no utility function

dominate. However, ORadv initially proposed in [37]

is dominated by the new policies proposed in this

work. Also, WE with factor a > 0.5 is dominated by
NWI/NWE regardless of the exact decision policy.

4. Following on the previous point, our solutions can

yield a wide range of trade-offs at two levels of gran-

ularity. At a higher level of granularity, the range

of trade-offs can be configured through the selec-

tion of the appropriate utility function. If latency

violations of frequency at the orders of 0.01% are

tolerated, WE4060 should be chosen. If the tolera-

ble frequency is approximately 0.1%, then WE4060

should be chosen. If the tolerable frequency is even

higher, NWI/NWE become the preferable utility

functions. At a finer-level of granularity, the desired

trade-off between cost and latency violations can be

selected through the selection of the exact decision

policy.

5. The BR−BPqual policy achieves the least percent-

age of latency violations with the maximum deploy-

ment cost, as expected, in most of the cases. An

exception is depicted in Figure 9(c) for the NWE
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utility function, where BR − BPqual achieves the

least percentage of latency violations, however the

ORadv and BRsimple yielded slightly higher (i.e., up

to 10 euros) deployment cost.

6. BR−BPecon policy is the result of the application of

extra probabilistic verification steps and the specifi-

cation of a bound in the probability of latency viola-

tion on top of BRecon. Hence, BR−BPecon can be

deemed as a conservative version of the BRecon pol-

icy regarding the reduction of the number of VMs.

If we observe the behavior of these two policies, in

almost all the cases, the application of the extra

quantitative analysis results in a increase in the de-

ployment cost and a reduction in the latency viola-

tions, as expected. An exception is when the NWE

utility function is used (see Figure 9(c)), where be-

ing conservative does not pay off. This is attributed

to the fact that, if at a specific step a policy does

not add the required VMs, may be forced to proceed

to a series of additions later with potentially higher

cost and after having experienced latency violations.

7. Using the WE4060 mitigates the need for the addi-

tional probabilistic verification. This is attributed to

the fact that the specific utility function configura-

tion inherently leads to decisions that aim to avoid

latency violations to a larger extent compared to the

other WE utility function configuration. This also

explains the behavior of BRsimple in Figure 9(d).

6.3 Sensitivity Analysis

We have proceeded to additional experiments to an-

alyze the sensitivity of our approach to their param-

eters and fine-tune the elasticity decision maker. The

first experiment investigates the impact of not using

the threshold condition in the utility functions in Eq.
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(3)-(5). Figure 10 shows the results for Eq. (5), using

the ORadv policy; the blue circles correspond to the

original Eq. (5), while the red triangles to its modifica-

tions. The observation is that not using the threshold

leads to worse trade-offs and severe degradation of the

performance, as shown from the high number of latency

violations.

In the next experiment, we deactivate the charging

per hour and we assume a pricing scheme where charg-

ing is per time unit. This modification leads to higher

deployment costs with almost the same or worse per-

centages of response latency violations than when the

hourly charging is enforced. Figure 11 presents three

representative cases, using the utility function of Eq. (3),

where it is shown that the resulted trade-offs are infe-

rior. This is attributed to the fact that, in an hourly-

based charging model, VMs are kept for longer periods

without extra cost.

In all experiments thus far, we have set the sub-

optimal reward bound to +0.5% of the optimal reward.

Various other values have been also tested. Figure 12
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presents the results for the BRsimple policy and the util-

ity function of Eq. (3). In general, different trade-offs

can be achieved by simply tuning this bound. Com-

pared to the 0.75% case, our default choice achieves

23% less latency violations with just 2.6% increase in

the deployment cost.

Finally, Figure 13 investigates the impact of the

punishment value in Eq. (4), using the ORadv policy.

Setting the same punishment value as in Eq. (3) (i.e.

2), keeps the cost at low levels (443.17 euros), however

the latency violation percentage is severely increased

(2.91%). Setting the punishment value too high (i.e.

2000), has a negative impact on the cost (623.95 eu-

ros). 20 was selected as the most appropriate one as it

achieves a more balanced trade-off (0.2% latency viola-

tions, 549.06 euros deployment cost).

Further sensitivity analysis for ORadv, which in-
cludes the decision frequency, the prediction accuracy

and the latency threshold, is presented in our previous

work [37]; these results are transferred to the techniques

presented hereby as well.

7 Conclusions and Future Work

This work presents a principled approach to horizontal

scaling for elastic NoSQL databases deployed on cloud

infrastructures. Two contradicting objectives are pur-

sued, namely cost minimization and avoidance of la-

tency violations. The underlying model is a MDP, on

top of which probabilistic model checking is applied to

provide guarantees regarding latency violations. The

main novelty of this work is the direct consideration

of the monetary cost of the cloud deployment in the

decision making process, coupled with the proposal of

specific decision making policies, which outperform our

previously proposed policies in [37, 38] and shown to be

capable of offering configurable trade-offs between cost

and latency. Our proposal is generic and is applicable

to any elastic application exhibiting unpredictable per-

formance where no analytical models can be derived,

and there exist significant transient periods after each

elasticity action.

The main directions for future work are twofold.

First, to elaborate on the support of heterogeneous clus-

ters, which is briefly mentioned in Section 4.2. Second,

to support additional forms of elasticity and adapta-

tions, such as vertical scaling, migration and reconfigu-

ration. For both directions, the straightforward exten-

sion is to develop models with distinct states for each

combination of type of clusters, locations and configu-

rations. However, this would lead to an explosion of the

size of the model and model checking would become in-

efficient. Currently, our models are processed in a few

seconds on a modern machine, but much complicated

models would require many minutes, which is longer

than a reasonable decision step. Thus, the main chal-

lenge regarding the two directions above is to tackle the

scalability problems that are involved.

References

1. Ahmad Al-Shishtawy and Vladimir Vlassov. Elast-

man: elasticity manager for elastic key-value stores

in the cloud. In ACM Cloud and Autonomic Com-

puting Conference, CAC ’13, Miami, FL, USA -

August 05 - 09, 2013, page 7, 2013.

2. Ahmed Ali-Eldin, Johan Tordsson, and Erik Elm-

roth. An adaptive hybrid elasticity controller for

cloud infrastructures. In Network Operations and
Management Symposium (NOMS), 2012 IEEE,

pages 204–212. IEEE, 2012.

3. FJ Almeida Morais, F Vilar Brasileiro,

R Vigolvino Lopes, R Araujo Santos, Wade

Satterfield, and Leandro Rosa. Autoflex: Ser-

vice agnostic auto-scaling framework for iaas

deployment models. In Cluster, Cloud and Grid

Computing (CCGrid), 2013 13th IEEE/ACM

International Symposium on, pages 42–49, 2013.

4. Adnan Ashraf, Benjamin Byholm, and Ivan Porres.

Cramp: Cost-efficient resource allocation for mul-

tiple web applications with proactive scaling. In

Cloud Computing Technology and Science (Cloud-

Com), 2012 IEEE 4th International Conference on,

pages 581–586, 2012.

5. Lakshmi N. Bairavasundaram, Gokul Soundarara-

jan, Vipul Mathur, Kaladhar Voruganti, and Kiran

Srinivasan. Responding rapidly to service level vi-

olations using virtual appliances. SIGOPS Oper.

Syst. Rev., 46(3):32–40, 2012.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 Athanasios Naskos et al.

6. Sean Kenneth Barker, Yun Chi, Hakan Hacigümüs,
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