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ABSTRACT 
 
Discrete-event stochastic simulation is one of the most 
commonly used tools for performance modeling and 
evaluation. Parallel/distributed simulation enables a 
simulation program to execute on a computing system 
containing multiple processors and aims in reducing the 
model’s execution time. Three basic types of execution 
mechanisms have appeared. The first two (the conservative 
and the optimistic approach) aim in partitioning the 
simulation model into a number of sub-models, also called 
logical processes (LPs). Their emphasis, lies on the 
specification of the appropriate synchronization, deadlock 
handling and/or memory management algorithms. The third 
approach (known as the time parallel approach or simply as 
Multiple Replications in Parallel Time Streams), aims in 
overcoming the need for suff iciently long runs in steady-state 
stochastic simulations, by executing multiple replications of 
the entire model in a parallel fashion. This work, presents a 
fast parallel OpenMP based implementation, for multivariate 
queuing network simulations. The simulation results are 
statistically processed, by applying the classical regenerative 
method under the Lavenberg & Sauer sequential analysis 
procedure. The first experimental results indicate significant 
speedups accompanied by acceptable confidence interval 
coverage. 
 
1. INTRODUCTION 
 
 Parallel/distributed discrete event simulation has grown 
rapidly over the last years, as a result of the need to employ 
the high-potential processing power of the modern 
multiprocessors, for speeding up simulation runs. Research 
on this field has been primarily concentrated in developing 
algorithms where several processors cooperate on a single 
realization of the stochastic process simulated (Fujimoto 
2000). However, the effectiveness of such an approach 
depends on the level of inherent parallelism that exists in the 
simulated model.  
 A time parallel simulation, partitions the simulation time 
into a number of non-overlapping intervals, as many as, the 
number of the available processors. A logical process 
assigned to a particular processor, computes the portion of 
the sample path within the corresponding time interval. The 
fundamental problem that has to be overcome by a time 

parallel simulation algorithm is to ensure that the model 
states computed at the “boundaries” of the time intervals, 
match each other.  
 In this sense, the regenerative method provides a safe 
way to partition the simulation time into a number of 
intervals. This method was independently developed in (Cox 
and Smith 1961; Fishman 1973; Crane and Iglehart 1974) 
and it is based on the detection of a recurrent model state, 
which can be considered to represent the system in a 
particular time instant, within its steady-state phase. Every 
time the model passes through this state, the experiment is 
probabili stically restarted. Thus, a single simulation run is 
partitioned into cycles.  
 Since the classical regenerative estimation depends only 
on the difference between the time instant of the end and the 
time instant of the start of a cycle (Katsaros and Lazos 
2000a), we can assume parallel time streams starting from 
the time instant 0, as representing a single regenerative 
realization of the simulated model. Each time stream 
contains an integer number of regenerative cycles. All the 
regenerative observations generated by each one of the 
available processors, are independent to each other and they 
can be used in producing confidence intervals. 
 Time parallel regenerative algorithms have been also 
used in (Andradottir and Ott 1995; Fujimoto and Nikolaidis 
1995; Rego and Sunderam 1992). However, this is the first 
work, where the method’s validity is being assessed not only 
in respect to the succeeded speedups, but also in respect to 
the resulted confidence interval coverage. Coverage is 
defined (Pawlikowski et al 1998) as the relative frequency 
with which the confidence interval contains the true 
parameter. 
 The conducted experiments were carried out by the use of 
a general queuing network simulator, developed by us under 
the Guide C++ OpenMP compiler on a SUN E3500 shared 
memory system. The slow multiplicative congruential 
pseudorandom number generator which is usually used in 
similar software (Katsaros and Lazos 2000b), has been 
substituted by a new generalized feedback shift register 
(GSFR) ultra fast generator, known as the Mersenne Twister 
(Matsumoto and Nishimura 1998).  
 Another innovative aspect of this work is the multivariate 
nature of the conducted experiments, as opposed to the 
univariate evaluations presented in most similar studies. This 
has leaded us, to valuable conclusions and recommendations 
for the safe use of the suggested approach in practical 
multivariate studies. 
 Similar experimental evaluations have been presented, 
for the independent replications approach (Heidelberger 



 

 

1986), the batch means and the non-overlapping batch means 
(Pawlikowski and Yau 1993) and the spectral analysis 
methods (Raatikainen 1992; Pawlikowski et al 1994).  
 
2. THE REGENERATIVE METHOD FOR  

 SIMULATION ANALYSIS 
 
 A regenerative process { X(t): t ≥ 0} with state space Rk, is 
(Iglehart 1978) a stochastic process which starts from scratch 
at an increasing sequence of regeneration times {�i: i ≥ 1} . 
That is, between any two consecutive regeneration times �i 
and �i+1, say, the portion { X(t): �i ≤ t<�i+1} of the 
regenerative process is an independent, identically 
distributed replicate of the portion between any other two 
consecutive regeneration times. However, the portion of the 
process between times 0 and �1, while independent of the rest 
of the process, is allowed to have a different distribution. 
The typical situation in which the regenerative assumption is 
satisfied is when �i represents the time of the ith entrance to a 
fixed state s, say, and upon hitting this state the simulation 
proceeds without any knowledge of its past history. 
 Thus, the problem takes the form of detecting such a 
recurrent state, which can be considered to represent the 
system in a particular time instant within its steady-state 
phase. 
 It has been shown (Glynn 1994) that all “well -posed” 
steady-state simulation problems are regenerative. Moreover, 
Shedler (1993) provides valuable results for identifying 
appropriate regenerative states in queuing network 
simulations. More precisely, let us assume that at any time 
instant, each job, is of exactly one class and one type. Jobs 
may change class as they traverse the network, but they 
cannot change type. The type of a job may influence its 
routing path through the network as well as its service 
requirements at each service center. Service priorities can 
also be associated with job types. Any state s, where all jobs, 
are placed at a service center, which sees only one class, or is 
such that, jobs of the lowest priority are subject to pre-
emption, has been proved to be a regenerative state. 
 Let us assume, our aim is to estimate the mean value of a 
queuing network characteristic (e.g. throughput), which is 
given, as a real-valued function f over the regenerative 
stochastic process X = { X(t) ; t ≥ 0}  

k(f) = E[f(X)] 

Let us also call  
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the observation produced by the kth regenerative cycle. A 
100 . % confidence interval for k(f), after the completion of 
N regenerative cycles, is given (Iglehart 1978) by 
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 However, although the estimator given in (2), is a 
consistent estimator, which means that it tends to the mean 
value with probabilit y 1, as ∞→1 , it is not unbiased. 
Other estimators that have been suggested, in an attempt to 
reduce the bias introduced by the aforementioned (classical) 
estimator are the Fieller, the Beale, the jackknife and the Tin 
point estimators (Iglehart 1978). Respectively, different 
estimation procedures are being applied in deriving 
confidence intervals in the Fieller and the jackknife cases.
 Another critical issue in producing confidence intervals, 
that cover the true steady-state mean with the desired 
probabilit y level, is the way the simulation run length is 
determined. The reason is that different systems behave in 
radically different ways and thus require radically different 
run lengths to generate adequate confidence intervals. Thus, 
no procedure in which the run length is fixed, before the 
simulation begins, can guarantee accurate results. Instead of 
this, sequential procedures, which determine the length of the 
simulation during the course of the run, are preferred. At 
least two different sequential procedures have been 
suggested for use in regenerative stochastic simulations.  
 The Lavenberg and Sauer (Lavenberg and Sauer 1977) 
sequential procedure, which has been used in this work, is a 
direct consequence of (1) and determines the number N of 
the required regenerative cycles as 
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where s l k l l( ), �( ), ( )τ  are the sample estimates, after the l th 

cycle of the simulation experiment. Thus, this approach 
assumes that the required number of cycles in order to 
achieve the desired accuracy is recalculated at the end of 
each cycle. 
 An interesting comparative study and survey of 
sequential procedures for steady-state (serial) simulations, 
can be found in (Law and Kelton 1982). 
 In conclusion, although the regenerative method is not 
the only one used for generating confidence intervals, it is a 
highly desirable approach since it possesses valuable 
asymptotic properties and a sound theoretical basis. 
Moreover, it is the only one method that retains the 
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possibilit y of implementing algorithms, for obtaining 
derivatives of expectations with respect to various 
parameters (Reiman and Weiss 1986; Glynn 1987). It allows 
performing model sensitivity studies and optimization based 
on the results of a single simulation run. 
 A thorough survey of all the available methods for 
simulation output data analysis and the problems associated 
with applying them in queuing models is given in 
(Pawlikowski 1990). 
 
3. THE PARALLEL REGENERATIVE SIMULATION 
 
 In our parallel regenerative queuing network simulator, 
each LP contains the entire model. A number of LPs start the 
execution of the experiment simultaneously. The simulation 
stops when the statistics produced by the sum of the 
regenerative cycles completed by each one of the LPs, 
satisfies (4) for all the performance measures of interest. 
 The software features an object-oriented structure which: 

• Allows simulation of open or closed queuing 
networks with probabili stic job routing with 
multiple job types, different queuing disciplines, 
passive resources and primitive synchronization 
characteristics (job fission and fusion). 

• Allows concurrent estimation of multiple 
performance measures (multivariate experiments) 
such as mean throughputs, mean utili zations, mean 
response times and mean queue lengths. 

• Allows easy incorporation of new functionality and 
more performance measures of interest. 

 The software was developed under the Guide C++ 
OpenMP compiler on a SUN E3500 shared memory system, 
in Edinburgh’s Parallel Computing Centre. OpenMP (1997), 
is the proposed industry standard Application Program 
Interface (API) for shared memory programming. It is based 
on a combination of compiler directives, library routines and 
environment variables that can be used to specify shared 
memory parallelism in C++ or Fortran. 
 At the moment, only the classical regenerative method 
and the Lavenberg & Sauer sequential procedure have been 
implemented. A minimum number of cycles had to be 
specified for each one of the performance measures of 
interest, since (4) was quite often temporarily satisfied after a 
very small number of cycles and this lead to highly 
inaccurate results. For the purposes of our evaluation study, 
16 cycles was found to be enough, even for confidence 
intervals with half width less than or equal to 2% of the 
estimated value. 
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Figure 1 A Central Server Model with Terminals 
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Figure 2 An Open Queuing Network Model 

 The conducted experiments aimed for evaluating the 
method’s speedup gains and the resulted coverage in respect 
to the number of processors and for providing guidelines for 
the effective use of it. The queuing network models used 
(Figures 1 and 2) were a closed and an open network taken 
from (Sauer and Chandy 1981). 
 The performance measures of interest were the mean 
throughputs, mean utili zations, mean response times and 
mean queue lengths of the resources shown in Figures 1 and 
2. The tested half width accuracies of the 90% confidence 
intervals were 2%, 1% and 0.5% for the first model and 2% 
and 1% for the second one. For each case, we have collected 
200 observations with 1, 2, 4, 6 and 8 processors by 
differentiating the initial seed parameter in a uniform way.  
 Figures 3 to 6 present some of the obtained speedup and 
coverage (along with their 90% confidence intervals) results. 
We observe: 

• The resulted speedup gain is dependent on the size 
of the model’s regenerative cycle. Thus, in the case 
of the central server model with an average 
regenerative cycle of 1143 events the obtained 
speedups were important. In the case of the open 
network with an average regenerative cycle of 77 
events, the time spent at the end of each cycle in 
the program’s critical region, for checking (4), 
becomes important as the number of processors 
increases. However, in most real problems, the 
average cycle size is not as small as that of the 
simple models used in this work. 

• The obtained coverage results for the Response 
Times in the central server model were 
unacceptably low, even in the case of serial 
execution. This can be only paid to the indirect 
generation of point and variance estimates through 
the use of the Little’s formula. While the problem 
deserves more research, the marked job method 
(Shedler, 1993) can be used instead. 

• The parallel experiments exhibit a more important 
coverage improvement as the relative half interval 
width decreases. Following Lavenberg and Sauer, 
a confidence interval estimation procedure can be 
considered to be valid for a particular model, if the 
upper endpoint of the 90% confidence interval on 
the true coverage is at least as large as the desired 
coverage, being 0.90 here. Thus, from the results 
obtained by parallel execution, only those obtained 
by using a relative half width of 1% or 0.5% for 
the central server and 1% for the open network can 
be accepted to be of an adequate quality. 
Moreover, their quality deteriorates as the number 
of processors used, increases. 

Similar results have been reported in other parallel, but non-
regenerative experimental studies. Moreover, in 
(Heidelberger 1988) a framework for the statistical analysis 



 

 

 

Figure 3 Speedups for the Central Server Model (200 cases) 
 

 

 

 

Figure 4 Coverage results for the Central Server Model with 
1, 4 and 8 Processors (200 cases) 

 

Figure 5 Speedups for the Open Network (200 cases) 
 

 

 

 

Figure 6 Coverage results for the Open Network with 1, 4 
and 8 Processors (200 cases) 
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of parallel simulations is introduced. 
 
4. CONCLUSION 
 
 This work presents the parallel regenerative simulation 
approach. The theoretical principles where this approach is 
based on are explained. The first experimental results 
show, that if our aim is to retain an adequate statistical 
quality, the number of processors to be used depends on the 
chosen precision requirements. 
 However, since the regenerative approach constitutes a 
valuable tool with applications in models’ sensitivity study 
and optimization, the field certainly deserves more research. 
Other estimators and sequential analysis procedures have to 
be implemented and to be compared to the current classical 
approach.  
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