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ABSTRACT

Complex, closed or open queuing network simulations, has
been proved to be particularly time expensive experiments,
when au acceptable level of estimation accuracy is to be
achieved. Moreover, in most cases, the same experiment has
to be repeated many times, by varying the model’s
parameters. Thus, a distributed execution architecture is
often adopted as more suitable. At least two different types
of distributed discrete event simulations have been
suggested. Their emphasis lies on the development of the
appropriate  synchronization, deadlock handling and/or
memory management mechanisms. Our approach, moves
the focus of interest, to the exploitation of the statistical
nature of the simulation experiment, to obtain more reliable
results. Thus, the regenerative property and its presence in
queuing network simulations is studied. We suggest a way
of distributing computation in regenerative queuing network
simulation and we prove that, our approach, is theoretically
correct. The method is applicable in a broad class of
quening network simulations with significant gains.

L. INTRODUCTION

The field of parallel and distributed simulation has
grown rapidly over the last years as a result of the need for
simulating complex models with significant execution
times. In particular, parallel/distributed discrete event
Simulation has been widely studied and at least two different
FYPGS of execution mechanisms have been successfully
Implemented. Simulation models where these execution
architectures can be easily applied include:

¢ Petri net models (Petri 1962; Peterson 1981), which
are usually used to represent synchronization between
various concurrent activities,
Cellular automation models (Toffoli and Margolus
1987)
Queuing networks, which are usually used to
represent contention for the multiple resources that
comprise a system.
In an event based quening network simulation, the logic
sociated with each event type is incorporated into the
Smulator (e.g. job departure, arrival events etc). A
Simulation run then takes place by executing each scheduled
®vent in a time-ordered sequence. For this reason, a single
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data structure called event list, is usnally used to hold future
events. The event list is sorted by event time and t
simulation execution involves removing events from the
head of the list and causing the action associated with each
event to be performed. When an action causes scheduling of
new events, these events are inserted into the event list.

In parallel/distributed simulation, one of the main
characteristics is the partitioning of the simuiation moede]
into a number of sub model.. Tuese sub models are catted
logical processes (LP). Thus, in the queuing network
distributed simulation, each LP is defined as a set of one or
more queues and a Future Event List (FEL).

In the conservative asynchronous distributed simulation
(Chandy and Misra 1979; Lin and Fishwick 1995), which is
also known as the Chandy-Misra distributed discrete eveni
simulation, each LP, runs as a separate task on one of the
processors that are used. Its FEL is just used for the so-
called internal events, i.e. events scheduled for execution
within the same LP. An attribute called Local Virtual Time
(LVT) represents the time-stamp of the event that just
occurred in the LP. Execution of external events should not
violate the local causality constraint which prescribes that
events are processed in no decreasing time-stamp order.

Thus, in a Chandy-Misra queuing network simulation
each LP performs event processing based on events in the
FEL, but also processes external events from the
corresponding input channels, if the mininmvm next external
event time, is less than the next internal event time (if any).
Because of the local causality constraint, an LP does not
process any input message until it has received at least one
message from each of its input channels. Thus, this
execution mechanism has the potential for deadlock. This
happens, when an LP blocks processing because there are
not external events available on all input channels. The LP
does not produce any output events and this results in the
successive blocking of the other LPs. Two deadlock
resolutions have been proposed: dcadlock avoidance
(Chandy and Misra 1979) and deadlock detection/recovery
(Chandy and Misra 1981; Misra 1986).

The most recently suggested variant of asynchronous
distributed discrete event simulation, is known as the
optimistic approach (Jefferson 1985; Jefferson and Sowizral
1985) or the Time Warp mechanism. Optimistic simulation
strategies, in contrast to conservative ones, do not strictly
adhere to the local causality constraint. Instead of this, LPs
allow the occurrence of causality errors and provide a
mechanism to recover from them. More precisely, if an
external event arrives and the timestamp of the message is
less than some of the events already executed (straggler




message), then the LP rolls back to the most recently saved
state in the simulation history consistent with the timestamp
of the arriving external event. Then, simulation restarts
from that state on, as a matter of local causality constraint
violation correction. If in the meanwhile the LP has already
sent one or more output messages since the time instant
where the LP rolls back, then an antimessage is sent for
each of them.

Each LP has to keep sufficient information, say past
state buffers, past input buffers, antimessage buffers etc., in
order to be able to roll back. However, this means, that a
possible memory limitation may cause the protocol to
execute fairly slow. For this reason, a memory management
algorithm is usually applied in order to guarantee
availability of a “sufficient” amount of memory.

In this work it will be shown, how a preliminary study
for the existence of a statistical property called regeneration,
can lead to a simpler execution mechanism, which also
produces more accurate results. Our approach basically
moves the focus of interest from the development of
synchronization, deadlock handling and/or memory
management mechanisms, to the exploitation of the
statistical nature of the simulation experiment.

2.QUEUEING NETWORK SIMULATION AND THE
REGENERATIVE PROPERTY

In most cases of queuing network simulations, the main
concern is the estimation of one or more performance
measures under the assumption that the system behaves as it
is in an equilibrium condition. The reason is, that it is
usually desirable to obtain reliable estimations, by
discarding the bias, introduced by the arbitrary selection of
the initial state of the system. There are two different
alternatives:

¢ To calculate the extent of the transient phase of a
simulation run and then to discard the measurements
obtained in this time period.

e To justify that the system is initialized in a state,
which can be considered to represent it, in a
particular time instant within its equilibrium (steady-
state) phase.

However, even in the case, where the problem of the
initial transient phase has been overcomed, the same
simulation will give slightly different results in a second
run. This happens, because every simulation is essentially a
random experiment. For this reason, analysts are usually
interested in obtaining mean values and confidence intervals
of the required performance estimates. If our aim is to
utilize the tools provided by the theory of statistics, the
problem takes the form of producing a number of
observations independent to each other. The following
approaches are available for this purpose:

o To carry out a number of independent replications of
the simulation experiment. Then, estimation of the
extent of the transient phase of each experiment has
to take place, in order not to takc into account tie
observations of this time period to the calculation of
the mean values.
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e To find a recurrent state (if any), which can be |

considered to represent the system in a particular time
instant within its equilibrium phase. Every time the
simulation passes through such a state, the
experiment is probalistically restarted. Thus, a single
simulation run is partitioned into cycles. At the end of
each cycle, a new observation of each one of the
required performance measures can be estimated and
listed. All these observations are independent to each
other and they can be used, in producing confidence

intervals. This method is known as the regenerative

method.

o Batch means and spectral method (Lavenberg 1983)
are less in use and in any case are beyond the scope of
this work.

The first approach, requires a time consuming process to
take place, in order to statistically analyzing the obtained
observations. Moreover, a vast amount of data has to be
thrown away. If the second approach is to be applied, a

sound theoretical basis for the existence (or not) of the !

regenerative property in the simulation model has to be |

used.

This basis is provided in (Shedler 1993) and it can be
summarized as follows. Let us assume that, at any time
instant, each job, is of exactly one class and one type. Jobs
may change class as they traverse the network, but they can
not change type. The type of a job may influence its routing
path through the network as well as its service requirements

at each service center. Service priorities can also be |
associated with job types. Every discrete event simulation on .

a finite or countably infinite state space is a generalized
semi-Markov process (GSMP)* and so, the regenerative
method is applicable, if this process is characterized by the

regenerative property. Assuming a state s, where all jobs,

are placed at a service center, which sees only one class, or |

is such that, jobs of the lowest priority are subject to pre-
emption, let us call D, the set of all states, accessible from .
The GSMP which is restricted to the set D, has been proved,
to be characterized by the regenerative property. Let us
assume, our aim is to estimate the mean value of a queuing
network characteristic (e.g. throughput), which is given, as

a real-valued function f over the regenerative stochastic |

process X = {X(t); t= 0}
k(f) = E[f{(X)]
Let us also call

Z(f)= | f(Xw)-du

Tk-1

the observation produced by the kth regenerative cycle.

* The GSMP is defined as a stochastic process that makes a state transition
when an event associated with the occupied state occurs. Several possible
events, associated with a state, compete with each other to trigger the next

transition. At each transition of the GSMP, new events may be scheduled. For
each of these new events, a clock indicating the time when the event
scheduled to occur, is set, according to an independent (stochastic) mechanisi
If a scheduled event does not trigger a transition but is associated with the next
state, its clock continues to run; if such an event is not associated with the nest
state, it ceases to be scheduled and its clock reading is abandoned.



Shedler proved, that a 100 a % confidence interval for k(f),
after the completion of N regenerative cycles, is given by
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In (Katsaros and Lazos 2000), we have described a
technique for determining the length of a queuing network
regenerative simulation. The algorithm was successfully
used in the queuing network simulator, that we have
developed for carrying out simulation experiments of
complex closed and open queuing network models. More
precisely, if the desired accuracy will be determined by 6, so
that the half length of the 100 0% confidence interval to be
obtained will be not more than 100 8% of k(f), then the
number N of the required regenerative cycles can be
dynamically determined as follows

mean time for thinking and keying, has an exponential
distribution with mean 3 seconds. The processor sharing
discipline, has been used for the terminals, since there is
always a server for each job. The passive queue which has
been included in the model, represents memory contention.
Memory is divided into 4 partitions and each token
represents a partition. A 50% of the jobs arriving at the
CPU are able to produce another job, which can do 1/C,
while the creating job is still at the CPU. After either of
these overlapped activities is finished, the process which is
finished, is forced to wait for the other to finish. The
regenerative state was defined as the state, where all jobs are
placed at the terminals. Finally, the maximum half length of
the 90% confidence intervals to be produced, was required
to be no more than 4% of the estimated value.

Memory pantitions
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Figure 1 An interactive computer system with memory
contention and process overlapping

The results obtained are as follows

SIMULATED TIME: 2938 sec
NUMBER OF EVENTS: 106853
NUMBER OF CYCLES: 132
AVERAGE NUMBER OF EVENTS: 809.492
AVERAGE CYCLE LENGTH: 22.087 sec

90% CONFIDENCE INTERVAL: (17.311, 26.852)

RESULTS FOR THE SERVICE ACTIV

THROUGHPUT jobs/sec UTILIZATION
LB MEAN UB LB MEAN {
F l+a TERMINALS 1.688 1.715 1.743 5.174 5.214
5 i ALLOCATE 1.688 1.715 1.743 3.468 3.53¢
) s(/) A cPU 16.955 17.330 17.705 .848  .867
5 /é =(] (A) DISKL 8.563 8.741 8.920 .509  .518
(1)7() DISK2 8.409 8.589 8.768 .503  .513
RESPONSE TIME sec
LB MEAN UB
~ — . TERMINALS 2.977 3.040 3.102
where $(/),k([),7(l) are the sample estimates, after the ALLOCATE 2.681 2.790 2.899
. . ) . . CPU .129  .131  .133
[ th cycle of the simulation experiment. The simulation DISKL “Hog 100 .103
terminates, when the maximum pumber N of regenerative DISK2 .098  .0%9 .10l
c . .
ycles '(for all the queuing network estimators and for every RESULTS FOR THE QUEUES
queue in the network) has been completed. TOTAL LENGTH jobs
Figure 1, shows a closed queuing network model given 5L§7 5M§AN %UESS
. . . TERMINALS .174  5.214 5.
n (Sauer and Chandy 1981), whlcl} has been simulated by ALLOCATE 1.722 4.786 4.849
Successfully applying the regenerative method. The model CPU 2.241 2.275 2.309
Iepresents an interactive computer system. There are ten g;fg :ie g;i giz
. . . S . O . .8
users at terminals. Each user thinks for a moment, keys in a
command and waits for response. Upon receiving a Figure 1, illustrates the fact that application of the
p 2

response, the user repeats this cycle. Let us assume that the
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regenerative  method

does

not

necessarily  require



compromises to the structure complexity of the simulated
model. If however, a large number of jobs will be placed in
the simulated model, this will result in an increase of the
average number of events per cycle and so, in longer
regenerative cycles. Moreover, if our aim is to achieve better
confidence interval lengths, the number of regenerative
cycles that have to be completed, increase respectively.

In open queuing networks, where a steady-state
distribution exist, it is necessary to use observations of a
large number of regenerative cycles, if confidence intervals
* of an acceptable length is to be produced. This is justified by
the variability in the total number of jobs, which results in a
highly variable system.

3. DISTRIBUTED REGENERATIVE QUEUEING
NETWORK SIMULATION

From what has been presented so far and from the
simulation experiments conducted, it is shown, that

¢ Simulated time is not important, from the point of
view that the experiment depends only on the return
of the model to the same state, irrespective of the time
instant that this will happen. Certainly, the statistics
collected at the end of each regenerative cycle, are
dependent on the difference between the time instant
of the end and the time instant of the start of the
cycle. However, this is basically a random process
that is probabilistically restarted at the end of each
regenerative cycle.

¢ The method can be applied irrespective of the
structure complexity of the simulated model, under
the assumption of validity of a set of conditions that
have been described in §2.

e The method, can lead in particularly time-consuming
experiments, when an acceptable level of estimation
accuracy is to be achieved. The problem becomes
even worse, in cases where the same experiment has
to be repeated with varied parameters for sensitivity
study purposes.

e The stopping algorithm which is based on (A) and
has been used in our simulator, is a suitable means for
controlling the execution of a regenerative simulation.

All these, prove the fact, that an execution architecture,
that combines independent simultaneous replications and
the regenerative method, is not only desirable, but it is also
a feasible alternative. The results obtained by the use of the
regenerative method are only based on the statistics
collected at the end of each regenerative cycle. Thus, the
main concern, is to complete as many regenerative cycles as
need, in order to obtain the required confidence interval
lengths.

In the distributed regenerative queuing network
simulation, each LP contains the entire queuing network
model. A number of LPs start the execution of the
experiment simultaneously. The simulation stops when the
sum of the regenerative cycles completed by each of the LPs,
satisfies (A) for all the queuning network estimators and for
every queue in the network.
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4. FUTURE WORK

|

Distributed regenerative queuing network simulation, j
not burden with extra communications load, because of th,
application of a synchronisation scheme. Terminatig,
however, has to be controlled by an algorithm which will b,
based on (A) and can work in the frame of a centry
coordinator process, or by the use of a circulating values.
carrying token.

In the first case, each LP, sends the statistics collecteg
(after the end of the last regenerative cycle) to a centra
coordinator process. The coordinator process checks if (4)
is satisfied for all the queuing network estimators and for
every queue in the network. If so, a message is sent to all|
LPs. On reception of this message, each LP stops and the
results produced since the last regenerative cycle ar
discarded. Finally, the coordinator process produces a
simulation report.

In the second case, we distinguish two differen
implementation possibilities:

e The token, circulaies, tluwough ‘the alive LPs
constantly by collecting statistics for the already
completed regenerative cycles. As soon as the token
detects the end of the experiment, changes its color to
black and continues its journey for one more time. On
reception of the black token, each LP terminates and
simulation results produced since the last visit of the
token are discarded. The simulation report is then
generated by the LP where the token stopped. This
approach is similar to the Misra’s algorithm (Misra .
1983) for detecting termination. It is important that
this algorithm makes no assumptions whatever, about
the topology of the communication channels, nor
about the transit times of the messages. Its only
assumptions are, that, no messages are lost and that
messages are always received in the order in which
they are sent. All the LPs behave identically and there
is no process with a special role. Any LP can start a
detection procedure by launching a token, and can
label this, with its own identity, as to avoid confusion
with any tokens issued by other processes. However,
this may happen, only after the completion of the first
regenerative cycle and under the condition that the LP
has not already accepted the visit of another token
labeled with the identity of a different LP. If,
however, there is already one or more tokens which
circulate through the LPs and they have not yet
arrived to that specific LP, they will be simply
ignored when they arrive. Thus, in the end, there will
be only one token circulating through the LPs for
detecting termination of the experiment.

e The token changes position at the time instants that 2
regenerative cycle is completed in any LP. The LP
broadcasts this event and waits for the reception of
the wvalues-carrying token. This implementation
approach, assumes, that broadcasting is supported by
the underlied communication systcm.

Finally it is worth to note, that the distributed regenerative
architecture retains the possibility of implementing
algorithms, for obtaining derivatives of expectations wih




respect to various parameters (Reiman and Weiss 1986).
This allows performing model sensitivity studies and
optimization based on the results of a single simulation run.

5.RELATED WORK

Unfortunately, exploitation of statistics for carrying out
paralle/distributed discrete event simulation experiments,
has so far, been overlooked. Moreover (Pawlikowski 1990),
in most cases, the results of simulation studies have little
credibility, since they are presented without regard to their
random nature and the need for proper statistical analysis of
simulation results.

The only work known to us which is related to our
approach is the one by Raatikainen (Raatikainen 1992).

6. CONCLUDING REMARKS

In this paper, we present the most important architectures
for performing parallel/distributed discrete event simulation
experiments. The conservative and the optimistic approach,
constitute two different alternatives for distributing
computations in queuing network simulations.

However, since every discrete event simulation is
basically a random experiment, the estimation of the required
characteristic(s) of the simulated model is therefore a
statistical process. Thus, we present the underlied theoretical
framework of the regenerative method for analyzing the
simulation output data.

Having noticed, that a regenerative simulation
experiment, depends only on the return of the model to the
same state (irrespective of the time instant that this will
happen), we conclude, that an execution architecture that
combines independent simultaneous replications and the
regenerative method is feasible, if an appropriate control
scheme can be applied. Experimental results have shown
that, (A) provides a suitable means for determining a
simulation run length and can be implemented in an either
centralized or distributed way.

Moreover, the new architecture is free of added
communication load, that is caused by the application of a
process synchronisation scheme.

Our approach, is innovative, in that, it exploits a
statistical property which may be present in queuing network
simulation models and this helps to distribute computations
in a more efficient way. To conclude, a thorough study of the
statistical nature of every simulation model should take
place, and this will lead in more efficient and accurate
experiments.
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