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Abstract: Next generation integral safety systems are expected to provide better protection against traffic 
accidents by interlinking sensors and actuators of active and passive safety. A series of advanced 
functions will be used to mitigate collisions and if they cannot be avoided they will at least reduce their 
severity. We explore the interplay between key technology areas towards a holistic approach in the 
design and decision support of integral safety systems. First, we refer to the main problems in the design 
of effective systems and the associated software engineering challenges. Recent advances in sensor data 
analytics are then explored and their integration with decision support for vehicle control is examined. 
Finally, we envision that rigorous design techniques based on models for human-machine interaction are 
essential for achieving adequate performance and robustness of integral safety systems. 
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1. INTRODUCTION 

Integral Safety Systems (ISSs) combine passive safety with 
active safety systems. The former employ both structural 
means and subsystems utilising on-board data from e.g. 
acceleration and yaw-rate sensors, like in the well-known 
electronic stability systems (ESC). On the other hand, active 
safety systems rely mainly on volatile data perceived by 
sensors from a vehicle’s surroundings. A typical case of 
active safety is the current Advanced Driver Assistance 
Systems (ADAS) aiming to identify critical driving situations 
and trigger appropriate responses, such as warnings for the 
driver. ADAS are based on dynamic data and sensor systems 
for detecting and classifying objects and for tracking the 
distance from a target.    
The combination of systems from both types shall increase 
the overall traffic safety and at the same time will reduce 
negative impacts like weight or fuel consumption, if only 
systems from one type would have been used. It is also 
foreseen that by connecting passive and active safety systems 
we can reduce the severity of accidents and their 
consequences through the optimization of passive safety 
measures. This integration is a challenging perspective that 
can be accomplished by a cost-effective combination of 
recent advances in three different fields: discrete event - 
hybrid systems simulation, sensor data analytics and decision 
making support for vehicle control.       
 
 

 
The present article adopts this interdisciplinary perspective 
and examines promising developments in the respective 
fields that can contribute into a holistic design approach for 
ISSs.  
The simulation is already seen by the automotive industry as 
an economically feasible means for validating the algorithmic 
implementations of safety systems. The design and 
development of ISSs poses significant challenges that are 
mentioned in Section 2. Sensor data analytics refer to modern 
techniques and system architectures for handling the huge 
amount and the heterogeneity of data collected by the sensor 
systems. Relevant techniques are discussed in Section 3. In 
Section 4, we present the latest developments in decision 
support systems and the design challenges for the ISS 
decision making component. Section 5 focuses on rigorous 
model-based system design as a viable pathway for the 
development of trustworthy and optimized ISSs. Recent 
achievements in the design of embedded systems are 
examined, as well as appropriate formal models for hybrid 
systems and human-machine interaction modelling including 
their interplay in ISS design. 
The discussed aspects cannot be considered as an exhaustive 
coverage of all ISS design problems. However, the key 
challenges of big sensor-data processing, decision making 
and heterogeneous system integration are adequately 
explored.         



 
 

     

 

2. INTEGRAL SAFETY SYSTEMS – SOFTWARE 
ENGINEERING CHALLENGES 
 

2.1  Usage Scenarios for Simulative Approaches during the 
 Design and Development of ISS 

While ISS promise significant enhancements to the overall 
traffic safety, their design, realization, and evaluation pose 
new requirements to the development process. The main 
challenge of these systems is their functional dependency on 
uncertain and volatile data from the vehicle’s surroundings, 
which is perceived by sensors like cameras, radars, or laser 
scanners. The validation of their proper functionality by using 
a small selection of all imaginable situations on proving 
grounds or on public roads only is not sufficient with respect 
to reproducibility and accuracy. Furthermore, re-testing these 
systems on small changes to the requirements specifications 
or on hardware changes has to take into account all available 
traffic situations on proving grounds. However, this is not 
advisable from an economic resources’ usage point of view. 
Today, automotive Original Equipment Manufacturers 
(OEMs) use various simulation-based approaches during 
system design and development, in order to experiment and 
validate their algorithmic implementations. While their 
beneficial usage depends obviously on the quality of the 
models for a system’s surroundings and the system’s on-
board sensors and actuators, the advantage of using them can 
be pointed out at several spots during the development as 
outlined in (Berger, 2012). 
During the design of these functions, simulative approaches 
help to analyse and limit design space explorations e.g. for 
identifying a suitable sensor or determining its mounting 
position and orientation to achieve the best efficiency for the 
intended set of use cases. After the start-of-production of the 
next vehicle generation, simplifications and assumptions 
about macroscopic movement models of other traffic 
participants can be improved by feeding data from the field 
back into the models for the simulation environment. 
Furthermore, analyses about life-cycle effects of the vehicle 
can be carried out to get information about their potential 
impact on a software system; this is of particular interest for 
the lifetime of sensors that may be changed while parts of the 
software system remain unchanged; another example is 
backwards compatibility of communication protocols, which 
is getting more and more important with respect to systems 
that rely on vehicle-to-infrastructure and vehicle-to-vehicle 
communication to realize a specific comfort or even a safety 
functionality. 
 
2.2   Challenges for Simulative Approaches during the Design 
 and Development of ISS 

Firstly, the choice which simulation system shall be used 
during the design and development depends directly on the 
questions of interest, which shall be answered. Hereby, one 
single and unifying simulation system will not be available in 
the foreseeable future and thus, different and specialized 
simulations need to be coordinated and integrated to produce 
the required data; for example, a simulation for validating a 
pedestrian collision warning system does not need to simulate 
the potential airflows within the passengers’ compartment. 

Hereby, approaches from the software engineering are 
required to manage this integration process. 
Secondly, as already mentioned before, the benefit of using 
simulative approaches during the design and development of 
safety-critical or ADAS depends directly on the quality of the 
models for the sensors and the vehicle’s environment. 
Hereby, arbitrarily chosen noise models to artificially reduce 
the perfect quality of simulated sensor data are not enough; 
instead, better material property models are required to 
simulate more precisely the detection characteristics of a 
radar system. Furthermore, lighting and weather conditions 
must also be modelled accordingly, to analyze a vehicle 
function’s behaviour under various surroundings conditions 
for a given set of traffic situations. 
Next, simulations generate a still growing amount of data that 
must be analysed to get the desired information. The recorded 
data might contain hidden interrelations that might be helpful 
during system validation. Thus, methods for aggregating that 
data on the one hand to get a quick overview of the software 
quality of a complex embedded system in general is 
necessary as described in (Berger et al., 2013). Approaches to 
search and uncover hidden relations within this recently 
called “big data” must be developed and applied. 
Finally, the design and development of these ADAS and 
interconnected vehicular systems must also consider the 
challenges that originate from societal changes: while 
vehicles were owned and considered as a representative 
symbol in the last six decades, this perspective of a vehicle is 
slightly changing nowadays. Thus, the fact that vehicles are 
more and more regarded as a mobility solution must be 
considered during the design and realization of ADAS. This 
apparently not very specific use case has yet an important 
impact on the average usage profiles of vehicles, which play 
an important role during the overall design and 
parameterization of energy management systems. 
 

3. SENSOR DATA ANALYTICS 

The problems due to the huge amount and the heterogeneity 
of data, needed to be processed and analyzed for the design 
and development of ADAS, cannot be addressed by ordinary 
statistical methods. In general, there is a need for generic, 
sophisticated and scalable platforms for supporting 
information extraction from raw data. These frameworks 
should implement a mixture of fast algorithms and intelligent 
techniques in order to extract information from data and 
present it in forms enhancing decision-making. The 
simultaneous application of collaborating multidisciplinary 
methodologies with respect to problems of big data is known 
as “analytics”.  
Especially for the safety systems it is important to develop 
and apply methods for statistical identification and discovery 
of complex events, i.e. events that summarize, represent, or 
denote sets of simple events. Complex events are crucial for 
safety systems, since for example a large number of simple 
and seemingly uncorrelated and unsynchronized simple 
events can lead to emergency situation and even to accidents. 
Complex events cannot be detected by ordinary statistical 
analyses and there is a need for combined algorithmic and 
mining techniques.  



 
 

     

 

The related research field is known as Complex Event 
Prediction and Processing (CEPP) (Adkins et al., 2011). 
Complex events are represented by data structures which 
contain, not only the data from each component event, but 
also the relationships between them with respect to time, 
causality etc. A formal description of an event with variables 
and relational operators forms an event pattern, a key concept 
in CEPP, and involves rules to aggregate, filter, and match 
low-level events, coupled with actions to generate new, 
higher-level events (Robins, 2010). In the case of safety 
systems, CEPP can be used to combine in models 
environmental and vehicle data which potentially lead to a 
variety of unanticipated situations. In general, data analytics 
under the framework of CEPP is beneficial for feeding 
decision support systems.  
The identification and prediction of patterns in data streams 
involves the utilization of advanced multivariate statistical 
and data mining methodologies and algorithms such as visual 
analytics, sampling designs, multiple comparisons tests, time 
series, data reduction techniques, classification and clustering 
methods, association rules, optimization algorithms and 
advanced probabilistic and stochastic causal models such as 
Bayesian Networks and Structural Equation Models.  
A comprehensive platform for a safety system based on 
sensor data analytics and complex event processing should 
include three basic components (Hinze et al, 2009): (a) a 
monitoring component, responsible for event representation, 
observation and composition of events; (b) a transmission 
component, responsible for event notification; (c) a reactive 
component, responsible for triggering a variety of actions 
based on predefined rules. Therefore, for safety systems, 
where continuous streams of user data are produced, the first 
requirement is the efficient monitoring which can be based on 
longitudinal sampling techniques, dimensionality reduction 
techniques and recognition of complex events via pattern 
matching methods. Notification requirements can be based on 
clustering and classification methods or even to association 
rules. The third requirement of reactivity requires stochastic 
models and algorithms able to produce accurate and in-time 
estimations and predictions of certain critical events. 
In general, data analytics can greatly benefit the functionality 
and the performance of safety systems. As mentioned in 
(Etzion & Niblett, 2010), the pattern detection in today’s 
systems has to be programmed with details of the specific 
patterns that need to be detected. The common assumption is 
that designers know exactly what these patterns are when 
developing the application, and that the patterns constitute a 
part of the application specifications. However, in cases as 
the unwanted situations, that a safety system has to diagnose 
and prevent, the designers hardly know exactly how a critical 
event might look like, when first designing the application. In 
such cases, statistical along with machine learning techniques 
can be utilized to examine historical events and learn to 
recognize new patterns. 
Another very important use of data analytics is the 
continuous quality control of the system. Advanced statistical 
methods and fast algorithms are necessary for the monitoring, 
and the self-adaptation of the entire system. Hence, data 
analytics can help to identify malfunctions of individual 
sensors or even of the whole system and furthermore, they 

are able to validate the accuracy and efficiency of the 
decision support systems by getting feedback from them. The 
quality control component essentially provides intelligence to 
the system and leads to auto-corrective and self-improvement 
actions.  
The use of statistical and data mining methods has been 
limited to specific data from specific sources, depending on 
the application domain. Fortunately, today there are some 
powerful, open-source and free software tools such as the R 
statistical language (R Development Core Team, 2009, 
http://www.r-project.org/), the Predictive Model Markup 
Language (PMML, http://www.dmg.org/), the WEKA (Hall, 
et al., 2009) project for data mining, the KNIME (Michael R, 
et al., 2007) platform for data analytics, and the Apache 
Mahout (Apache Mahout scalable machine learning and data 
mining, 2012). These tools offer the opportunity to combine a 
wide range of statistical methodologies and models that are 
able to cooperate for processing massive data from 
heterogeneous sources and producing output for feeding the 
decision support systems (Williams, 2009). 
 

4. DECISION SUPPORT FOR VEHICLE CONTROL 

Decision Support Systems (DSSs) are nowadays one of the 
core and key components in most novel intelligent software-
driven solutions. Their aim is to support key decision makers 
and domain experts by providing situation aware decision 
alternatives. Such an aspect should also incorporate learning 
algorithms, in order to improve the quality of decisions. 
DSSs can be model-driven, communication-driven, data-
driven, document-driven, or knowledge-driven (Hols, 1996) 
by providing problem-solving expertise saved as facts, rules 
or similar forms.  
The performance of a DSS depends on various factors such 
as the quality and effectiveness of input data, the decision 
making algorithms and the provided support for belief 
revision. In this regard, it is mandatory for ISSs to exclude 
noisy data and collect the sensor data in the way which can 
be properly visualized for decision making components. For 
computerized DSSs, the key question is how to represent the 
knowledge about the situation (Yang, 2007). This knowledge 
is about the underlying technical and environmental aspects, 
and the subjective, individual knowledge and preferences of 
decision makers. 
As shown in Fig. 1, the Decision Support component of an 
ISS can be based on two main layers: the event and decision 
layers. By means of Case Based Reasoning (CBR), the 
system identifies similar cases in the repository of events, in 
order to provide the required information to the decision 
layer, for appropriate decisions about the current situation. 
The key feature in the event layer is the Similarity Template 
(ST) measurement component. Through a machine learning 
algorithm, the ST component improves the accuracy of 
similarity measures based on a feedback cycle from the 
system design experts about the decision alternatives. 
“Decision evaluation” and “belief revision” in the decision 
layer also play an important role in improving the 
performance and in training the system for better decisions.  



 
 

     

 

 

 
 

Fig. 1. An overview of the decision making component 
 

There will be two databases in the Decision Support 
component, namely the event repository and the decision DB. 
The event repository consists of the historical data about 
events. The decision DB is about the final decisions and 
revised solutions towards specific situations.  
In the decision modelling component, different criteria such 
as preferences (e.g. situation awareness), decision 
alternatives, sensor data and decision evaluation indicators 
have to be considered. One potential deployment for the data 
collection from sensors in ISSs is through cloud deployed 
services (Bohlouli, 2013).  
  

5.  RIGOROUS SYSTEM DESIGN 

Rigorous design is a cornerstone towards implementing 
trustworthy and optimized ISSs. Optimization concerns with 
the system's performance, its cost-effectiveness and the 
associated tradeoffs, whereas trustworthiness ensures that 
nothing bad can happen. Most efforts to improve 
trustworthiness usually result in a non-optimal use of the 
system's resources. Rigorous design techniques allow 
balancing the conflicting concerns of trustworthiness and 
optimality. Moreover, in ISSs the human factor plays a 
central role in the system's behaviour: his reactions imply 
state changes in the vehicle's behaviour, which are taken into 
account during the ISS's autonomous function (Sandberg et 
al, 2008). We focus on recent advances introducing rigorous 
methods for system design and human-machine interaction 

and the challenge of combining them towards the design of 
trustworthy and optimized ISSs. 
In (Sifakis, 2013), the author introduces rigorous system 
design as “a formal and accountable model-based process 
leading from requirements to correct system 
implementations”. Accountability refers to the possibility to 
assert, which among the system requirements are satisfied 
and which may not be satisfied. The author reviews the main 
characteristics of successful rigorous design techniques for 
hard real-time systems and hardware engineering (VLSI 
design), some of which are used today in the car industry. 
The success of these techniques is attributed to the coherent 
and accountable design flows that are enforced by standards, 
as well as to an extensive use of architectures and design 
rules, which enable correct-by-construction designs. The 
main inhibiting factors for applying these practices in the 
design of complex systems such as the ISSs are the lack of a 
common component model, the heterogeneity of models of 
computation (time-triggered and asynchronous event-based), 
the variety of architectures (sensor system, CEPP and 
decision making) to be combined and the intractability of 
synthesis for infinite state systems (the vehicle's behaviour 
depends on human's reactions and the vehicle's 
surroundings). To this end, the author is based on the BIP 
(Behaviour, Interaction, Priority) component framework 
(Basu et al, 2011) to formalize the design of mixed 
hardware/software systems, whose behaviour is driven by 
stimuli from the environment that in turn is affected by their 
outputs (interactive systems). BIP is the means to realize four 



 
 

     

 

key engineering principles, namely separation of concerns, 
component-based construction, semantic coherency and 
correctness-by-construction. The BIP design flow has been 
successful in numerous embedded system design problems 
during the past 10 years and we consider it as a highly 
relevant perspective for ISS design. 
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Fig. 2. Formal modelling of driver support functions  

  
In a rigorous design flow such as the one supported by BIP 
we expect that human reaction in ISS driver support functions 
will be encoded in appropriate human-machine interaction 
models that will be combined with hybrid system models 
(Lunze et al, 2009) for the vehicle dynamics. In (Sandberg et 
al, 2008), the authors discuss the cause and effect cycle in 
advanced driver support functions that can be formally 
represented as shown in Fig. 2. They also point out the 
importance of generating the same control vehicle actions for 
identical traffic situations, since any deviation from this 
principle could cause an unwanted driver reaction. Given this 
prerequisite for the decision support subsystem and a 
cognitively plausible formal model of the human behaviour it 
should be possible to detect or prove the absence of errors 
emerging from the interaction between the ISS and the driver. 
Such an analysis will likely yield design improvements for 
establishing an effective balance between trustworthiness and 
optimal use of the system's resources.  
A valuable source of inspiration for generating this sort of 
models for human behaviour is the work reported in (Curzon 
et al, 2007). In that work, the authors are based on results 
from cognitive psychology in order to derive abstract 
principles, which are then formalized in higher-order logic. 
Subsequently, they describe a verification methodology 
targeting the malfunctioning of interactive systems caused by 
human actions that can be considered as cognitive slips. 

However, this is just one of the many recent developments in 
the area of formal verification for human-machine interaction 
that we also consider as a highly relevant perspective for the 
design of effective ISSs. 
 

6. CONCLUSIONS 

We presented an interdisciplinary perspective to the design 
and development of Integral Safety Systems. Important 
developments in the areas of system simulation, sensor data 
analytics and decision making were discussed and the 
challenges towards a holistic design approach for ISSs were 
considered.  
Rigorous model-based system design is a cornerstone, in 
order to cope with the heterogeneity and the high complexity 
of ISS subsystems and in order to derive trustworthy and 
optimized implementations. Recent achievements in the field 
of embedded systems design were examined and appropriate 
formal models for hybrid systems and human-machine 
interaction were considered. 
Future work is worth to focus on an ISS case, in order to 
better understand the problems in the design and 
development of ISSs, as well as on the pros and cons of 
existing architectures and the limitations of the considered 
rigorous design techniques.     
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