
1

Performance and effectiveness trade-off for checkpointing in fault

tolerant distributed systems

 Panagiotis Katsaros Lefteris Angelis Constantine Lazos

Department of Informatics

Aristotle University of Thessaloniki

54124 Thessaloniki, Greece

tel.: +30-2310-998532, fax: +30-2310-998419

{katsaros, lef, clazos}@csd.auth.gr

2

Abstract

Checkpointing has a crucial impact on systems’ performance and fault tolerance

effectiveness: excessive checkpointing results in performance degradation, while deficient

checkpointing incurs expensive recovery. In distributed systems with independent

checkpoint activities there is no easy way to determine checkpoint frequencies optimizing

response time and fault tolerance costs at the same time. The purpose of this paper is to

investigate the potentialities of a statistical decision-making procedure. We adopt a

simulation-based approach for obtaining performance metrics that are afterwards used for

determining a trade off between checkpoint interval reductions and efficiency in

performance. Statistical methodology including experimental design, regression analysis

and optimization provides us the framework for comparing configurations, which use

possibly different fault-tolerance mechanisms (replication-based or message logging

based). Systematic research also allows us to take into account additional design factors,

such as load balancing. The method is described in terms of a standardized object

replication model (OMG FT-CORBA), but it is also possible to be applied in other (e.g.

process based) computational models.

KEYWORDS: checkpointing and recovery, fault tolerance, distributed systems,

performance evaluation, statistical analysis

1. Introduction

Checkpointing and message logging are used for minimizing loss of computation in the

presence of non-recurrent faults. A checkpointing activity used in a software replication

mechanism or in other fault tolerance mechanisms, saves the process state from time to

time on stable storage. However, the main problem is that excessive checkpointing results

3

in performance degradation due to the computations involved, while deficient

checkpointing incurs expensive recovery.

We focus on distributed systems, which use possibly different fault-tolerance

mechanisms (replication-based or message logging based) for the constituent processes,

with at least one and possibly more than one independent checkpointing activities. To the

best of our knowledge, there are no analytic models for designing a checkpoint policy for

the simultaneous optimization of the response time and the incurred fault tolerance cost.

For this reason, aiming to study the complexity and the uncertainty in such systems, we

investigate here the possibility of using a stochastic methodology including simulation,

statistical analysis and modeling of the simulation results and finally optimization ([20]).

We introduce two separate performance metrics that reflect the system’s

performance and fault tolerance effectiveness. In order to identify the important factors that

affect the performance metrics and to build the appropriate models based on them, the first

phase of the proposed methodology involves the execution of simulation runs under various

combinations of the factor levels. The factors related to checkpoint intervals are arranged in

a systematic manner, using the appropriate experimental designs. As in practice there is no

prior knowledge of the relationship between the factors and the performance metrics, we

suggest the use of an appropriate class of experimental designs, namely the uniform

experimental designs. The factor combinations along with the measurements of the

considered performance metrics, which are collected from simulation runs, comprise the

experimental data.

In the second stage, statistical analysis is applied to the experimental data. The main

method used is regression analysis. Regression models are equations expressing a

dependent variable in terms of some independent variables. In our case, the dependent

4

variable is the performance metric and the independent variables are the factors that affect

it.

The last stage involves optimization of the regression models. This can be

accomplished either by analytic or numerical methods and aims to reveal the shortest

checkpoint intervals, below which no further gain is achieved in recovery time (Tightest

Effective Checkpoint Intervals), taking into account other design factors like for example

load balancing (load balancing is used as a mean to show the potentiality of the proposed

approach to take into account additional design concerns, other than fault tolerance).

The whole procedure leads to a trade-off analysis that results either: (i) in the

determination of checkpoint intervals fulfilling the response times goals at the lowest

possible cost, or (ii) in checkpoint intervals showing the need for a different fault tolerance

(and load balancing) scheme.

The method is described in terms of a standardized object replication context (OMG

FT-CORBA), but the prototype simulator can be easily modified for use in other (e.g.

process based) computational models. In distributed object systems ([28]), fault tolerance is

attained via schemes that are possibly composed of different replication policies (active or

passive replication with different checkpoint intervals) for the constituent objects.

For illustration purposes we used a synthetic workload scenario with a small

number of experimental factors (4 checkpoint intervals), to make feasible the exploration of

all possible combinations of two checkpointing mechanisms (load-dependent checkpointing

and periodic checkpointing) and four load balancing strategies, in three different load

levels. In total, we studied 24 system configurations based on a uniform design with 9

experimental cases for each of them (216 simulation experiments). The performed

simulation output analysis was based on the method of independent replications in order to

obtain 95% confidence intervals with width less than 3.5% of the estimated value.

5

From the results, we realized that fault tolerance performance is influenced by the

complex method call dependencies between the system’s replicated objects. Checkpointing

affects the dispatching of the computation requests and influences the performance of the

applied load balancing strategy.

These complicated nonlinear relationships can be successfully depicted by the

small-size uniform experimental designs and validated by the prototype simulator, in an

affordable CPU-time cost that depends on the number of experimental factors. The general

methodology can also be applied to systems where the number of factors is large. In that

case we can first employ a valid screening technique ([4]) in order to include in the analysis

only those factors that seem to be the most important. The derived regression models

constitute a mean for prediction, optimization, system administration and tuning based on

varied performance requirements and system load levels.

Section 2 refers to related analytic and simulation-based performance evaluation

techniques. Section 3 summarizes the computational model adopted in the developed

prototype simulator, the simulated fault models and load balancing strategies, as well as,

the assumed replication styles and fault detection mechanism. Section 4 provides a formal

definition of the introduced performance metrics and the notion of the tightest effective

checkpoint intervals (TECIs). Section 5 describes the proposed regression and optimization

approach for estimating the TECIs. Section 6 presents the considered synthetic workload

scenario and the obtained fault tolerance performance and effectiveness results. Section 7

introduces the proposed trade-off analysis that exploits the introduced performance metrics.

The paper concludes with a discussion, on the results of the current work and the

applicability of the proposed approach in large-scale systems.

2. Related work

6

In related bibliography, checkpointing is used in different fault tolerance protocols

(coordinated or independent checkpointing, message logging, replication-based protocols)

and also in process based or object based computational models.

Analytic performance models are mainly focused on single server checkpointing

activities. Some representative and significant contributions are in [12], [26] and [35]. A

more recent work that is reported in [11] also refers to checkpointing and recovering

application state on a single compute resource (like in [14] and [15]), whereas our work

focuses on problems of checkpointing and recovering jobs running simultaneously across

multiple connected resources. In most analytic models, the primary aim is to predict the

system availability ([13]) for a given checkpoint interval, while our work deals with the

problem of determining a set of checkpoint intervals taking into account response time and

performance optimization requirements.

In [5], the authors introduce an analytic model for the optimal checkpoint interval

that minimizes the application execution time and maximizes the average fault tolerance

effectiveness, in a mobile environment. The overall approach is focused on the Telecom

Wireless CORBA mobile architecture [29].

In [23] the authors propose a hybrid mathematical programming and analytic

evaluation algorithm for a different trade-off problem: to determine process replication or

threading levels, in order to avoid unnecessary queuing delays for clients and unnecessary

high consumption of memory.

A closely related simulation-based approach has been recently published in [30].

The performance metric integrated in the presented simulation tool is used for relative

performance comparison of different checkpointing and recovery protocols. A protocol’s

performance is assessed from

(a) the overhead due to checkpointing and recovery activities and

7

(b) the quality of recovery, measured by the amount of computation lost due to rollback

in case of a fault.

The performance metric introduced in our work does not directly account the

quality of recovery (as in [30]), but the effects of recovery in computations’ average

response time.

We emphasize that we do not aim to introduce an integrated simulation tool like in

[30] and [31]. We simply present here a prototype simulator that was used to obtain

experimental data for the proposed statistical approach.

This work’s most important contribution is the notion of TECIs and a novel

combination of well-known and advanced statistical techniques (regression analysis and

optimization based on uniform experimental designs) to determine them. The TECIs is the

single criterion that makes feasible the comparison between different fault tolerance

schemes in terms of their effectiveness. TECIs are formally defined based on the introduced

performance metrics, which allow trading the gains of a checkpoint interval reduction,

against the incurred overhead. Preliminary results of the present work were given in [19].

3. The prototype simulator

3.1 Computational model

The computational model adopted in our prototype simulator is the OMG Core Object

Model - as it is documented in [27] - enriched by the assumptions specified in the OMG

FT-CORBA standard ([28]). We outline the assumptions that we think are necessary for the

presentation of the used synthetic workload scenario and the applied decision-making

approach:

• An object can model any kind of entity or concept and is characterized by its

distinct object identity, which is immutable, persists for as long as the object

8

exists and is independent of the object’s properties or behavior. Each object

owns or does not own a state and is accessed via a set of methods.

• Each method has a signature consisting of its name, the set of parameters and

the set of results. A method describes an action that can be applied to

parameters. A method invocation, also called request, can list some parameters

on behalf of a requester (client) and can cause the method to return results.

The methods of an object constitute the only way to change its state.

• We only consider the use of synchronous method invocations: the object

requiring the execution of the invoked method (requester) stops executing and

waits for the invoked execution to terminate and the reply to return. Upon

reception of the reply, the sender resumes. A computation invoked in a server

application object (service object), will be called service request and is

possible to involve one or more synchronous and possibly nested requests to

other objects.

• We adopt the “at-most-once” invocation semantics of the OMG Core Object

Model, which means that each request is executed at most once. Duplicate

method invocations due to replication are detected and suppressed.

• In OMG FT-CORBA, fault-tolerance is based on the creation and

management of multiple object replicas as a single object group. The client

objects invoke methods on the server object group and one or more members

of the server group execute the methods and return their responses to the

clients, just like a conventional object.

• We do not place any assumptions about the network topology. For the

protocols making up the interprocess communication we adopt the OMG FT-

9

CORBA assumption that they provide reliable, totally ordered delivery of

requests to the replicas of each object.

• Strong replica consistency (OMG FT-CORBA): even in the presence of faults,

as members of an object group execute a sequence of methods invoked on the

object group, its behavior is logically equivalent to that of a single fault-free

object processing the same sequence of method invocations. For each object,

strong replica consistency retains an appropriate context that depends on the

object group’s replication style (active, warm passive or cold passive).

• We exclude the possibility of multithreaded Object Request Brokers ([33]), in

which case the order of the dispatched methods would have to be rendered

deterministic ([1], [2]). However, the proposed decision-making approach is

also open to take into account multithreading (if present).

• We assume deterministic behavior of the underlying operating system.

Ordering of dispatched method invocations at the application programming

level is not allowed. Finally, the application either does not make use of

system calls returning processor-specific information or such calls are handled

by an appropriate mechanism without introducing non-determinism.

• Load balancing has been used as a mean to investigate the potentiality of the

proposed approach to take into account additional design concerns, other than

fault tolerance. We do not distinguish between centralized or distributed load

balancing. Load information (if applicable) is provided by the underlying

middleware infrastructure, which also works out request assignment to the

available service objects in a transparent and fault tolerant manner (as in [22]

and [34]).

3.2 Simulated fault models

10

We model faults that do not recur after recovery and are eventually manifested as transient

object faults (OMG FT-CORBA). Application objects conform to the fail-stop model

([32]), which means that they fail by crashing, without emission of spurious messages.

Commission faults as for example Byzantine faults, where an object generates incorrect

results, are not addressed.

As in the OMG FT-CORBA specification, we exclude network-partitioning faults

that separate the hosts of the system into two or more sets.

In general, when a service object fails, the already queued requests are not lost. All

requests arriving while the object is down are queued. For the passively replicated objects

that own a state we have also implemented a number of different omission fault scenarios

(loss behavior) and a set of request-retry policies.

The prototype tool features an extensible object-oriented design that allows:

• to take into account different fault propagation scenarios

• the use of alternative object fault - repair distributions

• the application of load-dependent fault models, like those used in [16].

3.3 Simulated load balancing strategies

We have implemented a set of load balancing strategies with no need of state

synchronization, in order to preserve consistency across participating service object groups.

The decision of request assignment to a specific service object may be based on different

modes: per-request or per-session.

In the used workload scenario we considered only the case of per-request load

balancing in passively replicated and stateless service objects, where there is no need for

checkpointing. The four load balancing strategies that we tested are described below:

• PROB: random probabilistic with equal probabilities for the service objects,

11

• TB: threshold based, where request assignment to another service object is

activated when the number of queued requests exceeds the specified threshold

parameter (Figure 1a),

• RR: assignment on a round robin basis

• EQL: assignment to the service object with the smallest number of queued

requests (Figure 1b)

3.4 Replication styles

We are free to consider different replication styles ([3], [10], [17], [25], [28]) for the

constituent objects, with at least one checkpointing activity (passively replicated object).

In active replication, all of the object group replicas execute each invocation

independently, but in the same order. The individual replicas maintain exactly the same

state and in case of a fault in one member, the simulated application continues with the

results provided by the others, without having to wait for fault detection and recovery.

Cold or warm passive replication assumes that during fault-free operation, only one

member - the primary (Figure 2a) - of the object group executes the methods invoked on

the group. The state of the primary (for the objects that own state) and the sequence of the

invoked methods are recorded in a message log, according to the specified checkpoint

interval parameter.

Strong replica consistency implies that, at the end of each checkpoint (transitions

P:ST→P:N and B:ST→B:N in Figure 2), all members of the object group have the same

state or have access to the same state. Upon detection of an occurred fault (state P:F in

Figure 2a), a backup replica is promoted to be the new primary (transition B:N→P:R). The

state of the new primary is restored to the state of the old one by reloading the last saved

checkpoint and subsequently reapplying the request messages that have been recorded in

the log. This implies that a client can re-invoke a request on a server and receive a reply to

12

that request, without the risk that the method will be executed more than once (“at-most-

once” invocation semantics).

In cold passive replication, the backup replicas are not activated. When the current

primary fails, a new one is selected and then activated. In warm passive replication, the

backups have been already activated and their states are continuously synchronized with the

primary replica’s state, according to the specified frequency of state transfers.

A checkpoint/state transfer may be postponed when the primary is in-between an

invocation service or it happens to be blocked, waiting for a response. In the course of a

checkpoint or a state transfer activity, new invocations may be received, but they cannot be

processed, before the end of it.

The prototype simulator allows modeling of the objects interaction effects

regarding:

• the simultaneous resource possession, caused by the synchronous and often

nested object invocations,

• the hardware resource contention, as a result of the replicas distribution,

• the extra load and the queued requests’ blocking costs caused by the recurrent

checkpointing/state transfer activities,

• the extra load caused by a replica restart and replay of the logged requests,

• the overhead assumed for re-invocation of requests that are possibly lost

because of a recipient omission fault and

• the overhead assumed for periodically checking, if an object is faulty or not

(section 3.5).

3.5 Fault detection

The modeled fault detection setting assumes the existence of a fault tolerant fault

monitoring service. In general, the fault detector that monitors an application object is

13

usually located, for efficiency, on the same host as that of the object. A global fault detector

that is replicated for fault tolerance monitors the local fault detectors.

It has been found ([11]) that fault monitoring causes an approximate 5% increment,

in the processor (of a Pentium-II based 200+ MHz machine) utilization, for about 500

milliseconds. In our simulator, this overhead is taken into account. Each object is

periodically checked, according to a specified time interval that represents the sum of the

fault monitoring interval plus the time allowed for subsequent response from the object, to

determine whether it is faulty.

4. Performance, effectiveness and tightest effective checkpoint intervals

System’s performance depends on the overhead incurred due to checkpointing and recovery

activities. Fault tolerance effectiveness refers to the quality of recovery, i.e. the amount of

computation lost due to rollback in case of a fault. We designed two separate metrics that

reflect the system’s performance and fault tolerance effectiveness and have been proved

suitable for the applied statistical analysis. In this section we give precise definitions of

them in terms of the described computational model. However, the employed formal

description (Table 1 provides a glossary of the used notation) and the metrics definitions

can be easily adapted to other computational models.

 In our setup, a distributed system is composed of multiple objects o1, o2, . . ., on.

Each object oi, 1≤i ≤ n is replicated according to

• an active replication policy with k object replicas, kar
i

ar
i

ar
i ooo ,...,, 21 or alternatively,

• the passive replication policy of Figure 2, with one primary replica prim
io and one

backup back
io .

14

An object’s methods io
lop , 1 ≤ l ≤ #(methods of oi) may be synchronously invoked

by remote method invocations. A method invocation is represented by an ordered pair of a

request and a reply message (rq(io
lop), rp(io

lop)), for simplicity denoted (io
lrq , io

lrp).

On receipt of a request io
lrq the request is queued in the queues of all replicas r

io ,

denoted by Q(r
io), where r ∈ {arj | 1 ≤ j ≤ #(r

io)} ∪ {prim}. Each r
io is placed on a

separate object server and queued requests are served in FIFO ordering under a single

thread of control. However, the proposed approach can also be extended for application in

other multithreading cases. If r= prim, executed requests io
lrq are appended to a local log

queue logi.

Let io
plop , (p ∈ N) denote a method invocation instance of io

lop . Each io
plop , may

further invoke another method instance to
psop , , with 1 ≤ s ≤ #(methods of ot), 1 ≤ t ≤ n, t ≠ i

and this is the case of a nested invocation, where io
plop , is blocked up to the reception of

to
psrp , . Access to a simulated object’s state is performed by primitive read/write messages

that induce computational resource consumption, but they are not included in the methods’

message sequence specifications.

A message sequence specification for io
lop , 1 ≤ l ≤ #(methods of oi) is given as a

total order relation < over the set

MsgSeq(io
lop) = { to

sop | 1 ≤ s ≤#(methods of ot), 1 ≤ t ≤ n and t ≠ i}

of nested invocations generated by io
lop . This set is empty when io

lop causes exclusively

read/write operations on the state of the simulated oi and no nested invocations. A method

1
1
to

sop is referred to as preceding another method 2
2
to

sop (1
1
to

sop < 2
2
to

sop) if and only if 2
2
to

srq

may be sent only after 1
1
to

srp is already received.

A global state S of the system consists of all local log queues logi and local queues

Q(r
io) with r ∈ {arm | 1 ≤ m ≤ #(r

io)} ∪ {prim, back} and 1 ≤ i ≤ n

plus the values of ∑
=

n

i

r
io

1

)(#3 additional boolean variables that are defined as follows:

15

• crash
i

r
: these variables are initially false and become true at the time that

r
io becomes faulty.

• failed
i

r
: these variables are initially false and become true when the system detects

that crash
i

r
= true.

• recovered
i

r
: these variables are initially true to indicate that prim

io reflects the object

state of having executed all io
qsrq , ∈ logi, with 1≤ s ≤ #(methods of oi). In any other

case recovered
i

r
 is false.

An initial global state S0 is the global state in which all Q(r
io) and logi do not have

queued requests (empty) and the additional boolean variables are set to their initial values.

An event is an action that changes the global state of the system from S to S΄. We will use

the notation e(S) = S΄ to denote that e occurs in global state S and results in global state S΄.

We specify chk_init, send, respond, crash, failed, restart and chk_end event types

by the following notation:

• chk_init(1r
io , 2r

io) denotes the event whereby a checkpoint/state transfer request

2,1 rr
ic for 1r

io and 2r
io is placed second in the order of queues Q(1r

io) and Q(2r
io)

(or at the head of them in case of empty queue(s)).

• send(1r
io , jo , jo

plrq ,) denotes the event whereby 1r
io sends jo

plrq , to all queues

Q(2r
jo), r2 ∈ {arm | 1 ≤ m ≤ #(r

jo)} ∪ {prim},

 p∈N and jo
lop is a member of the message sequence of the request at the head of

Q(1r
io). A send event changes the local queue(s) Q(2r

jo) if jo
plrq , ∉ Q(2r

jo) and

crash
j

r2
 is false, by appending the request message jo

plrq , . If jo
plrq , ∉ Q(2r

jo) and

crash
j

r2
 is true then Q(2r

jo) changes or does not change depending on the applied

omission fault scenario (section 3.2). Finally, the event timeout(1r
io , jo

plrq ,) is

scheduled to occur, if it is required by the applied request-retry policy.

16

• timeout(1r
io , jo

plrq ,) denotes the event whereby a request-retry timeout for jo
plrq ,

occurs. The event send(1r
io , jo , jo

plrq ,) takes place and a new timeout(1r
io , jo

plrq ,) is

then scheduled.

• resp(1r
io , 2r

jo , jo
plrp ,) denotes the event whereby 2r

jo responds with jo
plrp , to 1r

io for

some r2 ∈ {arm | 1 ≤ m ≤ #(r
jo)} ∪ {prim}. Scheduled timeout(r

io , jo
plrq ,) events (if

any) are canceled for all r ∈ {arm | 1 ≤ m ≤ #(r
io)} ∪ {prim} and not only for r1.

The local queue Q(2r
jo) changes by removing jo

plrq , from the head and if r2 = prim

then jo
plrq , is appended to logj. If the next request is some jo

qsrq , , then 2r
jo proceeds

to executing jo
qsrq , , based on MsgSeq(jo

sop). If the next request is some 2,3 rr
jc , then

2r
jo is blocked until 2,3 rr

jc is also placed at the head of Q(3r
jo). A chk_end(2,3 rr

jc)

event is then scheduled to occur.

• crash(r
io) denotes the event whereby crash

i

r
 becomes true. This models the

occurrence of a fault in r
io . Potential resp(r

io , 1r
jo , jo

plrp ,) and timeout(r
io , jo

plrq ,)

events are ignored. If r = prim then Q(r
io) is changed according to the applied

omission fault scenario.

• failed(r
io) denotes the event whereby failed

i

r
 becomes true. A recovery of r

io is

then set up: in all replication cases, a restart(r
io) event is scheduled.

In the passive replication of Figure 2, if r = prim and crash
i

back
 is false, then Q(r

io)

 is copied to Q(back
io), back

io becomes prim
io and r becomes back. This change results

 in

failed
i

prim
= crash

i

prim
= false and failed

i

back
= crash

i

back
= true

If #(io
qsrq , ∈ logi | 1 ≤ s ≤ #(methods of oi)) > 0 then recovered

i

prim
 becomes false and

 the variable keeps this value while prim
io has not yet replayed all io

qsrq , ∈logi. When

 recovered
i

prim
 changes to true, logi is emptied.

• restart(r
io) denotes the event whereby crash

i

r
 and failed

i

r
 become false.

17

• chk_end(2,1 rr
ic) denotes the event whereby 2,1 rr

ic is removed from 1r
io and 2r

io . If

r1, r2 are not back, they proceed to the execution of the next request jo
qsrq , based on

MsgSeq(jo
sop).

All forenamed events are atomic and each event affects only the relevant local

queues and the relevant boolean variables. Thus, if crash
i

r
 is false in the global state S,

when send(r
io , jo , jo

plrq ,) occurs, then crash
i

r
 is also false in the resulting global state of S΄.

Definition 4.1: A run of the system is an infinite sequence of global states

run = (S0, S1, S2, . . .)

where S0 is an initial global state and there exists a sequence of events (e0,

e1, e2, . . .) such that ∀i ≥ 0, ei (Si)= Si+1.

The history of run is the sequence of events Hrun= (e0, e1, e2, . . .) such that

∀i≥0, ei (Si)= Si+1.

For any run run, Hrun is uniquely determined and also, run can be constructed from

the history Hrun and the initial global state S0.

4.1 Fault tolerance performance and effectiveness

We do not directly account the amount of computation lost due to rollback in a recovering

object (quality of recovery), but instead, the effects of recovery in computations’ average

response time. This is achieved by explicitly distinguishing the service requests in two

classes:

• the fault-unaffected requests, which include the service requests that are not

affected by the occurred faults and

• the fault-affected requests, which include the service requests that are affected

by the occurred faults.

18

Fault-unaffected requests comprise the vast majority of the dispatched service

requests and their average response time is an adequate measure of the observed fault

tolerance cost (performance). The fault-affected service requests reflect the effectiveness of

the applied fault tolerance scheme regarding the quality of recovery. The proposed

decision-making approach trades the gains of a potential improvement in the second class

of service requests, against the overhead imposed to the first class of service requests.

Definition 4.2: A synchronous request jo
plrq , to a passively replicated object is affected by

a fault at prim
jo in run and the boolean predicate F_AFFECTED(jo

plrq , , jo)

becomes true if and only if

Hrun=(e0; x; eu= send(r
io , jo , jo

plrq ,); y; ev= resp(r
io , prim

jo , jo
plrp ,); w)

where x, y finite sequences of events with eu∉x, ev is the first resp event

and w an infinite sequence of events such that either:

i. Su= ¬crash
j

prim
 and #(crash(prim

jo)∈ y) > 0 or

ii. Su= (crash
j

prim
 ∨ ¬recovered

j

prim
) or

iii. Su= (∃ jo
qsrq , ∈ Q(prim

jo), 1 ≤ s ≤ #(methods of oj) such that

Sv=F_AFFECTED(jo
qsrq , , jo))

If Sv= F_AFFECTED(jo
plrq , , jo) and Sv= (∃ io

pdrq , at the head of Q(r
io),

such that jo
lop ∈ MsgSeq(io

dop), with i ≤ n, i ≠ j, r∈{arm | 1≤ m ≤ #(r
io)} ∪

{prim}, 1≤ d ≤ #(methods of oi)), then Sv+1= F_AFFECTED(io
pdrq , , jo).

The first condition reflects the case whereby jo
plrq , is sent to an operational prim

jo and

crash
j

prim
 changes to true before the occurrence of the expected resp event. The second

condition reflects the case whereby jo
plrq , is sent to a prim

jo , that is not yet operational as a

result of a crash(prim
jo) event. The third condition reflects the case whereby jo

plrq , is queued

19

behind a jo
qsrq , that is eventually affected by a crash(prim

jo) event. If jo
plrq , is a nested

invocation generated by io
pdrq , at r

io , then io
pdrq , is also affected by the crash(prim

jo) event.

Definition 4.3: A synchronous request jo
plrq , to an actively replicated object is affected by a

fault at some 1r
jo in run and the boolean predicate F_AFFECTED(jo

plrq , , jo)

becomes true if and only if

Hrun=(e0; x; eu= send(r
io , jo , jo

plrq ,); y; ev= resp(r
io , 2r

jo , jo
plrp ,); w)

where x, y finite sequences of events with eu∉x, ev is the first resp event

with r2∈{arm | 1 ≤ m ≤ #(r
jo)} and w is an infinite sequence of events such

that either:

i. #(chk_end(2,1 rr
jc)∈ y) > 0 and r1 ≠ r2 or

ii. #(crash(1r
jo)∈ y) > 0 with r2 = r1 or

iii. Su= (∃ jo
qsrq , in all Q(1r

jo), r1∈{arm | 1 ≤ m ≤ #(r
jo)}, 1 ≤ s ≤ #(methods

of oj), such that Sv= F_AFFECTED(jo
qsrq , , jo)).

If Sv= F_AFFECTED(jo
plrq , , jo) and Sv= (∃ io

pdrq , at the head of Q(r
io),

such that jo
lop ∈ MsgSeq(io

dop), with i ≤ n, i ≠ j, r∈{arm | 1≤ m ≤ #(r
io)} ∪

{prim}, 1≤ d ≤ #(methods of oi)), then Sv+1= F_AFFECTED(io
pdrq , , jo).

The first condition reflects the case whereby jo
plrq , has been blocked, in order to

realize a state transfer for a replica recovery. The second condition reflects the case

whereby 1r
jo is the first replica involved in a resp(r

io , 1r
jo , jo

plrp ,) event, but has previously

become faulty in y. The third condition reflects the case whereby jo
plrq , is queued behind

another request jo
qsrq , that is already affected by a fault at some 1r

jo .

20

Definition 4.4: A synchronous request jo
plrq , is included in the class of the fault-affected

requests in run if and only if

Hrun=(e0; x; eu= send(r
io , jo , jo

plrq ,); y; ev= resp(r
io , 2r

jo , jo
plrp ,); w)

where x, y finite sequences of events with eu∉x, ev is the first resp event

with r2∈{arm | 1 ≤ m ≤ #(r
jo)} ∪ {prim} and w is an infinite sequence of

events such that either:

i. Sv=F_AFFECTED(jo
plrq , , jo) or

ii. Sv= (∃ io
sop ∈ MsgSeq(jo

lop), 1 ≤ s ≤ #(methods of oi), 1 ≤ i ≤ n, i ≠ j

and F_AFFECTED(io
psrq , , to) for some 1 ≤ t ≤ n, t ≠ j)

iii. ∃ resp(1r
to , 2r

jo , jo
qsrp ,)∈ y for some 1r

to , 1 ≤ s ≤ #(methods of oj) such

that

Sv= F_AFFECTED(jo
qsrq , , uo), for some 1 ≤ u ≤ n

 Events resp(r
io , 3r

jo , jo
qlrp ,)∈w with r3≠r2 do not change the

classification of jo
qlrq , .

The first condition reflects the case whereby jo
plrq , is affected by a fault at some r

jo .

The second condition reflects the case whereby one of the nested invocations generated by

jo
plrq , is affected by a fault at to , for some 1 ≤ t ≤ n, t ≠ j. Finally, the third condition reflects

the case whereby jo
plrq , is queued behind a jo

qsrq , that is eventually affected by a fault at uo ,

for some 1 ≤ u ≤ n. All other jo
plrq , (p∈N) in run, are included in the class of the fault-

unaffected requests.

4.2 The tightest effective checkpoint intervals (TECIs)

21

Definition 4.5: The checkpoint interval Ii for a passively replicated object oi determines

the times of subsequent chk_init(prim
io , back

io) events, in all runs of the

system, according to the selected checkpointing mechanism:

i. In a load dependent checkpointing mechanism (LDSC), Ii is specified

as an integer that if

Hrun=(e0; x; eu=chk_init(prim
io , back

io); y; ev=chk_init(prim
io , back

io);w)

is the history of run such that ¬(∃ chk_init(prim
io , back

io)∈y) then

Sv= #(io
plrq , ∈ logi, 1 ≤ l ≤ #(methods of oi), p∈N) = Ii

ii. In a periodic checkpointing mechanism (PSC), Ii is specified as a

positive real that if

Hrun=(e0; x; eu=chk_init(prim
io , back

io); y; ev=chk_init(prim
io , back

io);w)

is the history of run such that ¬(∃ chk_init(prim
io , back

io)∈y) then

T(ev) = T(eu) + Ii,

with T(e) denoting the time of occurrence of e.

Definition 4.6: In a fault tolerance scheme that includes z passively replicated objects, 1 ≤ z

≤ n, a checkpoint interval reduction from Ii to Ii – rdi (for some oi, 1 ≤ i ≤ n)

is effective, if resulting in a reduction of the average response time for the

fault-affected service requests. If in a set of z checkpoint intervals there is

no Ii amenable to an effective interval reduction, this set specifies the

tightest effective checkpoint intervals (TECIs) for the considered fault

tolerance scheme.

The TECIs correspond to the system configuration with the minimum average

response time for the fault-affected service requests (fault tolerance effectiveness). Their

22

estimation is an applied optimization problem with a number of factors that coincides with

the number of independent checkpointing activities. In systems with a large number of

checkpointing activities, we can first employ a valid screening technique ([4]), in order to

include in the analysis only those factors that are found to be the most important.

The TECIs is the single criterion that makes feasible the comparison between

different fault tolerance schemes in terms of their effectiveness. It is also possible to take

into account other interdependent system design concerns like for example load balancing.

TECIs can be used:

• to find out the average response time of the fault-unaffected service requests

(fault tolerance performance), for the considered fault tolerance and load

balancing scheme combination in its optimum effectiveness configuration,

• to assess and possibly compare the potentiality of the studied scheme(s) for

being adapted in varied performance and effectiveness requirements and

varied system load levels,

• to support the decision-making approach of section 7, in order to determine

checkpoint intervals that guarantee a response time goal and at the same time

minimize the incurred fault tolerance cost.

We found out that the TECIs depend on the system load. Also, in the performed

experiments and comparisons we discovered prominent performance and effectiveness

differences in high system loads (close to the system thrashing level).

Different object replica distributions to the available nodes, as well as object fault

models with different fault - repair distributions and dependencies raise the need for new

TECIs estimation.

5. Statistical analysis and finding of TECIs

23

The search for the TECIs involves three stages:

• the experimental design,

• the experiment’s execution and the finding of a suitable model based on the

obtained results and

• the study of the model found, for discovering the checkpoint interval

parameters that minimize the average response time of the fault-affected

service requests.

5.1 The experimental design

In this stage, the primary goal is to explore the nature of the effect that checkpoint interval

parameters have on the fault-affected service response times. We employ an experimental

design to arrange the prefixed levels of the considered factors, so as to ensure that the

estimations obtained by the analysis of the experimental results - in a relatively small

number of runs - are as accurate as possible.

There is a vast literature concerning the right choice of an experimental design and

there are many types of designs available in tables (factorial, fractional, etc), so that the

analyst can easily choose a design "off the shelf" according to his/her needs ([6]). Most of

the experimental designs assume that there is some prior knowledge of the underlying

model and that the purpose of the experiment is to estimate the model parameters (usually

the regression coefficients) with the highest possible accuracy. In our problem however,

this is hardly true and the analyst needs to conduct several successive experiments in order

to get an idea of the underlying model.

Recently, a new class of experimental designs has been proposed for industrial and

computer experiments, where the underlying model is either unknown or too complicated.

These are the so-called uniform experimental designs [9]. They are space-filling designs

24

with experimental points scattered uniformly on the domain. They are used to explore

complicated nonlinear relationships between the response variable and the factors, with a

reasonable number of runs and have been proved robust to the underlying model

specifications. A large number of them are already available in tables ([36]). In our

problem, an appropriately selected uniform design allows identifying the unknown effects

of the experiment’s factors, on the average of the fault-affected service response times.

Suppose that there are z factors namely I1,…, Iz, for which we want to explore their

effect on the response variable Y. Suppose also that their relation can be described by the

regression model

Y = g(I1,…, Iz) + ε

where g is an unknown function and ε is the random error. In order to estimate the function

g we need to collect data for various factor values combinations to get the corresponding

output values of Y. We represent each factor by a number q of predefined values (called

levels), which is the same for all factors. Then, the total number of level combinations and

therefore the number of experiments is qz, which in general is a prohibitively large number.

Traditionally, when the modeled relation is known to be linear, fractional factorial

and orthogonal designs are used. When, as in our case, there is no prior information

regarding the function g, we prefer the use of a uniform design that is usually denoted by

Un(q
z), where n is the number of experiments to be decided by the analyst. Typically, a

Un(q
z) design is represented by a n × z array with elements from {1, . . ., q} denoting the

levels of the considered factors. The levels are arranged in an appropriate way in order to

satisfy certain uniformity criteria. For details regarding the construction and the

implementation of uniform experimental designs we refer to [9].

5.2 The building of a model

25

After the execution of the designed experiment, the obtained data are further analyzed in

order to build a model. The model will describe and explain the relation between the

average response time for the fault-affected service requests (dependent variable Y) and the

checkpoint intervals (independent variables or factors I1,…, Iz) that are supposed to affect

the dependent variable. As we have already mentioned in section 5.1, the regression model

we are trying to estimate is

Y = g(I1,…, Iz) + ε

 Usually we make some assumptions regarding function g(), i.e. we assume that the

relation is or at least can be transformed to a linear expression of the form

ε++= ∑
=

k

i
ii xbby

1
0

where the unknown parameters bi can be estimated from the data. This is known as a

parametric model. Note that he new variables y and xi can be transformations, products or

powers of the original dependent variable and the factors I1,…, Iz (of course, there are

regression models that cannot be transformed to a linear form). In case that function g() is

assumed to be completely unknown, the model is called nonparametric and this function

can be estimated from the data by various methods (see [18] for details). Although

nonparametric regression is suitable for a variety of cases, the form of the resulting

equation is not convenient for further analysis and for this reason we used parametric

regression, as the final equation can be more easily studied for optimization.

 In an ideal situation, the whole model-building procedure would be fully automated.

Unfortunately, due to the complexity of the relations and the interactions between the

factors, one has to try various variable transformations and tests, in order to conclude to a

single representative model. This model has to be both explanatory and predictive and for

this reason it is necessary to calculate measures and to perform diagnostic tests, in order to

assess the model’s validity. For example, the fitting of an equation to data is measured by

26

the coefficient of determination R2, but it is always useful to examine the distribution of the

residuals (difference between observed and the estimated from the model values) for

potential violation of the assumptions, outlying values etc.

 The statistical methodology for fitting equations to data is well-known as regression

analysis ([8]). We usually start with simple linear models and quite often an adequate

model comes up via transformations of the original variables. Common transformations are

the logarithmic, the power and the root transformations of the dependent or the independent

variables. In certain cases where interactions between the independent variables are

apparent, there may be a need for operations between them, such as multiplication or

division.

 Another usual problem in the procedure of building a model is the determination of

the most important independent variables for the model and the elimination of the variables

that are not important for the model. In order to exclude those variables that do not have

effect on the dependent variable and those which are highly correlated with others and

therefore their effect can be explained by variables already in the model, we can use a range

of algorithms available by statistical programs, applying stepwise regression. These are

sequential procedures that by adding or removing variables can eventually identify the most

significant factors and build a model that fits efficiently on the obtained experimental data.

Apart from the fitting accuracy, an important issue is the interpretation of the

model. The model has to be intuitively sound regarding the reasonableness of the equation

and its outcomes. It is therefore essential to verify that the relations described by the model

are realistic and also, to compare the results of the simulated system to that of the equation,

especially in domains of local minima or maxima, which are important for the optimization.

5.3 Model optimization: the TECIs

27

Having concluded to an adequate model that fits the data, the next step is to search for the

TECIs, i.e. the combination of the factor levels that minimizes the average for the fault-

affected response times.

In general, there are many optimization techniques for different problems and their

choice depends on the nature of the problem, i.e. the function properties and the constraints

set on the factors values (the domain of the function). In most cases we can use calculus-

based methods such as Lagrange multipliers or steepest descent algorithms, but for more

complicated problems with a large number of factors (checkpoint intervals), there are the

heuristic random search algorithms such as simulated annealing and evolutionary

algorithms.

As the optimization takes place on a model fitted on experimental data, there is

always the possibility of having unreasonable results with respect to the optimization of the

simulated system. A common recommended practice is to always verify the results of the

statistical analysis, by conducting further experiments, in the area around the found TECIs.

The combination of regression analysis and optimization provides us insight and

understanding of the simulated system.

6. A synthetic workload scenario and its TECIs

We utilize a synthetic workload scenario with a small number of experimental factors

(checkpoint intervals), to make feasible the exploration of all possible combinations of two

checkpointing mechanisms and four load balancing strategies, in three load levels. In total,

we performed 216 simulation runs to study 24 system configurations.

The system model (Figure 3) used includes four (4) interacting objects that own

state (obj1, obj2, obj3, obj4) and four (4) stateless service objects (instances of the

28

class SrvRequestAccepting). Invoked service requests belong to one of the two

considered classes (methods) with their own message sequence specifications.

We assume passive object replication for all objects, with one primary and one

backup per object group. There is no need for checkpointing in the stateless service objects.

The objects that own state are involved in regular checkpointing/state transfer activities as

specified by the state machines of Figure 2. State transfers result in backup state updates (in

case of a live backup replica) and in persistent checkpoints and take place in a frequency

specified by the considered checkpoint interval parameter. Thus, the performance and the

effectiveness of the applied fault tolerance scheme depend on a quadruple, where each

number specifies the used checkpoint interval parameter for the corresponding state owning

object.

Table 2 specifies the used system model parameters and the assumed object replicas

allocation. Request assignment to the four service objects (obj0, obj5, obj6, obj7) is

performed on the basis of the applied load balancing strategy (PROB, TB(5), RR and

EQL). The studied system load levels are specified by the service request arrival

distributions, for the two classes of service requests. We also assume different CPU service

times (different object methods) for the two classes of requests and an associated overhead,

when executing log-replayed re-invoked requests. CPU time consumption for the

checkpointing/state transfer activities depends on the object state size and on the state

transfer time per KB, as they are specified in the table: a state transfer between two object

replicas (repOBJ0 and repOBJ1, where OBJ corresponds to an object id) is performed in

the speed of the slowest participating object replica. CPU time consumption for replicas

placed in the same host is performed on a processor-sharing basis.

Table 3 specifies the considered parametric object fault model. The assumed fault

rarity parameter (r) can be changed in order to study the sensitivity of the TECIs in varied

29

fault rarity conditions. Object restart times are exponentially distributed and are activated

on the detection of an object fault at the end of a fault-monitoring interval. We did not

consider load dependent fault rates and fault propagation to the collocated object replicas.

The tested load balancing and fault tolerance scheme combinations are

distinguished with respect to the applied checkpointing mechanism:

• the first four schemes employ load-dependent checkpoint intervals (LDSC),

combined respectively with the PROB, the TB (with parameter 5), the RR and

the EQL load balancing strategy and

• the other four schemes employ periodic checkpoint intervals (PSC) and are

also combined with the forenamed load balancing strategies.

For the four checkpoint interval parameters (factors) and the levels

• 12, 56 and 100 for the LDSC-based schemes and

• 23, 60 and 97 for the PSC-based schemes,

the selected uniform experimental design required only nine (9) simulation runs, for each

case of load balancing and system load level.

The subsequent stepwise regressions yielded effectiveness prediction models with

sufficiently high coefficients of determination (R2 of over 90%). We report the fitted

regression model for the EQL load balancing case with LDSC-based checkpoint intervals

and service request interarrival times with rates 2.2:

2131
75.6917

*
5.234949 **016.0**044.0373.61

321
IIIIY

III
−+++−= ,

Y denotes the sum of the average fault-affected response times for both classes of invoked

service requests and I1, I2, I3 the checkpoint interval parameters found to have a statistically

significant impact. The calculated coefficient of determination (R2) is 0.997.

The described analysis detected the statistically significant factors and the

subsequent minimization of Y yielded the corresponding TECIs. For service request

30

interarrival times with rates 2.2 (high system load), table 4 summarizes the optimization

results and the average fault-affected response times in the found optimum effectiveness

configurations. For the non-significant checkpoint intervals (the significant ones are shown

in bold), we selected the factor level minimizing the average fault-unaffected response

time.

We observe differences,

• in the obtained optimum effectiveness configurations (obj3 checkpoint

interval parameter), with respect to the used fault tolerance and load balancing

scheme combination and

• in the resulted average fault-affected response times (fault tolerance

effectiveness).

The results for the two other system load cases revealed a dependence of the TECIs

on the system load level. On the other hand, we did not observe notable differences in the

average fault-affected response times (effectiveness), as in the high system load case

(Figure 4).

Fault tolerance schemes may exhibit different effectiveness behavior in higher

system load levels and are thus characterized by different potentialities for adaptation in

varied system loads. If one increases the frequencies of service request arrivals, throughput

will increase up to a point, then drop. The user observes this as a sudden increase in

response time. This phenomenon is similar to thrashing in operating systems.

Figure 4 revealed the load level (service request interarrival times with rates 2.2),

where the fault-affected response times exhibit a sudden increase. Thus, the TECIs are also

used to assess and possibly compare the potentiality of the studied scheme(s) for being

adapted in varied system loads.

31

Figure 5 summarizes comparative performance results with no fault tolerance and

with the fault tolerance provided by the found TECIs. In the second case, fault tolerance

performance is quantified by the average fault-unaffected response time. The O(1) RR load

balancing strategy performed almost as well as the EQL strategy that is O(# service objects)

and does not scale as RR, because of the accompanied load-info gathering costs.

7. Fault tolerance trade-off analysis

This section introduces a trade-off analysis in order to determine the checkpoint intervals

satisfying a response time goal with the minimum possible cost. The analysis trades the

gains (in the fault-affected response times) of checkpoint interval reductions, against the

overhead incurred to the vast majority of the dispatched computations, which are not

affected by the occurred faults. If the procedure ends without having satisfied the set

response time goal, the used fault tolerance and load-balancing scheme combination is not

appropriate.

To assess a checkpoint interval reduction we take into account three possibilities:

• plain gain, i.e. improved average response times for both the fault-affected and

the fault-unaffected computations,

• improved average response time for the fault-affected computations, at the

cost of a measurable worsening of the fault-unaffected ones or

• plain worsening of both average response times.

The trade-off analysis is applied only to the checkpoint intervals found to have

significant impact to the average response time for the fault-affected computations. This

makes the proposed procedure appropriate for fault tolerance schemes with a large number

of checkpointing activities, where the significant ones might be for example only four or

five. We assume that checkpoint intervals are initially set to values that are close to the

32

factor level minimizing the average fault-unaffected response time. The checkpoint

intervals that are not found to have significant impact to the average fault-affected response

time keep the values used in the initial fault tolerance setting.

The analysis is a step-by-step procedure, where the interval reduction performed in

the initial scheme is decided, based on the potential gains or improvements, for all interval

reduction possibilities, when considering two test cases per significant factor. We do not

test reduction values, which result in checkpoint intervals smaller than those included in the

TECIs.

Plain gains are quantified by the sum of the differences between the corresponding

means for the fault-affected and the fault-unaffected response times. Worsening cases are

not taken into account. In all other cases, quantification is performed on the basis of the

criterion ([21]):

olcomc

fmcflc

avgavg

avgavg
ratio offtrade

−

−

=−

where:

 avgflc = the average response time of the fault-affected computations for

 the initial scheme

 avgfmc = the average response time of the fault-affected computations, for

 the scheme with the reduced checkpoint interval

 avgomc = the average response time of the fault-unaffected computations,

 for the scheme with the reduced checkpoint interval

 avgolc = the average response time of the fault-unaffected compuations,

 for the initial scheme

If there are interval reductions that result in plain gains, we choose the one with the

maximum gain (sum of the differences between the corresponding means). In any other

case, we choose the interval reduction with the maximum trade-off ratio, if it is not less

33

than a specified threshold. If the maximum trade-off ratio is less than the specified

threshold, the corresponding interval reduction results in negligible effectiveness

improvement with unacceptably high overhead. In that case, the procedure ends with the

checkpoint intervals of the last step.

The interval reduction values that are tested in each step are adjusted as follows: we

use the same values for the checkpoint intervals that are not affected by the last interval

reduction or if the last step is a plain gain reduction. In any other case, we use the value of

the last performed reduction and its half value.

The procedure converges to the checkpoint intervals satisfying the response time

goal for the fault-affected computations, with the minimum possible cost. If not possible,

this becomes evident since we end with the TECIs or with trade-off ratios less than the

specified threshold. In that case, the used fault tolerance and load-balancing scheme

combination is not appropriate.

Table 5 summarizes the results of the described trade-off analysis for the LDSC-

based fault tolerance scheme of Figure 2, when combined with the RR load-balancing

strategy. The service request interarrival times are exponential with rates 2.4 for both

classes of them. The response time goal for the fault-affected service requests is an average

of less than 33 sec.

Only the checkpoint intervals I2 and I3 were found to have significant impact to the

considered performance metric (when the request interarrival times are exponential with

rates 2.2 all checkpoint intervals I1 to I4 matter). In the initial fault tolerance scheme all

checkpoint intervals are set to 90 requests, a value that is close to the factor level

minimizing the average fault-unaffected response time. The interval reductions (rdi) tested

for each significant checkpoint interval are 20 and 40 requests, two values that do not

outflank the found TECIs. We ignore trade-off ratios less than 2.5 (threshold parameter).

34

 In step 1, we observe no improvements when reducing I2. On the other hand, the

maximum trade-off ratio is given, when rd3 = 40 and the checkpoint intervals tested in next

step are given by the quadruple 90-90-50-90. The interval reductions tested in step 2 are the

same values for I2 and the value of the last performed reduction (40) and its half value for

I3. The maximum trade-off ratio is given, when reducing I2 with rd2 = 20. The obtained

quadruple 90-70-30-90 does not satisfy the fault-affected response time goal (33 sec). Thus,

the procedure ends with one more step, where the maximum trade-off ratio is given for rd2

= 10. The checkpoint intervals 90-60-30-90 represent a fault tolerance scheme with an

effectiveness improvement of about 30%, which satisfies the set response time goal and an

increase of only 4.1% in the average of the fault-unaffected service requests.

8. Conclusion

We presented a statistical decision-making approach for distributed systems with

independent checkpointing activities. The computational model used in the description is a

standardized object replication framework. Design issues other than fault tolerance, as for

example load balancing, may be taken into account.

 We defined two separate response time metrics, which independently quantify fault

tolerance performance and effectiveness. We employed a formal description framework

that can be also adapted to other computational models. Since there is no prior knowledge

of the relationship between the experiment factors and the metrics, we suggest the use of a

uniform experimental design to collect the experimental data. The derived regression

models can be used as a mean for prediction, optimization, system administration and

tuning based on varied performance requirements.

35

 We introduced the notion of the tightest effective checkpoint intervals (TECIs) and

we described how they are estimated. The TECIs is the single criterion that makes feasible

the comparison between different fault tolerance schemes in terms of their effectiveness.

 In our experimentation with the considered synthetic workload scenario, TECIs

allowed the comparison of diverse fault tolerance (with load-dependent or periodic

checkpoint intervals) and load balancing scheme combinations. The obtained results

revealed a dependence of the TECIs on the system load level. In high load levels we

observed notable differences in the effectiveness behavior of the considered fault tolerance

and load balancing scheme combinations. Thus, TECIs were also used as a mean to assess

the potentiality of the studied schemes for being adapted in varied system load levels.

Regarding the observed fault tolerance performance, we found that the RR load balancing

strategy performed almost as well as the EQL strategy that does not scale as RR, because of

the accompanied load-info gathering costs.

 Finally, we introduced a trade-off analysis that is based on the defined response

time metrics and the found TECIs. The proposed analysis trades the gains (in fault

tolerance effectiveness) of checkpoint interval reductions, against the incurred overhead. It

converges to the checkpoint intervals that satisfy a response time goal with the minimum

possible cost. For the considered fault tolerance and load-balancing scheme we succeed an

effectiveness improvement of about 30% accompanied with an increase of only 4.1% in the

average of the fault-unaffected computations. The analysis is also applicable in fault

tolerance schemes with a large number of checkpointing activities, since potential interval

reductions are tested only for the few statistically significant checkpointing activities.

 The presented performance and fault tolerance effectiveness evaluation can

potentially be the cornerstone of UML-based performance models ([24]) of dependable

component-based systems ([7]). The main purpose of the proposed statistical approach is to

36

provide a framework for comprehensive analysis of fault tolerance schemes, with

independent checkpoint activities. The analysis framework is generic and apart from a

simulation-based dataset is also possible to use a measurement-based dataset. As a future

research work, we consider the prospect to collect actual traces for different system load

scenarios and then feed them to the simulation and apply the proposed analysis, in order to

assess its validity and the resulted performance gains.

Acknowledgments

We acknowledge the anonymous referees for their helpful comments, which contributed to

improving the quality of the article.

References

[1] Basile C., Whisnant K., Kalbarczyk Z., Iyer R. Loose synchronization of multithreaded

replicas. Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems (SRDS

02), Suita, Japan, 2002; 250-255.

[2] Basile C., Kalbarczyk, Z., Iyer R. A preemptive deterministic scheduling algorithm for

multithreaded replicas. Proceedings of the IEEE/IFIP Int. Conference on Dependable

Systems and Networks (DSN 03), San Francisco, 2003; 149-158.

[3] Bessani A. N., Fraga, J. S., Lung, L. C., Alchieri, E. A. P., Active Replication in CORBA:

Standards, Protocols, and Implementation Framework. Proceedings of the International

Symposium on Distributed Objects and Applications (DOA 2004), Lecture Notes in

Computer Science 3291, 2004; 1395 - 1412

[4] Bettonvil B., Kleijnen J. P. C. 1997. Searching for important factors in simulation models

with many factors: Sequential bifurcation, European Journal of Operational Research, 96

(1): 180-194.

37

[5] Chen X., Lyu R. Performance and effectiveness analysis of checkpointing in mobile

environments. Proceedings of the 22nd IEEE Symposium on Reliable Distributed Systems

(SRDS 03), Florence, Italy, 2003; 131-140.

[6] Colbourn J. C., Dinitz J. H. The CRC handbook of combinatorial designs. CRC Press Inc.,

1996.

[7] Crnkovic I., Larsson, M., Preiss, O., Concerning predictability in dependable component-

based systems: classification of quality attributes, Lecture Notes in Computer Science 3549,

Springer, 2005; 257-278.

[8] Draper N., Smith H. Applied regression analysis. 2nd edition, Wiley, 1981.

[9] Fang, K. T., Lin D. K. J. 2003. Uniform experimental designs and their applications in

industry. Mathematics Department Technical Report No. 296. Hong Kong Baptist

University.

[10] Felber P., Guerraoui R., Schiper A. Replication of CORBA Objects. Distributed Systems

(Lecture Notes in Computer Science, vol. 1752). Springer: Berlin, 2000; 254-276.

[11] Garg S., Huang Y., Kintala C. M. R., Trivedi K. S., Yajnik S. Performance and reliability

evaluation of passive replication schemes in application level fault tolerance. Proceedings

of the 29th IEEE Int. Symposium on Fault-Tolerant Computing, Madison, Wisconsin, USA,

1999; 322-329.

[12] Gelenbe, E. 1979. On the optimum checkpoint interval. Journal of the Association for

Computing Machinery; 26 (2): 259-270

[13] Gelenbe, E., Finkel, D., Tripathi, S. K. On the availability of a distributed computer system

with failing components. Proceedings of the 1985 ACM SIGMETRICS conference on

Measurement and modeling of computer systems, Austin, Texas, USA, 1985; 6-13

[14] Global Grid Forum. Use-cases for grid checkpoint and recovery. GridCPR-WG, November

2004.

38

[15] Global Grid Forum. An architecture for grid checkpoint and recovery (GridCPR) services

and a GridCPR Application Programming Interface. GridCPR-WG, September 2005.

[16] Goswami K. K., Iyer R. K., Young L. 1997. DEPEND: A simulation-based environment for

system level dependability analysis. IEEE Transactions on Computers; 46 (1): 60-74.

[17] GroupPac project, http://grouppac.sourceforge.net/grouppac/en/index.html, 2005

[18] Hardle W. Applied nonparametric regression. Cambridge University Press, 1993.

[19] Katsaros P., Lazos C. Optimal object state transfer – recovery policies for fault tolerant

distributed systems. Proceedings of the IEEE/IFIP Int. Conference on Dependable Systems

and Networks (DSN 04), IEEE Computer Society Press: Los Alamitos, CA, 2004; 762-771.

[20] Katsaros P., Angelis L., Lazos C. Applied multiresponse metamodeling for queuing

network simulation experiments: problems and perspectives. Proceedings of the 4th

EUROSIM Congress on Modelling and Simulation, EUROSIM, Delfts, The Netherlands,

2001.

[21] Krishna C. M., Shin K. G., Yann-Hang Lee. 1984. Optimization criteria for checkpoint

placement. Communications of the ACM; 27 (10): 1008-1012.

[22] Lindermeier M. Load management for distributed object-oriented environments.

Proceedings of the International Symposium on Distributed Objects and Applications

(DOA’00), IEEE Computer Society, 2000.

[23] Litoiu M., Rolia J., Serazzi G. 2000. Designing process replication and activation: a

quantitative approach. IEEE Transactions on Software Engineering, 26 (12): 1168-1178.

[24] Marzolla, M, Simulation-based performance modeling of UML software architectures,

Dottorato di Ricerca in Informatica, II Ciclo Nuova Serie, Dipartimento di Informatica,

Università Ca' Foscari di Venezia, 2003

39

[25] Narasimhan P., Moser L. E., Melliar-Smith P. M. 2002. Strong replica consistency for

fault-tolerant CORBA applications. Journal of Computer Systems Science and Engineering,

17 (2): 103-114.

[26] Nicola, V. F., Spanje, J. M. 1990. Comparative analysis of different models of

checkpointing and recovery. IEEE Transactions on Software Engineering, 16 (8): 807-821.

[27] Object Management Group. Object Management Architecture Guide. revision 3.0, OMG

Technical Committee Document ab/97-05-05, June 1995.

[28] Object Management Group. Fault tolerant CORBA. OMG Technical Committee Document,

2001-09-29, September 2001.

[29] Object Management Group. Telecom wireless CORBA. OMG Technical Committee

Document dtc/2001-06-02, June 2001.

[30] Paul H. S., Gupta A., Badrinath R. 2003. Performance comparison of checkpoint and

recovery protocols. Concurrency and Computation: Practice and Experience, 15: 1363-

1386.

[31] Ramamurthy B., Upadhyaya S. J., Iyer R. K. An object-oriented test-bed for the evaluation

of check-pointing and recovery systems. Proceedings of the 27th IEEE Int. Symposium on

Fault-Tolerant Computing, Seattle, USA, 1997; 194-203.

[32] Schlichting R. D., Schneider F. B. 1983. Fail-Stop processors: An approach to designing

fault-tolerant computing systems. ACM Transactions on Computer Systems, 1 (3): 222-238.

[33] Schmidt D. C. 1998. Evaluating architectures for multithreaded object request brokers.

Communications of the ACM, 41 (10): 54-60.

[34] Schnekenburger T., 2000. Load balancing in CORBA: A survey of concepts, patterns and

techniques. The Journal of Supercomputing, 15: 141-161, Kluwer Academic.

[35] Tantawi, A. N., Ruschitzka, M., 1984. Performance analysis of checkpointing strategies.

ACM Transactions on Computer Systems, 2 (2): 123-144.

40

[36] Uniform Design web pages, http://www.math.hkbu.edu.hk/UniformDesign/, 2000

41

Biographies

Panagiotis Katsaros is a Lecturer of Computer Science in the Department
of Informatics, Aristotle University of Thessaloniki (A.U.Th.), Greece. He
holds a Diploma in Mathematics and a PhD in Computer Science from
A.U.Th. and a Master of Science in Software Engineering from University
of Aston in Birmingham, UK. He has published research articles in
international journals and conference proceedings in the areas of fault
tolerance, software performance and security modeling, simulation output
analysis, compilers design and software engineering.

Lefteris Angelis received his B.Sc. and Ph.D. degree in Mathematics from
Aristotle University of Thessaloniki (A.U.Th.). He works currently as an
Assistant Professor at the Department of Informatics of A.U.Th.. His
research interests involve statistical methods with applications in software
engineering and information systems, computational methods in
mathematics and statistics, planning of experiments and simulation
techniques.

Constantine Lazos is emeritus professor of Computer Science of the
Aristotle University of Thessaloniki, Greece. He holds a B.Sc. in
Mathematics from the University of Athens, a M.Sc. from the University of
Birmingham and a Ph.D from the University of Southampton, both in
Computer Science. His main research interests lie in the area of computer
system modeling and simulation, performance evaluation and simulation
methodology. He was a lecturer of the University of Birmingham for two
academic years and a visiting professor of the same University. He has
published papers and is reviewer in international journals and in
international conferences proceedings. He is the author of 10 books all in
computer science.

42

Illustrations

43

N ← NO_OF_SERVERS;
T ← THRESHOLD;
server ← choose with probability 1/N;
i ← server;
if (i.queue_length+1>T) {
 i←(i+1)%N;
 while (i.queue_length+1>T && i!=server)
 {

 i←(i+1)%NS;
 };
 server ← i;
}

N ← NO_OF_SERVERS;
server ← last used server;
k ← (server+1)%N;
i ← k;
ql ← 9999;
do {
if (i==k) {
 server ← i;
 ql ← server.queue_length;
}
else {
 if (server.primary.state==RECOVERING)
 && i.primary.state!=RECOVERING){
 server ← i;
 ql ← server.queue_length;}
 if (i.queue_length<ql
 && i.primary.state!=RECOVERING){
 server ← i;
 ql ← server.queue_length;}
}
i←(i+1)%N;
} while (i!=k);

(a) (b)

Figure 1. The TB (a) and EQL (b) load balancing strategies

Panagiotis Katsaros

44

STATE
TRANSFER
COMPLETE

P:N P:F

P:RP:ST

FAULT RESTART AS
BACKUP

RESTART AS
PRIMARY

MESSAGES IN
LOG WERE
REPLAYED

STATE
TRANSFER

BECOME THE
PRIMARY

FAULT

FA
ULT

(b)

REPLAY THE
MESSAGE LOG

 P:N Primary Normal
 P:F Primary Failed
 P:R Primary Recovering
 P:ST Primary in State Transfer

STATE
TRANSFER
COMPLETE

B:N B:F

B:RB:ST

FAULT

RESTART AS
BACKUP

RESTART
AS BACKUP

STATE
TRANSFER

FAULT

FA
ULT

(a)

BECOME THE
PRIMARY

STATE
TRANSFER

 B:N Backup Normal
 B:F Backup Failed
 B:R Backup Recovering
 B:ST Backup in State Transfer

(a) the primary object replica (b) a backup object replica

Figure 2. Warm passive replication with one primary and one backup object

Panagiotis Katsaros

45

:SrvRequestAccepting obj1:classA obj2:classB obj4:classDobj3:classC
srv_request

[Class1Request]

[Class2Request]

[Class1Request]

Figure 3. Message sequence for the objects of the case system

Panagiotis Katsaros

46

FAULT TOLERANCE EFFECTIVENESS
(tightest effective checkpoint intervals)

0 10 20 30 40 50 60 70 80 90 100 110 120 130

2,2

2,4

2,6

re
qu

es
t a

rr
iv

al
 r

at
es

 (
cl

as
se

s
1

&
 2

)

fault-affected class1 average response time (sec)

PROB - PSC

PROB - LDSC

TB (5) - PSC

TB (5) - LDSC

RR - PSC

RR - LDSC

EQL - PSC

EQL - LDSC

Figure 4. Fault tolerance effectiveness

Panagiotis Katsaros

47

LOAD BALANCING PERFORMANCE

WITHOUT FAULT TOLERANCE

0 5 10 15 20 25 30

2,2

2,4

2,6

re
qu

es
t a

rr
iv

al
 ra

te
s

(c
la

ss
es

 1
 &

 2
)

class 1 requests' average response times (sec)

PROB

TB (5)

RR

EQL

COMBINED LOAD BALANCING - FAULT TOLERANCE
PERFORMANCE

(tightest effective checkpoint intervals)

0 5 10 15 20 25 30

2,2

2,4

2,6

re
qu

es
t

ar
ri

va
l

ra
te

s
(c

la
ss

es
 1

 &
 2

)

fault-unaffected class1 average response time (sec)

PROB - PSC

PROB - LDSC

TB (5) - PSC

TB (5) - LDSC

RR - PSC

RR - LDSC

EQL - PSC

EQL - LDSC

Figure 5. Fault tolerance performance

Panagiotis Katsaros

48

Tables

49

Table 1 Glossary of notation
r
io object replica r of oi

arj active replica j of some object

prim the primary object replica of a

 passively replicated object

back the backup object replica of a

 passively replicated object
io
plop , a method instance of io

lop

 with 1≤ l ≤ #(methods of oi)

(io
plrq , , io

plrp ,) an ordered pair of request and

 reply messages that collectively

 represent the execution of io
plop ,

logi the log queue of a passively

 replicated oi

Q(r
io) the local queue of requests in r

io

MsgSeq(io
lop) the totally ordered set of nested

 invocations to
sop generated by

 io
lop

r
icrash there is an object fault at r

io
r
ifailed a fault at r

io has been detected
r
ieredre cov

r
io reflects the object state of

 having executed all io
qsrq , ∈logi

2,1 rr
ic request for checkpointing/state

 transfer between 1r
io and 2r

io

run an infinite sequence of global

 states S0, S1, . . .

Hrun history of run: a sequence of

 events e0, e1, . . such that ∀i≥0,

 ei(Si) = Si + 1

Si = φ predicate φ holds in global state

 Si

F_AFFECTED(io
plrq , ,oj)

 boolean predicate indicating

 that io
plrq , is affected by a fault

 at oj

Panagiotis Katsaros

50

Table 2 System model parameters
service objects: objX:SrvRequestAccepting (X=0, 5, 6, 7)
load balancing: PROB, TB(5), RR, EQL
class 1 service request interarrival
times:

exponential with rates

class 2 service request interarrival
times:

exponential with rates

2.6

2.6

2.4

2.4

2.2

2.2

 obj1:classA obj2:classB obj3:classC obj4:classD
object state sizes (KB): 0.9 1.1 0.8 0.6

object replicas: rep10
obj1

rep11
obj1

rep20
obj2

rep21
obj2

rep30
obj3

rep31
obj3

rep40
obj4

rep41
obj4

repX0
objX

repX1
objX

class 1 requests service times
(exponential with means)

0.52 0.57 0.6 0.6 0.83 0.83 0.32 0.32 0.2 0.2

class 2 requests service times
(exponential with means)

- - 0.28 0.28 0.83 0.83 - - 0.2 0.2

log-replayed re-invoked requests
(exponential with means)

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -

state transfer times -sec/KB
(exponential)

0.8 0.8 0.6 0.6 0.6 0.6 0.8 0.8 - -

omission fault scenario
no

request
loss

no
request

loss

no
request

loss

no
request

loss

no
request

loss

no
request

loss

no
request

loss

no
request

loss

no
request

loss

no
request

loss

object replicas placement:

host 1 rep00 (obj0) rep51 (obj5) (stateless) service objects
host 2 rep01 (obj0) rep50 (obj5) (stateless) service objects
host 3 rep11 (obj1) rep21 (obj2) rep40 (obj4) objects that own state
host 4 rep10 (obj1) rep20 (obj2) rep41 (obj4) objects that own state
host 5 rep30 (obj3) objects that own state
host 6 rep31 (obj3) objects that own state
host 7 rep60 (obj6) rep71 (obj7) (stateless) service objects
host 8 rep61 (obj6) rep70 (obj7) (stateless) service objects

Panagiotis Katsaros

51

Table 3 Object fault model
fault rarity (r): 21600 sec

object replicas: repX0
objX

repX1
objX

rep10
obj1

rep11
obj1

rep20
obj2

rep21
obj2

rep30
obj3

rep31
obj3

rep40
obj4

rep41
obj4

fault interarrival times
(exponential with means)

2*r 2*r 2*r 2*r r r r r 2*r 2*r

restart times
(exponential with means)

23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0

fault monitoring interval -
periodic (sec)

15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0

Panagiotis Katsaros

52

Table 4 Tightest effective checkpoint intervals and fault-affected response times

(effectiveness)

request interarrival
times with rates

(class-1 & class-2)

fault
tolerance
scheme

load
bala-
ncing

I1 I2 I3 I4 TECIs

fault-affected
response times:
average for the
class-1 requests

fault-affected
response times:
average for the
class-2 requests

2.2 2.2 LDSC-
based

PROB 100
requests

100
requests

100
requests

100
requests

100 100 100 100 115.2 sec 115.7 sec

2.2 2.2 PSC-
based

PROB 97 sec 97 sec 97 sec 97 sec 97 97 97 97 129.3 sec 131.0 sec

2.2 2.2 LDSC-
based

TB(5) 100
requests

100
requests

100
requests

100
requests

100 100 100 100 97.5 sec 97.4 sec

2.2 2.2 PSC-
based

TB(5) 97 sec 97 sec 60 sec non
significant

97 97 60 97 96.2 sec 96.9 sec

2.2 2.2 LDSC-
based

RR 100
requests

100
requests

100
requests

100
requests

100 100 100 100 87.0 sec 87.4 sec

2.2 2.2 PSC-
based

RR 97 sec 97 sec 60 sec non
significant

97 97 60 97 90.9 sec 91.1 sec

2.2 2.2 LDSC-
based

EQL 100
requests

100
requests

40
requests

non
significant

100 100 40 100 83.9 sec 84.5 sec

2.2 2.2 PSC-
based

EQL 97 sec 97 sec 60 sec non
significant

97 97 60 97 86.8 sec 87.3 sec

Panagiotis Katsaros

53

Table 5 Trade-off analysis for the LDSC-based scheme, RR load balancing and service

request interarrival times with rates 2.4 – goal: average fault-affected response time less

than 33 sec

class 1 fault-
affected

response time
(average)

class 2 fault-
affected

response time
(average)

average

class 1 fault-
unaffected

response time
(average)

class 2 fault-
unaffected

response time
(average)

average
trade-off

ratio

initial checkpoint intervals ():

90-90-90-90 46,37 46,16 46,27 7,94 7,08 7,51

step 1 interval reductions:

90-90-50-90 38,93 38,13 38,53 8,05 7,18 7,62 69,68 - - 40 -

90-90-70-90 42,71 42,21 42,46 8,02 7,15 7,58 47,54 - - 20 -

90-50-90-90 47,49 46,54 47,01 - 40 - -

90-70-90-90 47,32 46,57 46,95 - 20 - -

checkpoint intervals:

90-90-50-90 38,93 38,13 38,53 8,05 7,18 7,62

step 2 interval reductions:

90-90-30-90 37,06 36,38 36,72 8,17 7,31 7,74 14,89 - - 20 -

90-90-10-90 36,80 35,56 36,18 9,10 8,20 8,65 2,27 - - 40 -

90-50-50-90 36,36 36,14 36,25 8,18 7,31 7,74 18,25 - 40 - -

90-70-50-90 36,93 36,12 36,53 8,11 7,23 7,67 39,32 - 20 - -

checkpoint intervals:

90-70-50-90 36,93 36,12 36,53 8,11 7,23 7,67

step 3 interval reductions:

90-70-30-90 35,16 34,35 34,75 8,23 7,38 7,81 12,91 - - 20 -

90-70-10-90 35,21 35,04 35,13 8,80 7,90 8,35 2,05 - - 40 -

90-50-50-90 36,36 36,14 36,25 8,18 7,31 7,74 3,71 - 20 - -

90-60-50-90 37,19 36,72 36,96 - 10 - -

checkpoint intervals:

90-70-30-90 35,16 34,35 34,75 8,23 7,38 7,81

step 4 interval reductions:

90-70-10-90 35,21 35,04 35,13 - - 20 -

90-70-20-90 32,96 32,11 32,54 8,38 7,51 7,94 16,24 - - 10 -

90-50-30-90 33,14 31,95 32,54 8,38 7,50 7,94 16,27 - 20 - -

90-60-30-90 32,91 32,00 32,45 8,24 7,38 7,81 307,13 - 10 - -

no improvement

no improvement

no improvement

no improvement

1rd 2rd 3rd 4rd

4321 IIII −−−

Panagiotis Katsaros

