

SHARED MEMORY PARALLEL REGENERATIVE QUEUING NETWORK
SIMULATION

Panajotis Katsaros
Constantine Lazos

Department of Informatics
Aristotle University of Thessaloniki

54006 Thessaloniki, Greece
E-mail: { katsaros, clazos} @csd.auth.gr

KEYWORDS
Queuing models, Performance analysis, Statistical analysis,
Parallel simulation.

ABSTRACT

Discrete-event stochastic simulation is one of the most
commonly used tools for performance modeling and
evaluation. Parallel/distributed simulation enables a
simulation program to execute on a computing system
containing multiple processors and aims in reducing the
model’s execution time. Three basic types of execution
mechanisms have appeared. The first two (the conservative
and the optimistic approach) aim in partitioning the
simulation model into a number of sub-models, also called
logical processes (LPs). Their emphasis, lies on the
specification of the appropriate synchronization, deadlock
handling and/or memory management algorithms. The third
approach (known as the time parallel approach or simply as
Multiple Replications in Parallel Time Streams), aims in
overcoming the need for suff iciently long runs in steady-state
stochastic simulations, by executing multiple replications of
the entire model in a parallel fashion. This work, presents a
fast parallel OpenMP based implementation, for multivariate
queuing network simulations. The simulation results are
statistically processed, by applying the classical regenerative
method under the Lavenberg & Sauer sequential analysis
procedure. The first experimental results indicate significant
speedups accompanied by acceptable confidence interval
coverage.

1. INTRODUCTION

 Parallel/distributed discrete event simulation has grown
rapidly over the last years, as a result of the need to employ
the high-potential processing power of the modern
multiprocessors, for speeding up simulation runs. Research
on this field has been primarily concentrated in developing
algorithms where several processors cooperate on a single
realization of the stochastic process simulated (Fujimoto
2000). However, the effectiveness of such an approach
depends on the level of inherent parallelism that exists in the
simulated model.
 A time parallel simulation, partitions the simulation time
into a number of non-overlapping intervals, as many as, the
number of the available processors. A logical process
assigned to a particular processor, computes the portion of
the sample path within the corresponding time interval. The
fundamental problem that has to be overcome by a time

parallel simulation algorithm is to ensure that the model
states computed at the “boundaries” of the time intervals,
match each other.
 In this sense, the regenerative method provides a safe
way to partition the simulation time into a number of
intervals. This method was independently developed in (Cox
and Smith 1961; Fishman 1973; Crane and Iglehart 1974)
and it is based on the detection of a recurrent model state,
which can be considered to represent the system in a
particular time instant, within its steady-state phase. Every
time the model passes through this state, the experiment is
probabili stically restarted. Thus, a single simulation run is
partitioned into cycles.
 Since the classical regenerative estimation depends only
on the difference between the time instant of the end and the
time instant of the start of a cycle (Katsaros and Lazos
2000a), we can assume parallel time streams starting from
the time instant 0, as representing a single regenerative
realization of the simulated model. Each time stream
contains an integer number of regenerative cycles. All the
regenerative observations generated by each one of the
available processors, are independent to each other and they
can be used in producing confidence intervals.
 Time parallel regenerative algorithms have been also
used in (Andradottir and Ott 1995; Fujimoto and Nikolaidis
1995; Rego and Sunderam 1992). However, this is the first
work, where the method’s validity is being assessed not only
in respect to the succeeded speedups, but also in respect to
the resulted confidence interval coverage. Coverage is
defined (Pawlikowski et al 1998) as the relative frequency
with which the confidence interval contains the true
parameter.
 The conducted experiments were carried out by the use of
a general queuing network simulator, developed by us under
the Guide C++ OpenMP compiler on a SUN E3500 shared
memory system. The slow multiplicative congruential
pseudorandom number generator which is usually used in
similar software (Katsaros and Lazos 2000b), has been
substituted by a new generalized feedback shift register
(GSFR) ultra fast generator, known as the Mersenne Twister
(Matsumoto and Nishimura 1998).
 Another innovative aspect of this work is the multivariate
nature of the conducted experiments, as opposed to the
univariate evaluations presented in most similar studies. This
has leaded us, to valuable conclusions and recommendations
for the safe use of the suggested approach in practical
multivariate studies.
 Similar experimental evaluations have been presented,
for the independent replications approach (Heidelberger

1986), the batch means and the non-overlapping batch means
(Pawlikowski and Yau 1993) and the spectral analysis
methods (Raatikainen 1992; Pawlikowski et al 1994).

2. THE REGENERATIVE METHOD FOR

 SIMULATION ANALYSIS

 A regenerative process { X(t): t ≥ 0} with state space Rk, is
(Iglehart 1978) a stochastic process which starts from scratch
at an increasing sequence of regeneration times {�i: i ≥ 1} .
That is, between any two consecutive regeneration times �i
and �i+1, say, the portion { X(t): �i ≤ t<�i+1} of the
regenerative process is an independent, identically
distributed replicate of the portion between any other two
consecutive regeneration times. However, the portion of the
process between times 0 and �1, while independent of the rest
of the process, is allowed to have a different distribution.
The typical situation in which the regenerative assumption is
satisfied is when �i represents the time of the ith entrance to a
fixed state s, say, and upon hitting this state the simulation
proceeds without any knowledge of its past history.
 Thus, the problem takes the form of detecting such a
recurrent state, which can be considered to represent the
system in a particular time instant within its steady-state
phase.
 It has been shown (Glynn 1994) that all “well -posed”
steady-state simulation problems are regenerative. Moreover,
Shedler (1993) provides valuable results for identifying
appropriate regenerative states in queuing network
simulations. More precisely, let us assume that at any time
instant, each job, is of exactly one class and one type. Jobs
may change class as they traverse the network, but they
cannot change type. The type of a job may influence its
routing path through the network as well as its service
requirements at each service center. Service priorities can
also be associated with job types. Any state s, where all jobs,
are placed at a service center, which sees only one class, or is
such that, jobs of the lowest priority are subject to pre-
emption, has been proved to be a regenerative state.
 Let us assume, our aim is to estimate the mean value of a
queuing network characteristic (e.g. throughput), which is
given, as a real-valued function f over the regenerative
stochastic process X = { X(t) ; t ≥ 0}

k(f) = E[f(X)]

Let us also call

∫
−

⋅=
N

N

7

7
N GXX;II=

�

������

the observation produced by the kth regenerative cycle. A
100 . % confidence interval for k(f), after the completion of
N regenerative cycles, is given (Iglehart 1978) by

�()
()

()
, �()

()

()
k N

s N F
a

N N
k N

s N F
a

N N
−

⋅
+

⋅
+

⋅
+

⋅

− −1 11

2

1

2

τ τ
 (1)

where

 ��1τ is the average cycle length

and

�()
()

()
k N

Z N

N
=

τ

(1)(1)

s N s N k N s N k N s N2
11
2

12
2 2

22
22() () �() () (�()) ()= − +

with

∑
=

−
−

=
1

N
1=I=11V N

�
��

�� �������
��� ,

∑
=

−
−

=
1

N
111V N

�
��

�� �����
��� ττ

∑
=

−−
−

=
1

N
11=I=11V N

�
�
�� �����������

��� ττκ

 However, although the estimator given in (2), is a
consistent estimator, which means that it tends to the mean
value with probabilit y 1, as ∞→1 , it is not unbiased.
Other estimators that have been suggested, in an attempt to
reduce the bias introduced by the aforementioned (classical)
estimator are the Fieller, the Beale, the jackknife and the Tin
point estimators (Iglehart 1978). Respectively, different
estimation procedures are being applied in deriving
confidence intervals in the Fieller and the jackknife cases.
 Another critical issue in producing confidence intervals,
that cover the true steady-state mean with the desired
probabilit y level, is the way the simulation run length is
determined. The reason is that different systems behave in
radically different ways and thus require radically different
run lengths to generate adequate confidence intervals. Thus,
no procedure in which the run length is fixed, before the
simulation begins, can guarantee accurate results. Instead of
this, sequential procedures, which determine the length of the
simulation during the course of the run, are preferred. At
least two different sequential procedures have been
suggested for use in regenerative stochastic simulations.
 The Lavenberg and Sauer (Lavenberg and Sauer 1977)
sequential procedure, which has been used in this work, is a
direct consequence of (1) and determines the number N of
the required regenerative cycles as

N

F
a

s l

k l l
≥

+

⋅
⋅

−1

2

2
1

2

δ τ
()

�() ()

 (4)

where s l k l l(), �(), ()τ are the sample estimates, after the l th

cycle of the simulation experiment. Thus, this approach
assumes that the required number of cycles in order to
achieve the desired accuracy is recalculated at the end of
each cycle.
 An interesting comparative study and survey of
sequential procedures for steady-state (serial) simulations,
can be found in (Law and Kelton 1982).
 In conclusion, although the regenerative method is not
the only one used for generating confidence intervals, it is a
highly desirable approach since it possesses valuable
asymptotic properties and a sound theoretical basis.
Moreover, it is the only one method that retains the

(2)

(3)

possibilit y of implementing algorithms, for obtaining
derivatives of expectations with respect to various
parameters (Reiman and Weiss 1986; Glynn 1987). It allows
performing model sensitivity studies and optimization based
on the results of a single simulation run.
 A thorough survey of all the available methods for
simulation output data analysis and the problems associated
with applying them in queuing models is given in
(Pawlikowski 1990).

3. THE PARALLEL REGENERATIVE SIMULATION

 In our parallel regenerative queuing network simulator,
each LP contains the entire model. A number of LPs start the
execution of the experiment simultaneously. The simulation
stops when the statistics produced by the sum of the
regenerative cycles completed by each one of the LPs,
satisfies (4) for all the performance measures of interest.
 The software features an object-oriented structure which:

• Allows simulation of open or closed queuing
networks with probabili stic job routing with
multiple job types, different queuing disciplines,
passive resources and primitive synchronization
characteristics (job fission and fusion).

• Allows concurrent estimation of multiple
performance measures (multivariate experiments)
such as mean throughputs, mean utili zations, mean
response times and mean queue lengths.

• Allows easy incorporation of new functionality and
more performance measures of interest.

 The software was developed under the Guide C++
OpenMP compiler on a SUN E3500 shared memory system,
in Edinburgh’s Parallel Computing Centre. OpenMP (1997),
is the proposed industry standard Application Program
Interface (API) for shared memory programming. It is based
on a combination of compiler directives, library routines and
environment variables that can be used to specify shared
memory parallelism in C++ or Fortran.
 At the moment, only the classical regenerative method
and the Lavenberg & Sauer sequential procedure have been
implemented. A minimum number of cycles had to be
specified for each one of the performance measures of
interest, since (4) was quite often temporarily satisfied after a
very small number of cycles and this lead to highly
inaccurate results. For the purposes of our evaluation study,
16 cycles was found to be enough, even for confidence
intervals with half width less than or equal to 2% of the
estimated value.

��
��
�� &38�

����

����
����

����',6.��

',6.��

���MREV����7(50,1$/6

36

����VHF�

36

������VHF�

������VHF�

������VHF�

)&)6

)&)6

Figure 1 A Central Server Model with Terminals

6285&(6,1.48(8(��� 48(8(���)&)6)&)6

�����������PV� ���PV���PV

Figure 2 An Open Queuing Network Model

 The conducted experiments aimed for evaluating the
method’s speedup gains and the resulted coverage in respect
to the number of processors and for providing guidelines for
the effective use of it. The queuing network models used
(Figures 1 and 2) were a closed and an open network taken
from (Sauer and Chandy 1981).
 The performance measures of interest were the mean
throughputs, mean utili zations, mean response times and
mean queue lengths of the resources shown in Figures 1 and
2. The tested half width accuracies of the 90% confidence
intervals were 2%, 1% and 0.5% for the first model and 2%
and 1% for the second one. For each case, we have collected
200 observations with 1, 2, 4, 6 and 8 processors by
differentiating the initial seed parameter in a uniform way.
 Figures 3 to 6 present some of the obtained speedup and
coverage (along with their 90% confidence intervals) results.
We observe:

• The resulted speedup gain is dependent on the size
of the model’s regenerative cycle. Thus, in the case
of the central server model with an average
regenerative cycle of 1143 events the obtained
speedups were important. In the case of the open
network with an average regenerative cycle of 77
events, the time spent at the end of each cycle in
the program’s critical region, for checking (4),
becomes important as the number of processors
increases. However, in most real problems, the
average cycle size is not as small as that of the
simple models used in this work.

• The obtained coverage results for the Response
Times in the central server model were
unacceptably low, even in the case of serial
execution. This can be only paid to the indirect
generation of point and variance estimates through
the use of the Little’s formula. While the problem
deserves more research, the marked job method
(Shedler, 1993) can be used instead.

• The parallel experiments exhibit a more important
coverage improvement as the relative half interval
width decreases. Following Lavenberg and Sauer,
a confidence interval estimation procedure can be
considered to be valid for a particular model, if the
upper endpoint of the 90% confidence interval on
the true coverage is at least as large as the desired
coverage, being 0.90 here. Thus, from the results
obtained by parallel execution, only those obtained
by using a relative half width of 1% or 0.5% for
the central server and 1% for the open network can
be accepted to be of an adequate quality.
Moreover, their quality deteriorates as the number
of processors used, increases.

Similar results have been reported in other parallel, but non-
regenerative experimental studies. Moreover, in
(Heidelberger 1988) a framework for the statistical analysis

Figure 3 Speedups for the Central Server Model (200 cases)

Figure 4 Coverage results for the Central Server Model with
1, 4 and 8 Processors (200 cases)

Figure 5 Speedups for the Open Network (200 cases)

Figure 6 Coverage results for the Open Network with 1, 4
and 8 Processors (200 cases)

�

SPEEDUPS FOR THE CENTRAL SERVER MODEL

0

1

2

3

4

0 2 4 6 8

PROCESSORS

0,005

0,01

0,02

Relative confidence
intervals width

�
COVERAGE RESULTS FOR THE CENTRAL SERVER WITH 4 PROCS

0,6

0,7

0,8

0,9

1

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

RT TRPUT TL UTIL RT TRPUT TL UTIL RT TRPUT TL UTIL RT TRPUT TL UTIL

CPU DISK1 DISK2 TERMINALS

�
COVERAGE RESULTS FOR THE CENTRAL SERVER WITH 8 PROCS

0,6

0,7

0,8

0,9

1

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

RT TRPUT TL UTIL RT TRPUT TL UTIL RT TRPUT TL UTIL RT TRPUT TL UTIL

CPU DISK1 DISK2 TERMINALS

�
COVERAGE RESULTS FOR THE CENTRAL SERVER WITH 1 PROC

0,6

0,7

0,8

0,9

1

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

0
,0

2

0
,0

1

0
,0

0
5

RT TRPUT TL UTIL RT TRPUT TL UTIL RT TRPUT TL UTIL RT TRPUT TL UTIL

CPU DISK1 DISK2 TERMINALS

�
SPEEDUPS FOR THE OPEN NETWORK

0

1

2

3

4

0 2 4 6 8

PROCESSORS

0,01

0,02

Relative confidence
interval width

�
COVERAGE RESULTS FOR THE OPEN NETWORK WITH 1 PROC

0,6

0,7

0,8

0,9

1

0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01

RT TRPUT TL UTIL RT TRPUT TL UTIL

QUEUE1 QUEUE2

�
COVERAGE RESULTS FOR THE OPEN NETWORK WITH 4 PROCS

0,6

0,7

0,8

0,9

1

0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01

RT TRPUT TL UTIL RT TRPUT TL UTIL

QUEUE1 QUEUE2

�
COVERAGE RESULTS FOR THE OPEN NETWORK WITH 8 PROCS

0,6

0,7

0,8

0,9

1

1,1

0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01

RT TRPUT TL UTIL RT TRPUT TL UTIL

QUEUE1 QUEUE2

of parallel simulations is introduced.

4. CONCLUSION

 This work presents the parallel regenerative simulation
approach. The theoretical principles where this approach is
based on are explained. The first experimental results
show, that if our aim is to retain an adequate statistical
quality, the number of processors to be used depends on the
chosen precision requirements.
 However, since the regenerative approach constitutes a
valuable tool with applications in models’ sensitivity study
and optimization, the field certainly deserves more research.
Other estimators and sequential analysis procedures have to
be implemented and to be compared to the current classical
approach.

ACKNOWLEDGMENT
The authors would like to acknowledge the support of the
European Commission through grant number HPRI-1999-
CT-00026 (the TRACS Programme at EPCC).

REFERENCES

Andradottir, S. and Ott, T. 1995. “Time-segmentation parallel

simulation of networks of queues with loss or communication
blocking” , ACM Transactions on Modeling and Computer
Simulation, Vol. 5, 269-305.

Cox, D. R. and Smith, S. W. L., 1961. Queues, Wiley, New York
Crane, M. and Iglehart, D..L. 1974. “Simulating stable stochastic

systems: I. General multiserver queues” , Journal of ACM, Vol.
21, 103-113.

Fishman, G. S. 1973. “Statistical analysis for queuing simulation” ,
Management Science, Vol. 20, 363-369.

Fujimoto, R. M. and Nikolaidids, I., et al. 1995. “Parallel
simulation of statistical multiplexers” , Journal of Discrete
Event Dynamic Systems, Vol. 5, 115-140.

Fujimoto, R. M. 2000. Parallel and Distributed Simulation
Systems, Wiley, New York

Glynn, P. W. 1987. “Likelihood ration estimation: An overview”,
Proceedings of the 1987 Winter Simulation Conference,
Society for Computer Simulation, 366-375.

Glynn, P. W. 1994. “Some topics in regenerative steady-state
simulation” , Acta Applicandae Mathematicae, Vol. 34, 225-
236.

Heidelberger, P. 1986. “Statistical Analysis of Parallel
Simulations” , Proceedings of the 1986 Winter Simulation
Conference, 290-295.

Heidelberger, P. 1988. “Discrete Event Simulations and Parallel
Processing: Statistical Properties” , SIAM Journal on Scientific
and Statistical Computing, Vol. 9, 1114-1132.

Iglehart, D. L. 1978. “The regenerative method for simulation
analysis” , In Current Trends in Programming Methodology.
Vol. III , Software Modeling, K. M. Chandy and P. T. Yeh,
Eds., Prentice Hall , Englewwod Cli ffs, N. J., 52-71.

Katsaros, P. and Lazos C. 2000. “Regenerative queuing network
distributed simulation” , Proceedings of the 14th European
Simulation Multiconference, Society for Computer Simulation,
109-113.

Katsaros, P. and Lazos C. 2000. “A technique for determining
queuing network simulation length based on desired accuracy” ,
International Journal of Computer Systems Science &
Engineering, Vol. 15, 399-404.

Lavenberg, S. S. and Sauer, C. H. 1977. “Sequential stopping rules
for the regenerative method of simulation” , IBM Journal of
Research and Development, Vol. 21, 545-558.

Law, A. M. and Kelton, W. D. 1982. “Confidence intervals for
steady-state simulations, II : A survey of sequential procedures” ,
Management Science, Vol. 28, 550-562.

Matsumoto, M. and Nishimura, T. 1998. “Mersenne Twister: A
623-dimensionally equidistributed uniform pseudorandom
number generator” , ACM Transactions on Modeling and
Computer Simulation, Vol. 8, 3-30.

Pawlikowski, K. 1990. “Steady-state simulation of queuing
processes: A survey of problems and solutions” , ACM
Computing Surveys, Vol. 22, 123-170.

Pawlikowski, K. and Yau, V. 1993. Methodology for stochastic
simulation for performance evaluation of data communication
networks, Telecom Corporation of New Zealand, Welli ngton,
New Zealand

Pawlikowski, K., Yau, V. W. C. and McNickle, D. 1994.
“Distributed stochastic discrete-event simulation in parallel
time streams”, Proceedings of the 1994 Winter Simulation
Conference, Society for Computer Simulation, 723-730.

Pawlikowski, K., McNickle, D. C. and Ewing, G. 1998. “Coverage
of confidence intervals in sequential steady-state simulation” ,
Simulation Practice and Theory, Vol. 6, 255-267.

Raatikainen, K. 1992. “Run Length Control using Parallel Spectral
Methods” , Proceedings of the 1992 Winter Simulation
Conference, Arlington

Rego, V. J. and Sunderam, V.S. 1992. “Experiments in concurrent
stochastic simulation: the EcliPSe paradigm”, Journal of
Parallel and Distributed Computing, Vol. 14, 66-84.

Reiman, M. and Weiss, A. 1986. “Sensitivity analysis via
li kelihood ratios” , Proceedings of the 1986 Winter Simulation
Conference, Society for Computer Simulation, 285-289.

Sauer, C. H. and Chandy, K. M. 1981. Computer Systems
Performance Modeling, Prentice-Hall , New Jersey

Shedler, G. S. 1993. Regenerative Stochastic Simulation, Academic
Press, Boston

The OpenMP Architecture Review Board. 1997. OpenMP: A
Proposed Industry Standard API for Shared Memory
Programming, White Paper

AUTHOR BIOGRAPHY

PANAJOTIS KATSAROS received a BSc degree in
mathematics from the Aristotle University of Thessaloniki –
Greece, in 1992. He also received an MSc degree in software
engineering from the University of Aston in Birmingham –
UK, in 1993. He is currently a PhD candidate in the
Department of Informatics of the Aristotle University of
Thessaloniki – Greece and he is supervised by Professor
Lazos. His research interests include queuing network based
performance analysis and simulation of distributed object
systems and advanced sensitivity analysis techniques.

CONSTANTINE LAZOS received a BSc degree in
mathematics from the University of Athens, an MSc degree
in Computer Science from the University of Birmingham and
a P.h.d. in Computer Science from the University of
Southampton. He was a lecturer for two academic years at
the University of Birmingham and he is a Professor of
Computer Science at the Aristotle University of
Thessaloniki, since 1980. His research interests include
computer systems performance analysis and simulation
techniques.

