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Abstract 
Model checking security protocols is based on an intruder model that represents the 
eavesdropping or interception of the exchanged messages, while at the same time performs 
attack actions against the ongoing protocol session(s). Any attempt to enumerate all 
messages that can be deduced by the intruder and the possible actions in all protocol steps 
results in an enormous branching of the model’s state space. In current work, we introduce 
a new intruder model that can be exploited for state space reduction, optionally in 
combination with known techniques, such as partial order and symmetry reduction. The 
proposed intruder modeling approach called Message Inspection (MI) is based on 
enhancing the intruder’s knowledge with metadata for the exchanged messages. In a 
preliminary simulation run, the intruder tags the analyzed messages with protocol-specific 
values for a set of predefined parameters. This metadata is used to identify possible attack 
actions, for which it is a priori known that they cannot cause a security violation. The MI 
algorithm selects attack actions that can be discarded, from an open-ended base of primitive 
attack actions. Thus, model checking focuses only on attack actions that may disclose a 
security violation. The most interesting consequence is a non negligible state-space 
pruning, but at the same time our approach also allows customizing the behavior of the 
intruder model, in order e.g. to make it appropriate for model checking problems that 
involve liveness. We provide experimental results obtained with the SPIN model checker, 
for the Needham Schroeder security protocol.  
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1. Introduction 
 
Analyses of existing cryptographic protocols have shown that even when cryptographic 
primitives are considered perfectly secure (e.g. perfect encryption by key-based 
cryptographic schemes, infeasible inversion of hash functions, nonce values that cannot be 
predicted) the protocol itself may have flaws, which can be exploited by an intruder. In the 
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related bibliography [1, 2] there are examples of protocols that were published with errors, 
which remained undiscovered for many years. Thus, formal ways of reasoning [3] for 
whether a given protocol meets its security goals is an absolute necessity. 

Model checking is a widespread fully automatic formal analysis that has been 
successful in discovering flaws in protocols considered to be correct. However, ongoing 
research has not stopped to look for new ways to tackle the problem of state space 
explosion, which still prevents analyses of complex protocols and protocol configurations 
(e.g. higher bounds in the number of ongoing protocol sessions). 

 In general-purpose model checking [4], state space explosion comes from the 
asynchronous composition of the modeled concurrent processes and the inherent symmetry 
redundancy of models in many different problem domains. In security model checking, one 
additional factor that makes the problem harder is the complexity of the assumed intruder 
behavior. 

Model checking security guarantees such as secrecy and authentication is based on the 
hardest possible assumptions for the dominance of the intruder over the communication 
between the protocol participants. These assumptions represent the general Dolev-Yao 
intruder model [5]: the intruder can intercept any message transmitted on a public 
communication channel and can also replace it with a message constructed from his initial 
knowledge and parts of the messages sent by the participants in the same or in other 
protocol sessions (intruder’s knowledge base). The new messages are created by applying 
one or more out of four (4) basic operations: encryption, decryption, concatenation and 
projection. Also, a typical Dolev-Yao intruder model includes additional assumptions, such 
as the un-breakability of the encryption used and the possibility the intruder to prevent an 
original message from reaching its destination. 

With the mentioned assumptions, any attempt to enumerate all possible attacks in all 
protocol steps results in an enormous branching of the state space. In the general case, for a 
given set of eavesdropped messages, the Dolev-Yao operations may be combined 
recursively, thus producing infinitely many possible fake messages. In explicit state model 
checking, analysts bound the size of fake messages, in order to set their models finite. 
However, memory space becomes crucial, due to the need to store information for each 
state, including the local states of all protocol participants and the accumulated knowledge 
of the intruder, for the protocol execution. An additional problem is that under the 
described assumptions the involved protocol parties interact asynchronously through the 
same communication channel. The interleaving and concurrency among them may easily 
result into state space explosion. Analysts observed that the size of the state space increases 
exponentially with the number of protocol sessions. 

Let us consider a protocol execution with two parties A and B acting as initiators of two 
separate protocol sessions. The state where initiator A has started the protocol and B is idle 
is symmetric to the state where A is idle and B has started the protocol. Symmetry 
reductions partition the state space into various equivalence classes, which are exploited by 
taking into account only one state from each partition. Symmetry reductions for security 
protocol verification have been first implemented in Brutus [6]. In another work [7], the 
same authors address the complications of applying partial order reduction, due to tracking 
the accumulated knowledge of the intruder. Partial order reduction avoids creating states 
that cannot be affected by interleaving the execution of the model’s processes. Results from 
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model checking experiments with partial order reduction pruned the state space by a factor 
of 10 to 1877, depending on the examined protocol and the numbers of initiators and 
responders. Model checking experiments with symmetry reductions that were applied 
together with partial order reduction resulted in reductions of the state spaces by a factor of 
up to 58, with a more significant effect in experiments with four to five initiators and four 
to five responders. 

Techniques that delimit the branching of the state space, due to the intruder’s fake 
messages – without excluding possible attacks – have been implemented in specialized 
security model checkers [8]. Some techniques [9] exploit certain properties that have been 
identified as characteristics of security protocols, but there is also one recent work [10] that 
proposes a “divide-and-conquer” approach for reducing the amount of memory needed. A 
broad family of state space reduction techniques adopts a symbolic representation of the 
state space, in order to avoid to explicitly enumerating all possible messages that the 
intruder can generate. In general, most techniques can be exploited, only if the analyst will 
adopt the model checking tool that implements the respective technique. We provide a 
detailed review of related work in Section 5. However, we believe that any new proposal 
for state space reduction still contributes into improving the efficiency and the feasible size 
of model checking tasks.  

In current article, we introduce the Message Inspection (MI) intruder model, which is 
essentially a Dolev-Yao style man-in-the-middle intruder based on the idea of improving 
his knowledge with protocol-specific metadata that provide information for the exchanged 
messages. In a preliminary simulation run, the intruder tags the eavesdropped messages 
with specific metadata parameters enabling him to validate all possible attack actions. The 
MI algorithm then decides based on this enhanced knowledge, which of the attacks will 
certainly fail and the simulation run terminates with a report of the attack actions that can 
be discarded. 

This approach guides the pruning of the model’s state-space, since the intruder avoids 
performing attacks for which it is a priori known that they cannot uncover a protocol flaw. 
The described two-stage procedure does not limit the overall model checking effectiveness, 
because the overall analysis can still capture security violations that are encoded as safety 
guarantees (secrecy and authentication) and at the same time allows customizing the 
intruder model for capturing security violations that involve liveness (e.g. non-repudiation). 

Section 2 introduces basic terminology and describes in detail the general Dolev - Yao 
intruder model. Section 3 presents the Message Inspection intruder model. The model 
structure is formally defined and subsequently we introduce the MI algorithm that decides, 
which attack actions will be performed against the analyzed protocol. In Section 4, we 
provide experimental results for a MI intruder model in the SPIN model checker [11], when 
compared with a generic Dolev-Yao intruder model applied upon the Needham Schroeder 
security protocol (NSPK) [12]. Section 5 reviews related work on intruder modeling and 
state space reduction techniques, in order to point out the differences from the proposed 
intruder model and eventually to discuss its strengths and its weaknesses. Finally, 
conclusions and future work prospects are discussed in Section 6.  
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2. Basic terminology and the general Dolev - Yao intruder model 
 
Current section introduces basic terminology for protocol specification and provides a brief 
presentation of the attack actions of the general Dolev - Yao intruder model. 

An atomic message is any member of one of the following sets: 
- Keys: This set includes all the keys used for encryption, such that every key k ∈ Keys 

has an inverse k-1 ∈ Keys. For symmetric cryptography, the decryption key is the same 
as the encryption key, i.e. k = k-1. 

- Agents: The set including all names of the honest protocol participants. 
- Nonces: This is a set with members representing randomly generated numbers being 

used as timestamps: upon receipt of information that includes a nonce the receiver 
knows that the communicated information has been sent after the time instant where 
the nonce was generated. 

- Data: The members of this set represent the plaintext strings exchanged between the 
protocol’s participants. 

The intruder is represented by I, with I ∉ Agents. Also, we define the binary relation,  

is_key_of = {(k, id): k ∈ Keys, id ∈ Agents ∪ {I}, “key k is used by the participant id”} 

In the case of public key cryptography, the cardinality of the set is_key_of (k) for some k ∈ 
Keys is 1. However, for symmetric cryptography the cardinality of this set is 2, since the 
same key is shared between the communicating protocol participants.   

The set Msgs of all exchanged messages is defined inductively over the disjoint union, 
represented by AMsgs, of the mentioned set of atomic messages with the set {I}: 

AMsgs = Keys ∪ Agents ∪ {I} ∪ Nonces ∪ Data   (1) 

with Seti ∩ Setj = ∅ for any two Seti, Setj of the unified sets. More precisely: 
- If α ∈ AMsgs then α ∈ Msgs. 
- If msgx ∈ Msgs and msgy ∈ Msgs then msgx ⋅ msgy ∈ Msgs, where ⋅ represents message 

concatenation. 
- If msg ∈ Msgs and k ∈ Keys then {msg}k ∈ Msgs, where {●}k represents encryption 

with key k. 
Each ag ∈ Agents may attempt to execute the protocol for a bounded number of times 

say #Sesag and each such attempt is a separate protocol session identified by noSes, such 
that 1 ≤ noSes ≤ #Sesag. In a protocol session, ag either plays the role of the initiator or the 
responder. We denote by noSes

nsentag  the finite-length concatenation sequence of messages 
sent by ag ∈ Agents in the course of session noSes:  

)( ag
1

ag
nnn msgsentsent noSesnoSes ⋅= −      (2) 

with the first term equal to the null sequence, i.e. ) (ag
0 =noSessent . The sequence noSes

nsent ag  
represents participant’s ag history for session noSes, after having sent msgn. From now on 
this will be denoted by noSes

historyag . 
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We write as noSes
nrcvd ag  the finite-length concatenation sequence of messages received by 

ag in the course of session noSes. In a given time instant, the acquired participant’s 
knowledge for the ongoing protocol execution is given as: 

agknowledge U
ag

ag
Ses

noSes
i

noSesrcvd
#

1
)max( }{ 

=

= ∪ agin_knowledge            (3) 

where agin_knowledge represents the initial knowledge base of ag (keys, agent identities and 
so on) and i > 0 represents the terms of the received message concatenation sequences. 

A protocol session for a honest participant ag ∈ Agents is defined as a 6-tuple  
〈ag, noSes, c-ag, agknowledge, noSes

historyag , P〉      (4) 
where 1 ≤ noSes ≤ #Sesag, c-ag ∈ Agents ∪ {I} is the receiver of the message(s) sent by ag 
in session noSes and P is a process description, i.e. a sequence of steps to be performed in 
the role of the initiator or the responder. The process steps are given as pairs of:  

- an action name, some member of the set Act = {“send”, “receive”} representing the 
dispatch or receipt of a message to/from another participant, 

- a message pattern that contains one or more message variables (the set MsgsP of 
message patterns is defined in the same way as the set Msgs of exchanged messages, 
with the additional inductive rule: if var is a message variable, then var ∈ MsgsP).  

The assumptions mentioned in section 1 for the general Dolev - Yao intruder imply that 
in a given time instant the acquired intruder’s knowledge for the ongoing protocol 
execution is given as: 

U U
 ag

#

1

ag
)max(

ag

}{  
Agents

Ses

noSes
iknowledge

noSessentI
∈ =

= ∪ Iin_knowledge          (5) 

for all ag∈Agents and i ≥ 1 representing the terms of the eavesdropped message 
concatenation sequences. By Ιin_knowledge we denote the initial intruder’s knowledge base. 
For the most powerful intruder I, we consider that 

Iin_knowledge= Agents ∪ {k ∈ is_key_of -1(I)}         (6) 
i.e. the intruder knows the names of all honest participants and the key(s) that he uses, if 
participating in legitimate protocol sessions either as initiator or responder. If this is not the 
examined protocol execution case, then is_key_of -1(I) = ∅.   

A protocol model is defined as the asynchronous composition of the models for each 
protocol session, including the intruder model, whose behavior depends on the possible 
attack actions. In the general Dolev-Yao intruder model [5], attack actions involve the 
sending of fake messages that are inferred by applying the deduction rules shown in 
equations (7) to (10), for all messages in Iknowledge. In all cases, the premises of the rule are 
specified above the line, whereas the deduced messages are given below the line.   

 

- message concatenation: 
knowledgexyyx

knowledgeyknowledgex

Imsgmsgmsgmsg
ImsgImsg
∈⋅⋅

∈∈

 

 

,
,             (7) 

- message projection:  
knowledgeyx

knowledgeyx

Imsgmsg
Imsgmsg

∈

∈⋅

 ,
              (8) 
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- message encryption: ⇒∈∈• KeyskIknowledgek  ,}{
knowledgekx

knowledgeknowledgex

Imsg
IkImsg

∈

∈∈

}{
,  

          
knowledgemsgymsgx

knowledgeyknowledgex

Imsgmsg
ImsgImsg

xy
∈

∈∈
∨

}{,}{
 ,

     (9) 

- message decryption:  
knowledgex

knowledge

knowledge
knowledgekx

Imsg
Ik

Ik
Imsg

∈

∈
∈

∈ −1 ,}{
           (10) 

 
Existing model checking approaches use the aforementioned Dolev-Yao deduction 

rules based on an abstract representation of the messages that the intruder manipulates. 
Under the assumptions (i) that the encryption method used is un-breakable and (ii) that it is 
possible to prevent an original message from reaching its destination, the intruder model 
performs non-deterministically selected attack actions that are executed within a single 
thread of control. Each possible execution of the model corresponds to a finite alternating 
sequence of global states and “send” or “receive” actions: 

τ = s0 α1 s1 α2 . . . sn, for some n ∈ ℵ           (11) 

such that j
a

j ss j   1 ⎯→⎯−  for 0 < j ≤ n and for the transition relation → defined in the 
cartesian product, 

→ ⊆ S × PS × Act × Msgs × S            (12)  

where S is the set of global states, PS is the set of protocol sessions and Act is the set of 
action names. 

 
 

3. The MI intruder model 
 
This section introduces the MI intruder model and describes its use throughout the 
preliminary simulation run and the model checking phase. 

The scope of the MI intruder model includes all security properties that may be encoded 
as violations of safety (secrecy and authentication), but it is also possible to customize the 
behavior of the intruder model – according to [13] – for model checking properties that 
involve liveness (e.g. non repudiation or fairness). More precisely, in SPIN [14], violation 
of protocol safety may be detected as reachability of invalid end states or alternatively as 
violation of monitor assertions. Properties that involve liveness are expressed in various 
ways, including the use of Linear Temporal Logic (LTL). In its current form, the MI 
intruder model utilizes message metadata comparisons (encryption characteristics, message 
timestamps and message sizes) for detecting attack actions that may be removed, without 
excluding any attacks that the analyst needs to check. Attack actions that can be removed 
are encoded into an open-ended base of primitive attacks (message replays, integrity 
violations, parallel session attacks and type-flaw attacks) that have been formalized in [15]. 
Since messages are compared one by one, our model and the used open-ended base of 



7 

attack actions can be applied on analysis problems, where protocol participants exchange 
messages on a unicast communication basis. Extension of the MI intruder model for model 
checking multicast security protocols would be based on an updated set of primitive attack 
actions and on appropriate message metadata comparisons that will possibly take into 
account additional metadata values.  

The model can be considered as an optimization approach, which is based on a 
symbolic representation that avoids explicit enumeration of the messages that the intruder 
can generate from Iknowledge. Instead of using the Dolev-Yao deduction rules for inferring all 
possible fake messages in each protocol step, the MI intruder model records the 
eavesdropped messages in a preliminary simulation run and at the same time creates 
discrete metadata values for each recorded message. In this way, the intruder model 
manipulates only the metadata that were initially created and not the messages themselves. 
MΙ rules that will be introduced later determine which attack actions are appropriate and 
must be included in the optimized intruder model for the model checking phase and which 
are not. We know, for example, that an encryption scheme attack cannot succeed, if the 
intruder does not possess the right key in his knowledge. Consequently, encrypted 
messages can be treated differently from plain text or partially encrypted messages and an 
obvious optimization is to remove from the general Dolev - Yao model all attack actions, 
for which it is a priori known that they cannot succeed. Thus, the analyst can use MΙ, in 
order to prune the states found to be irrelevant according to the used MI rules. 

For the case shown in Figure 1, the MI intruder model acts as a man-in-the-middle 
attacker that dominates the communication between honest agents A and B, by 
eavesdropping the exchanged messages. Each message is evaluated by message 
characterization mechanisms called metadata functions, in order to create appropriate 
metadata values that enhance the intruder’s knowledge for this specific message. The 
intruder model then consults the embedded base of attack actions, in order to decide which 
of them can be deactivated by the analyst, without excluding any attacks that may reveal a 
protocol security flaw. The analyst then proceeds to the model checking phase (2nd protocol 
execution) with the altered intruder model. 

 

 
Figure 1: The Message Inspection intruder model 
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In the general case, the intruder model can instantiate at his discretion new protocol 

session(s) with the protocol participants. The intruder then reuses previously recorded 
messages – during MI – in order to validate against the protocol, all possible attack actions 
enabled in his module. An important issue is that the model does not directly attempt 
integrity violations to the intercepted messages through encryption, decryption, 
concatenation and projection operations, as implied by the general Dolev-Yao rules. Instead 
of this, the model exploits the stored metadata values, in order to violate message integrity 
only when the message contents can be read. Thus, the model restricts the inherent 
combinatorial complexity, when having to generate all possible concatenations of messages 
in Iknowledge that can be analyzed. 
 
3.1 Message metadata 
 
Let us consider a protocol 

___

Pr  between participating agents A, B, . . . , Z є Agents and let z 
representing the number of protocol steps. We simulate 

___
Pr  for a bounded number of 

protocol sessions say n. We use the messages of the following table, in order to derive 
metadata for the intruder’s knowledge Iknowledge  

44444 344444 21

U U
 ag

ag#

1
}

ag
)max({

                                                                            

..
....
...

..

.
       

 

,1,

1,2

,11,1

Agents

Ses

noSes
noSes

isent

msgmsg

msg
msgmsg

z

2
1

stepsprotocol

n   .21sessions

nzz

n

th

nd

st

thndst

∈ =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

↓

→

    (13) 

with bamsg ,  representing a message sent at the ath step of session b by some ag є Agents. 
The intruder model stores metadata for each message shown in (13). The stored 

metadata values for some message sent at the ath step of session b, are derived by a 
parametric metadata function p(a,b) that is defined as follows.  

 
Definition 1. p(a,b) is a Κth parametric metadata function with Κ sub-functions, 

1  ,

)(
.
.

)(
)(

),(

,

2
,

1
,

≥

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

= K

msgp

msgp
msgp

bap

K
ba

ba

ba

       (14) 

where the value of p(msga,b)mtd, 1 ≤ mtd ≤ Κ depends on the metadata attribute mtd being 
expressed (e.g. Encryption, Size etc.) for the specific message msga,b∈Msgs that is sent at 
the ath step of session b. 
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Based on the implemented MI function, the value of p(msga,b)mtd may represent e.g. the 

size of the message or whether the message is readable (plain text) or not. The following 
definitions instantiate MI for the specific metadata cases of the MI intruder model used in 
the model checking of the NSPK. 
 
Definition 1.1. The sub-function p(msga,b)Encryption of p(a,b) represents the readability of the 
intercepted message. The image of p(msga,b)Encryption is the set E={0, 1, 2}, where each value 
denotes one distinct case of encryption form: 0 is used for no encryption, 1 for partial 
encryption and 2 for a fully encrypted message.  

][1..]..1[),( , 
}{hen 2
}{hen 1

hen 0
)(),(

,

,

,

, nzba
msgmsgw

msgmsgmsgmsgw
msgmsgw

msgpbap

kuba

zkuyba

uba
Encryption

ba ×∈∀
⎪
⎩

⎪
⎨

⎧

=
⋅⋅=

=
== (15) 

for some msgu∈Msgs, k∈Keys and msgy⋅msgz ≠ ( ), i.e. at least one of the concatenated 
messages is not null.  

 
MI enables the intruder model to act as a decision-making machine that groups attack 

actions into three different operational procedures corresponding to the symbolic values 0 
for no encryption, 1 for partial encryption and 2 for full encryption. In this way, the MI 
intruder model implements the additional capability to select attack actions, for which 
according to known security principles – encoded as MI rules – it is a priori known that 
they will not succeed. For example, an encryption scheme attack will not uncover a 
protocol flaw, if the intruder does not possess the right key in Iknowledge. Instead of model 
checking a series of meaningless attacks, the MI algorithm informs the analyst for the 
possibility to correct his model by removing them. Thus the intruder model is simplified 
and in effect performs only the necessary attacks. Each attack action belongs to one of the 
broad categories of attacks, which were formalized in [15] as specific sequences of “send” 
and “receive” actions. 

 
Definition 1.2. The sub-function p(msga,b)Size of p(a,b) represents the message size in bits 
for some intercepted message. The image of this sub-function is some set of symbolic values 
S={s: s є ℵ and s>0} with natural numbers representing valuations of the size of messages 
for the modeled protocol. 

][1..]..1[),( ,
 (null)sent never  is  if0

 mapping somefor )(
)(),(

,

,
, nzba

msg
SMsgssizemsgsize

msgpbap
ba

baSize
ba ×∈∀

⎩
⎨
⎧ ×⊆

==  (16) 

 
This specific sub-function enables the MI intruder model to track a message as a 

numeric valuation of its size, which in turn depends on the size valuations of its constituent 
parts. When the MI intruder detects two metadata values in different protocol sessions that 
correspond to messages of equal size, then according to [16] it is possible to mount a type 
flaw attack, irrespective of whether this attack will succeed or not. Furthermore, if the 
protocol is interrupted by some communication error and the intruder model stops receiving 
messages (timeout), then the size of the expected messages in all future steps of the same 
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protocol session will be zero (0). In this case, the intruder model ignores the metadata 
values of this particular sub-function for the undelivered messages.  

The columns of the table shown in (13) represent numbered steps in the simulated 
protocol sessions. These columns are seen as monotonically increasing sequences with 
positive integer terms bm є ℵ and b0 = 1. The different terms can be considered as message 
timestamps that are set by the intruder model for the intercepted messages. They imply a 
relative message ordering that for two messages taken from the same or from 
interdependent protocol sessions may be used for checking whether one message precedes 
the other or not. These comparisons may be useful, since the applicability of some attack 
actions depends on the availability of intercepted message parts with timestamp values that 
are related in some way to the timestamp of the last intercepted message in the attacked 
protocol session. For example, an impersonation attack between two parallel sessions 
cannot – according to [16] and [17] – reuse message parts, with timestamp values greater 
than the timestamp value of the last intercepted message in the attacked protocol session. 

If necessary, the MI intruder model can integrate additional metadata sub-functions 
besides those mentioned. After having defined all metadata sub-functions, we define now 
the Intruder Knowledge Table [Ikt] as follows: 
 
Definition 2. In a MI intruder model we define the intruder knowledge table [Ikt], which is 
populated with the values of a parametric metadata function p(a,b) for all intercepted 
messages bamsg , , with (a,b)∈[1..z]×[1..n]: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

),(..)1,(
....
...)1,2(

),1(..)1,1(

][

nzpzp

p
npp

=Ikt      (17) 

and 

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

−

⎪
⎩

⎪
⎨

⎧

=
⋅⋅=

=
=

⎩
⎨
⎧ ×⊆

=

=

     
. . .  

}{hen 2
}{hen 1

hen 0
)(

 (null)sent never  is  if0
 mapping afor )(

)(

     

),(

,

,

,

,

,

,
,

functionssubadditional

msgmsgw
msgmsgmsgmsgw

msgmsgw
msgp

msg
SMsgssizemsgsize

msgp

bap

kuba

zkuyba

uba
Encryption

ba

ba

baSize
ba

][1..]..1[),( nzba ×∈∀  

for some set of symbolic values S={s: s є ℵ and s>0} with natural numbers and some msgu 

∈Msgs, k∈Keys and msgy⋅msgz ≠ ( ). The properties of [Ikt] are: 
• if bamsg ,  is never sent (null) then p(a,b)=0 and this means that the intruder has not 

intercepted any message sent in the ath protocol step of session b 
• if p(a,b)=0 then p(a+φ, b)=0 ∀φ∈ℵ: a+φ≤ z 
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The properties of the [Ikt] table enable manipulation of the collected metadata values, 

for deriving protocol-specific model checking improvements like for example a state space 
reduction, through simplification of the applied intruder model. For a protocol 

___

Pr  and an 
intercepted message in protocol step a of session b the intruder model fills in the metadata 
values p(a, b). If a < z, then all table entries p(a+φ, b) with φ∈ℵ: a+φ≤ z keep their initial 
value, which is zero (0), until the intruder intercepts the respective message. If for some 
reason, the protocol session is stopped, then the values of p(a+φ, b) remain zero.  
 
Definition 3. In order to compare two different [Ikt] table entries, say p(a, b) and p(c, d), 
such that a≠c ∨ b≠d (where ∨ denotes disjunction), we define the following operator:  

p(a, b) ≅ p(c, d), if ( )K
dc

K
badcbadcba msgpmsgpmsgpmsgpmsgpmsgp )()(...)()()()( ,,

2
,

2
,

1
,

1
, =∨∨=∨=     (18) 

 
3.2 The MI intruder model in use 
 
In the preliminary simulation run, the intruder’s knowledge is enhanced with the metadata 
of the [Ikt] table. The intruder’s knowledge then includes the following information: 

U U
 ag

#

1

ag
)max(

ag

}{  
Agents

Ses

noSes
iknowledge

noSessentI
∈ =

= ∪ Iin_knowledge ∪ {[Ikt]}    (19) 

In this first phase, the intruder model acts as a passive model entity, i.e. it does not execute 
“send” actions against honest participants. The performed simulation applies the MI 
algorithm to the updated Iknowledge and enables the intruder model to manipulate the message 

sequences U U
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Agents
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noSes
i

noSessent
∈ =

 for all ag∈Agents based on the [Ikt] table. The obtained 

simulation output may include a list of attack actions that can be safely removed from the 
MI intruder model. 

Figure 2 introduces the two phases of the MI algorithm. We consider agents A, B є 
Agents that exchange messages according to process descriptions PI and PR with the actions 
performed in the roles of the initiator and the responder for some protocol, say 

___

Pr . The 
intruder model acts as a man-in-the-middle entity that captures all messages exchanged 
between protocol participants. For each intercepted message, the intruder model creates a 
structure p(a, b) corresponding to the [Ikt] table entry for the ath step of session b, as shown 
in Figure 2.  

The metadata values in the p(a, b) structures are used for comparing the intercepted 
protocol messages, in order to select the applicable attack actions. In the MI initialization 
phase, the intruder model records all intercepted messages from the executed protocol 
sessions. The number of fields in the created structures p(a,b) is the number of metadata 
sub-functions that are implemented. When the MI intruder intercepts a message, it updates 
the respective [Ikt] table entry, which is used for comparing it – by applying operator ≅ as 
defined in definition 3 – with other table entries. Attack actions that according to the made 
comparisons are useless are reported in the produced simulation output and it is then 
possible to remove them from the MI intruder model. The analyst also removes the MI 



12 

initialization part and proceeds to the model checking of the security guarantees of interest, 
with the optimized MI intruder model that generates a reduced state space. 

 

 
Figure 2: The MI algorithm 

 

 
 

Figure 3. Attack actions for the MI intruder model 
 

Figure 3 shows the open-ended base of attack actions that in the current implementation 
of the MI intruder model are checked for their feasibility. The selected attack actions 
appear as primitive steps in attacks reported in the related bibliography and have been 
proposed in published taxonomies [17, 18, 19] that formalize the observations of intruder 
misbehaviors, where the intruder redirects messages among protocol participants. In [15], 
we provided formal definitions of the selected primitive attack actions, as well as 
bibliographic examples, where these attack actions violate security properties of existing 
protocols. 
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Table 1. Attack actions of the MI intruder model and how they are related to the meta-data entries of 

the [Ikt] table 
   

Attack Action Action description 

A1 
Select an intercepted message and send it to its sender (A1_2) or to its 
intended recipient (A1_3) or to some participant that is neither the intended 
recipient nor the sender (A1_1)  

A2 Replace an intercepted message with another message or produce a fake 
message by concatenation with some message from Iknowledge  

A3  Replace a (part of an) intercepted message that corresponds to some p(a,b) 
with a previously intercepted message (part) 

A4 Impersonate some ag ∈ Agents using a previously intercepted message that 
corresponds to some p(a,b) with a=1 

A5 Initiate a new protocol session or manipulate an existing session using a 
previously intercepted message that corresponds to some p(a,b) 

 
Table 1 introduces textual descriptions of the sequences of “send” and “receive” actions 

for the attack actions of Figure 3, as well as how these actions are related to the metadata 
entries of the [Ikt] table.  

Attack actions A1 represent the sending of an intercepted or (if combined with another 
attack action) a counterfeited message, either to its original sender or to its intended 
recipient or even to some participant that is neither the intended recipient nor the sender. 
The metadata values p(a, b) do not influence the feasibility of this general attack action. 
However, we adopt the assumption that if the sent fake message does no comply with the 
pattern of the message expected by the “victim”, then the recipient falls into a fail-stop 
state, i.e. he does not continue with the ongoing protocol execution. This assumption 
represents the expected behavior of a correct protocol implementation. 

Attack action A2, when feasible, alters an intercepted message by replacing it or part of 
it with some message from Iknowledge. This is possible only when p(msgα,b)Encryption is 0 or 1. 
If p(msgα,b)Encryption=2 and the intruder does not have in Iknowledge the right key for decrypting 
the intercepted message, then the contents of the message cannot be read (un-breakability 
of the encryption used) and the A2 attack action is not possible. 

Attack action A3 replaces a part of an intercepted message or the whole message, with 
another message from Iknowledge. The produced fake message can be accepted by the 
“victim”, only if its size is the same with the size of the expected message. This can be 
checked by appropriate comparisons of stored metadata values for the messages in Iknowledge. 
Type flaws with partially altered messages are possible only when p(msgα,b)Encryption is not 2, 
i.e. when the intercepted message is (partially) readable. Alternatively, according to [17], a 
type flaw attack is also possible, when in a protocol session an honest agent falls into 
misinterpretation of a received message, supposed to deliver specific data in some protocol 
step. This type flaw attack is an open possibility even when the used intercepted message is 
fully encrypted and the intruder does not possess in Iknowledge the key needed to decrypt it.  

Attack action A4 initiates a new protocol session be reusing a previously intercepted 
message that corresponds to some p(a,b) with a =1. Finally, attack action A5 initiates a new 
protocol session or manipulates an existing session by reusing a previously intercepted 
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message. Both A4 and A5 are not based on specific requirements for the encryption form of 
the intercepted message. 
 

Table 2. Rules for checking feasibility of attack actions for the MI intruder model 
  

Metadata  Enabling conditions Attack Actions 
p(msga,b)Encryption=  2 A1, A4, A5 
p(msga,b)Encryption=  1 A1, A2, A4, A5 

p(msga,b)Encryption≠ 2 and  
∃ m∈Msgs: exists(m, msga,b)1 = 
true and ∃ amsg ∈ AMsgs ∩ 
Iknowledge: p(amsg)Size=p(m)Size 

A3 
Readability p(msga,b)Encryption  

p(msga,b)Encryption=  0 A1, A2, A4, A5 
 

Size s1 = p(msga,b)Size and s2 = p(msgc,d)Size 

 

 
s1 = s2 and a < c 

 
b = d 

 
A3 

 
Table 2 introduces the MI rules for checking feasibility of attack actions in the first 

implementation of the MI intruder model. The enabling conditions are used in metadata 
comparisons like the ones described in next paragraphs, in order to determine whether an 
attack action is feasible or not. Attack actions that in all protocol steps are not feasible can 
be safely removed, thus yielding an optimized intruder model for the analyzed protocol. 

The metadata sub-function p(msga,b)Encryption plays an important role in this analysis, 
since its values determine whether the intercepted message msga,b can or cannot be read. 
When msga,b is fully encrypted (p(msga,b)Encryption=2), the intruder model checks in Iknowledge 
if it owns the key needed to decrypt the intercepted message. If the key is found, this 
message is marked as non-encrypted and the metadata value p(msga,b)Encryption=0 is recorded 
in the corresponding field of p(a,b). If it is possible to read only some part of the 
intercepted message msga,b then p(msga,b)Encryption=1, i.e. msga,b is partially encrypted. This 
is a sufficient condition for enabling attack actions A1, A2, A4 and A5. Moreover, the 
possibility to replace a part of the message, say m, with some atomic message amsg from 
Iknowledge requires equal metadata values for p(amsg)Size and p(m)Size. This enabling condition 
implements the requirement for making an agent vulnerable to misinterpret some part of the 
message (attack action A3), which is its size.  

In most cases, p(msga,b)Encryption will be 2, which automatically excludes the possibility 
of an integrity violation (attack action A2) that requires read access to some part of the 
intercepted message.  

As we already noted, in type flaw attacks where the intercepted message is replaced as a 
whole, there is no special requirement for its encryption form. If the expected message has 
the same size with an intercepted message from a previous step of the same protocol 
session [17], then it is possible for the intruder to mount a type flaw attack. In the last row 
of Table 2 we provide the enabling conditions for this attack action. For a complete 
description of the attack actions mentioned in Table 2 the reader is referred to [15].  

                                                 
1 Boolean predicate indicating if the string m appears in message msga,b 



15 

Let us consider a protocol with four (4) steps that runs in two sessions. For all attack 
actions of Table 1, the intruder model compares the metadata values of the intercepted 
messages. Each comparison determines if there are attack actions that according to the MI 
rules of Table 2 can be safely excluded in the examined protocol step. Attack actions that 
do not contribute in the model checking for all protocol steps are reported in the produced 
simulation output and it is then possible to remove them from the MI intruder model. 

Examples of the comparisons made for the considered 4-step protocol are shown in 
Figure 4, for most of the mentioned attack actions. When p(1,1) ≅ p(1,2) and at the same 
time holds for these two table entries one of the conditions of Table 2 that enable attack 
actions A4 and/or A5, then the MI intruder model can initiate a new protocol session, in 
order to attempt a parallel session or an impersonation attack. When p(2,1) ≅ p(2,2) and for 
these two table entries hold the conditions of Table 2 that enable attack action A5, then it is 
possible the MI intruder to manipulate an existing parallel session for an attack, that may 
subvert one of the protocol’s correctness properties. When p(a,b) ≅ p(c,b) and for these two 
table entries hold the conditions of Table 2 that enable attack actions A1, then it is possible 
the MI intruder to perform a deflection or a reflection message replay. Finally, when p(a,b) 
≅ p(c,d) for two messages in different protocol sessions, the last intercepted message is 
(partially) readable and at the same time hold the conditions shown in Table 2, then it is 
possible the MI intruder to perform a type-flaw attack action. 
 

 
Figure 4: Metadata comparisons with the [Ikt] table entries for detecting the possible attack actions in 

each protocol step 
  

In that case I triggers the attack, possibly after having altered the eavesdropped msg ∈ 
Msgs based on Iknowledge, thus resulting in a msg΄ ∈ Msgs. The subsequent action performed 
by I is either send (I, v, msg΄) or send (I, v, {msg΄}k΄) for a k΄∈ Iknowledge such that v ∈ 
is_key_of (k΄), i.e. v is the owner of k΄. 

This attack action succeeds, if in the global state after the occurrence of the action 
receive (v, I, msg΄) or respectively receive (v, I, {msg΄}k΄) there is some atomic message 
amsg, such that 
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exists(amsg, noSesv
ircvd )max( ) = true, 1 ≤ noSes ≤ #Sesv 

and for two sets Sete and Setf from the “disjoint” union Amsgs, 

amsg ∈ Sete ∩ Setf 

where i ≥ 1 represent the terms of the concatenation sequence of messages received by 
agent v in the course of session noSes.  

Thus, an atomic message that was originally intended to have one type (e.g. nonce) is 
interpreted as having another type (e.g. key or data) meaning that the type flaw is exploited, 
even though this may not lead to a direct security compromise. 

During model checking, the MI intruder model performs all possible attack actions in all 
protocol steps, after having excluded - as a result of the preliminary simulation run - the 
attack actions whose enabling conditions are not satisfied in all protocol steps. The honest 
agents ag ∈ Agents either accept or reject the fake messages based on the implemented 
protocol logic. 

In essence, the metadata in the [Ikt] table store protocol-specific monitoring 
information, which is used in controlling the behavior of the MI intruder model in an 
effective way. Apart from the two sub-functions of the current MI intruder model, it is also 
possible to exploit the position of metadata entries in the [Ikt] table as message timestamps 
or to implement additional sub-functions and MI rules.  

This allows further optimizations of the MI intruder behavior based on known security 
principles [15, 20, 21, 22, 23], as well as implementation of custom behavior that will 
enable model checking requirements beyond those expressed as safety guarantees (i.e. 
secrecy and authentication).  

 
 

4. MI-based model checking 
 
This section presents an exploratory case study for the implemented MI intruder model 
with the following aims: 

• to provide indicative results and compare the state spaces for the general Dolev-Yao 
intruder model and the MI model, in a known model checking context that is 
frequently used in related bibliography, i.e. the verification of the Needham-
Schroeder Public Key protocol (NSPK) [12]; 

• to provide indicative results for the state space of the two intruder models, when 
applying partial order reduction and other reduction or state exploration techniques 
that are currently available in the SPIN model checker; 

• to provide indicative results for variants of the implemented MI model, where one 
or more attack actions have been removed.       

In the introductory section, we commented on the results obtained from exploratory 
case studies, for other state space reduction techniques. An important observation is that the 
reported results cannot be generalized and therefore they cannot be compared with each 
other.  
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The achieved state space improvements intrinsically depend on the interleaving caused 
by the modeled protocol structure, on the encryption form of the exchanged messages and 
on the checked protocol configuration (the number of initiators and the number of 
responders used). Also, the reported results concern only the reduction techniques available 
in the used model checking environment. Implementation of other techniques may be not 
possible, if the source code of the tool is not available, or the effort required for 
implementing additional techniques like MI for comparison purposes may be prohibitively 
high. Finally, the numbers of states reported in the different studies are not comparable, 
since these numbers are related to the model representation implemented in the respective 
tool. 

For these reasons, all the aforementioned studies have an exploratory character [24], i.e. 
they provide an opportunity to explore cause-and-effect facts. The primary aim is to derive 
indicative results for the effectiveness of the examined reduction techniques. Usually, this 
takes place in known model checking problems, i.e. verification of protocols with known 
security vulnerabilities that have been previously used in related studies.  

 
4.1 The NSPK protocol 
 
The NSPK protocol aims to establish mutual authentication between the initiator and the 
responder, in order to start a message exchange between them. The protocol name suggests 
the use of public key cryptography, for delivering authentication guarantees. The reduced 
version of the NSPK protocol, shown in Figure 5, includes only three (3) protocol steps, 
where in each step the protocol participants A (for the initiator) and B (for the responder) 
exchange messages with agent identities and randomly generated nonces (NA, NB), 
encrypted by the public keys PK{A} and PK{B}. The sent information can be checked by 
the receivers.  

In addition to the agents shown in Figure 5 the developed SPIN model includes an 
intruder model that has absolute control over the communication between the honest 
protocol participants. The reported results concern with two different intruder models, i.e. 
the general Dolev-Yao intruder with the deduction rules specified in equations 7 - 10 and 
an MI intruder model. Honest agents are encoded as fail-stop processes, i.e. if the message 
received in a protocol step is not the expected one, then protocol execution is stopped for 
the receiver even though the provided security guarantees have not been violated. Potential 
failures of message secrecy or failures of authentication are expressed as invalid end-states 
in the SPIN model checking environment.  
 

 
Figure 5: Reduced version of the NSPK protocol 
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4.2 Model checking the NSPK protocol with the MI intruder model 
 
In a preliminary simulation run with two protocol sessions (Figure 6), the MI intruder 
model detected two attack actions, namely A2 and A3 that can be safely removed. More 
specifically, the MI intruder acts as a man-in-the-middle entity between agents A and B for 
the first protocol session and B and C for the second session.  

Upon intercepting an NSPK message, say msga,b, the MI model creates appropriate 
metadata values for p(msga,b)Encryption and p(msga,b)Size that are recorded in [Ikt] table (Figure 
6i). Since the MI intruder forwards the sent messages to the intended recipients, both 
protocol sessions are completed with success. We realize that all protocol messages are 
fully encrypted and since the decryption key is never included in Ιknowledge, for all metadata 
values p(msga,b)Encryption is 2. We also see the metadata values computed for p(msga,b)Size, for 
the message sizes shown in Figure 6, representing the assumption that there are no two 
size-similar atomic messages, with the first message being an agent identity and the second 
one coming from the set of nonces.        
 

 
Figure 6: Preliminary MI simulation run: the intruder (i) creates the [Ikt] table, (ii) compares the 

metadata and (iii) proposes removal of attack actions A2 and A3 
 
The MI intruder model then performs (Figure 6ii) the metadata comparisons discussed 

in section 3.2 by taking into account the MI rules of Table 2. Finally, the intruder model 
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outputs the decisions made (Figure 6iii). Since p(msga,b)Encryption = 2 in all protocol steps, 
the integrity violation attack action (A2) is excluded. Also, because p(msga,b)Encryption= 2 for 
all exchanged messages and at the same time there are no size-similar messages in the same 
protocol session, the MI-based intruder model proposes removing the type flaw attack 
action (A3).  

Figure 7 provides the model checking result for the described NSPK model, when using 
the optimized MI intruder and the partial order reduction functionality of the SPIN model 
checker. An invalid end state is reached at depth 25 of the produced reachability graph (264 
stored states and 1493 states accessed as hash conflicts) and the search is stopped after 
having detected the reported error (errors: 1).  

A subsequent guided simulation explores the generated counterexample and creates the 
message sequence diagram of Figure 8. The reached invalid end state corresponds to the 
state, where agent B acting as responder accepts a fake NSPK message that causes him to 
initiate a new protocol session. The used message is created by the intruder model in the 
role of the initiator according to the message pattern of the first of the three messages 
shown in Figure 5. This invalid authentication in effect causes a successful impersonation 
attack against B, who perceives the intruder as an honest protocol participant.  

The same security violation has been also detected with a generic Dolev-Yao intruder 
model, but in that case the reached depth of the detected invalid end state was 48. 
 

 
Figure 7: Verification output for NSPK with the detected invalid end state at depth 25 
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Figure 8: Guided simulation of the generated counterexample with the detected impersonation attack 

against NSPK  
 

4.3 State space reduction and state exploration alternatives with the MI intruder model 
 
To enable comparison between the general Dolev-Yao intruder model and the optimized 
MI intruder model for the NSPK protocol, it is necessary [24, 25] to characterize the used 
working modes of the SPIN model checking environment, to capture the characteristics of 
the compared objects and finally to highlight the unique aspects of the performed 
experiment. The following description provides an opportunity to assess the 
appropriateness of the experiment’s design for understanding cause and effect relationships, 
which is the primary objective of the study. 

The formal definition [26] of the performed experiment is given in Table 3. We analyze 
the behavior of the two intruder models (independent variable), for the purpose of exploring 
cause and effect facts, with respect to (a) the size of the generated reachability graphs 
(dependent variable) and (b) the implied memory usage (dependent variable), in the context 
of the NSPK protocol model and the MI intruder model that were implemented in SPIN. 
 

Table 3. Formal definition of experiment 
  

Analyze the general Dolev - Yao intruder model vs. the MI intruder 
model 

For the purpose of exploring cause and effect relationships 
With respect to the size of the generated reachability graphs (number of states) 

and the implied memory usage  
From the point of 
view of 

the model checking practitioner 

In the context of the NSPK protocol model and the MI intruder model that were 
implemented in SPIN  

 
The research questions and the associated metrics used in our study are: 
i.  Question 1: Does the intruder model have a significant impact in the size of the 

model’s state space? 
Metrics used: We compare the state spaces (numbers of states and implied memory 
usage) produced with the two intruder models in the following cases:  
- First, we compare the size of the complete reachability graphs, i.e. model checking 

is not stopped when having detected the invalid end state. In our opinion, this is a 
more representative view of the improvement possibilities opened by an optimized 
MI intruder model, since the security flaw in general may be discovered at an 
arbitrary depth of the state space. 

- We also compare the size of the partial state spaces up to the depth of the detected 
invalid end state (refer to the sample results shown in Figure 7). Obviously, the size 
reduction achieved by the optimized MI intruder model in this case is orders of 
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magnitude less than the size reduction achieved in the aforementioned more 
general case. 

ii.  Question 2: To what extend does the MI intruder model influence the size of the state 
space for different combinations of attack actions?  
Metrics used: We compare the size of the complete reachability graphs for 14 
different versions of the MI intruder model.  

 
Table 4. State space reduction and state exploration techniques in SPIN 

  

SPIN working modes Description 
Exhaustive search with 
partial order reduction 
(P.O.R.) 

By default, SPIN [14] constructs both the state space and the transition relation on-the-fly by 
applying a Depth-First Search over the model’s state space. Partial order reduction avoids 
creating states that cannot be affected by interleaving the execution of the model’s processes. 
It is based on the dependencies that may occur between certain process statements, trying to 
discover the statements that are independent. 

Supertrace search In SPIN, to enable fast lookup of states they are stored in a hash table. Supertrace search or 
bit-state hashing is an option that decreases memory use by consuming only a small number 
of bits per state. When normal state storage is impossible, due to the limited memory, 
supertrace search provides an attractive alternative that increases significantly the capacity to 
store states. On the other hand, there is a low probability of loss of coverage, since when a 
hash collision happens the algorithm incorrectly infers that the state was already visited and 
therefore, this state is skipped. However, this cannot lead to false error reports. 

Hash-compact search In the hash-compact method, a hash function is utilized, in order to compress the state 
descriptor irrespective of the number of bits used to 64 bits. The resulting 64-bit values are 
then stored in a lookup table and in this way SPIN simulates a hash table with memory size 
far beyond what would be available otherwise. 

State space compression The so-called collapse compression works in the following way: SPIN identifies and stores 
the state configurations of each model process and instead of storing a complete state 
descriptor in the global state vector it uses the sequence of identifiers for the involved 
processes. It is a lossless compression technique that guarantees exhaustive coverage. 

Breadth-First Search This state exploration option enables on-the-fly model checking with Breadth-First Search 
over the generated reachability graph.   

Statement merging Statement merging is a special case of partial order reduction. This method suppresses 
redundant interleavings of process statements whenever possible, but it does not perform 
optimizations when non-interleaved sequences of statements can be merged into a single step. 

 
The default working mode of the SPIN model checker includes the partial order 

reduction functionality. However, in order to understand the cause and effect relationships 
associated with the use of the compared intruder models, we also report the size of the state 
spaces produced in the working modes of Table 4. Supertrace search tends to find errors 
quickly if they exist, but it is not the most productive option for demonstrating error-
freedom. It is recommended as an attractive choice, when we first attempt to verify a model 
and the state space size is completely unknown. Hash-compact search exhibits superior 
accuracy, when tuned for a known state space. The main advantage of the breadth-first 
search option - which is effective only for safety properties (secrecy and authentication) - is 
that it finds the shortest path to an error state, while the depth-first search often finds a 
longer path. The (collapse) compression option reduces the memory requirements for an 
exhaustive search at the cost of increasing the run-time requirements. 

Figure 9a shows a typical sequence of model checking tasks involved, when the size of 
the model’s state space is completely unknown. It also introduces the explored cause and 
effect facts associated with the problem of the wasteful branching of the state space and the 
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use of a general Dolev-Yao intruder model. The results exposed in next paragraphs affirm 
the possible exhaustion of the available memory, even in the case of the NSPK protocol 
model that includes only three protocol steps, which were executed in two parallel sessions. 
Also, the obtained results confirmed the cause and effect relationship of Figure 9b, i.e. they 
revealed a significant reduction of the model’s state space when using the optimized MI 
intruder model. 

 

 
(a) 

 
(b) 

Figure 9: Cause and effect facts for (a) the general Dolev – Yao and (b) the MI intruder models  
 

More precisely, Figure 10 provides the results obtained for the complete reachability 
graphs of the NSPK protocol model with (a) the optimized MI intruder model and (b) the 
general Dolev-Yao intruder respectively. We report the number of unique states stored by 
SPIN in a hash table, in order to enable fast lookup. SPIN outputs this number in all model 
checking reports together with the sum of stored and matched states that in fact represents 
the accessed transitions. The number of stored states provides an estimate of the size of the 
state space that also includes additional states, which are accessed as hash collisions.  

Memory usage (not shown in Figure 10) for the optimized MI intruder varies between 
2.9 and 33 MB, apart from the compression alternatives that when used with partial order 
reduction expands to about 260 MB. This is not surprising, since according to the theory 
[27], in some cases compression techniques can result in memory expansion. If a 
compression technique performs well in a given context is typically discovered by 
experimentation. On the other hand, the complete reachability graph for the NSPK model 
with the general Dolev - Yao intruder consumed the available memory space, which was 
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set to 1 GB, apart from the compression alternatives, where the memory usage is limited to 
about 363 MB. 

The numbers of stored unique states in Figure 10 show a reduction of about 103 times, 
when applying the optimized MI intruder. In model checking with a compression working 
mode this gap is widened and if using the hash-compact search with partial order reduction, 
the model with the Dolev-Yao intruder stores about 4⋅103 times the number of states for the 
MI intruder.  

 

(a) 

(b) 
Figure 10: Size of complete reachability graphs for NSPK (a) with the optimized MI intruder model 

and (b) with the general Dolev-Yao intruder model 
 

In Figure 10b, the working modes with no compression exhibit less stored unique states 
when compared with the working modes that apply compression. This is explained by a 
vast number of hash collisions that are not shown in the graph. As an example, when the 
Dolev-Yao intruder model is applied with partial order reduction, the typical exhaustive 
search yields 4.3⋅106 hash collisions in a hash table with 8⋅106 stored unique states. If using 
the optimized MI intruder, the reported hash collisions do not exceed the 43 cases in all 
tested working modes.  

We conclude that for a protocol model with more steps, model checking with the 
general Dolev-Yao model is likely to require a compression technique like supertrace 
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search or hash-compact search, which in fact open a possibility for coverage loss. From this 
perspective, the optimized MI intruder yields a reduced state space with improved 
possibilities to be handled by SPIN in a predictable manner. In Figure 10a we also observe 
that partial order reduction, when combined with Breadth-First Search, is not as effective as 
it is when combined with Depth-First Search. 

Figure 11, provides results for the partial state spaces generated up to the depth of the 
detected invalid end state. The NSPK protocol model with the Dolev-Yao intruder model 
generated state spaces with about 2.5 times the number of stored unique states for the MI 
intruder. This improvement depends on the depth where the error is discovered and from 
this point of view the Breadth-First Search finds the shortest path to the error. While in 
Figure 7 (MI intruder with Depth-First Search) the error was detected at depth 25 (1.4⋅103 
hash collisions in a hash table with 264 stored unique states), when using Breadth-First 
Search the error was discovered at depth 5 (no hash collisions in a hash table with 112 
stored unique states). On the other hand, when verifying NSPK with the Dolev-Yao 
intruder model and Depth-First Search the error is detected at depth 48 resulting in 7.3⋅104 
hash collisions in a hash table with 698 stored unique states. 
 

 
Figure 11: Size of partial state spaces for the NSPK security flaw with the optimized MI intruder model 

(MI) and the general Dolev-Yao intruder model (DY) 
 

In the second part of this exploratory study, Figure 12 shows the effects on the size of 
the complete reachability graph, when using different versions of the MI intruder model, 
where each version includes different combinations of attack actions. We report stored 
unique states obtained with exhaustive search, where hash collisions are negligible. These 
results make it possible to compare relative state space reductions, when using the different 
versions of the MI intruder model. In effect, they provide potentially valuable data for costs 
and benefits towards extending the MI rules of Table 2, for more efficient use of the MI 
intruder model. However, as we already noted the reported results depend on the 
interleaving caused by the modeled protocol structure, as well as on the checked protocol 
configuration (the number of initiators and the number of responders used). 

Although it is shown that the intruder model has a dominant effect in memory usage 
and the size of the state space, an obvious threat to the internal validity of our exploratory 
study is the possibility of confounding. In the related bibliography, this term is often used 
to refer to all factors covarying with the considered independent variables (intruder model 
used), which also influence the dependent variables (memory usage and size of the state 
space) but have not been included in the experiment’s design. We explored many possible 
combinations of the two intruder models with the reduction and the state exploration 
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techniques provided in SPIN, but our experiment was not extended to different numbers of 
initiators and responders, which we think are factors that may covary with the selected 
intruder model. The most prominent threat to the external validity of the presented study is 
that the reported reductions in the state space of the NSPK protocol with the optimized MI 
intruder model, cannot be generalized to other protocols and protocol configurations. As 
noted in the introduction of the described study, there is no similar study with results that 
can be generalized, since reported state space improvements intrinsically depend on the 
protocol structure reflected by the analyzed model. 
 

 
Figure 12: Complete reachability graphs for MI intruder models in NSPK model checking with 

different combinations of attack actions  
 
4.4 Guidelines for the model checking practitioner 
 
For the model checking practitioner, an effective procedure for applying the MI intruder 
model to large model checking problems includes the following steps:  

1. A first preliminary simulation run with the MI intruder model will provide valuable 
feedback for the applicable optimizations in the protocol model. 

2. Since the size of the state space is still unknown, there is no need to directly apply 
the detected optimizations in the first verification attempt. We propose this first 
verification to take place with an efficient search option such as supertrace search 
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together with partial order reduction. However, we remind that the mentioned 
search option opens a possibility for loss of coverage.  

3. For proving the absence of security flaws in a model with very large state space, the 
analyst now can choose between the following two options.  

a. To apply an alternative compression method if available (like the 
hash/compact search or the collapse compression). This option incurs an 
additional cost, either in the form of increased model checking run time or in 
the form of repetitive trials, in order to fine tune the state space. 

b. To apply the possible MI intruder model optimizations. With the current 
model implementation, the analyst modifies the PROMELA code manually, 
in order to remove the useless attack actions.   

4. The optimized MI intruder model may set the model checking problem in a size, 
which can be handled by the available exhaustive search options. If however this is 
still not achieved, then the analyst returns to step 3, where either tries to apply an 
accurate compression method together with additional reduction techniques such as 
symmetry reductions or alternatively to implement new optimizations in the current 
MI intruder model. 

New optimizations will be based on inventing new MI rules for more efficient use of 
the MI intruder model or on step-by-step analyses of additional attack actions, beyond those 
mentioned in Table 1. However, any extension to the current MI intruder model requires 
PROMELA programming skills, as well as a basic understanding of the algorithmic details 
of the current implementation.   

 
 

5. Related work 
 
In related bibliography, there are significant research contributions concerning uses, 
extensions and improvements of the Dolev-Yao intruder model. Many of these works [2, 
28, 29, 30] provided a basis for integrating a custom user-specified intruder model into 
innovative model checking techniques for the analysis of security properties. 

One of the first systems that implemented the Dolev - Yao assumptions and the secrecy 
failure verification approach was the Interrogator tool [28]. Given a final state in which the 
intruder knows some message, which should be secret, the Interrogator tries all possible 
ways of constructing a path that reaches this particular state. If it finds such a path, then it 
has identified a security flaw. 

Finite state analysis of cryptographic protocols can take place in specialized security 
model checkers, like BRUTUS [6], where security violations are encoded as failures of 
secrecy or authentication. Alternatively, finite state analysis is often carried out in general-
purpose model checkers like Murφ [31] and the FDR (Failures Divergence Refinement) 
[32] model checker. 

When focused on the problem of the state space explosion, a series of interesting works 
exploit symmetry and partial order reduction techniques [6, 7, 31, 33]. In [10], the authors 
propose model checking with pre-configuration, which is a divide-and-conquer method for 
verifying security protocols.  
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In [9], the authors prove the soundness of two optimizations for the intruder model. The 
first optimization technique lets the intruder always intercepting messages sent by the 
honest protocol participants, instead of making such interception optional. The second 
technique prevents the intruder from sending messages to honest participants in states 
where at least one of the honest participants is able to send a message. This can be 
considered as an alternative to partial order reduction techniques that exploit the relative 
independence of the honest participants. In the performed experiments, the first mentioned 
technique resulted in significant reductions in the number of reachable states (by a factor of 
20) and the execution time. The second mentioned optimization technique resulted in 
further 43% reduction in the number of states and a 40% reduction in the execution time. 

An interesting variant of the Dolev - Yao intruder model is proposed in [30], for 
analyzing an unbounded number of protocol sessions with either bounded or unbounded 
numbers of messages. 

Symbolic reduction [29] exploits a symbolic state transition relation, which gives rise to 
a finite symbolic state space [34, 35], where symmetry redundancy is eliminated. Each 
symbolic state summarizes a – possibly infinite – number of concrete states that can be 
obtained by instantiating variables in the symbolic state specification. 

“Lazy” intruder models [29, 33] aim in a demand-driven exploration of the model’s 
state space by overlooking fake messages that do not match the patterns of the messages 
awaited by the protocol participants.  

In [36], the authors introduce an optimized intruder model for the verification of 
satisfiability properties, provided the interception of all exchanged messages and the 
assumption that some of the abilities of the intruder have an instantaneous effect. 

Athena [37] builds on a different model representation, where in contrast to the 
conventional trace-based modeling approaches, a set of protocol runs that differ only in the 
order of interleaving executions of the individual participants is represented by only one 
state. This is achieved due to a clever extension to the strand space model representation. 
There is some form of symbolic reduction functionality, but Athena also allows the 
development of protocol-specific or general pruning theorems. Through this semi-
automated approach the analyst uses theorems, in order to prune from the state space all 
states proved that do not contribute to the final result. 

In [13], the authors propose a specialized intruder model for verifying a class of 
liveness properties in security protocols. The intruder’s behavior is proved that conforms to 
the Dolev-Yao assumptions, with the only difference that he does not delay the delivery of 
intercepted messages.  

Finally in [38], the authors extend a flexible specification framework based on the 
Dolev - Yao intruder model. The analysis is designed for security protocol verification 
based on typed multi-set rewriting with a static check called access control. The proposed 
static check aims in catching specification errors, such as a principal trying to use a key that 
he is not entitled to access. 

The MI intruder model can be compared only with other approaches that optimize the 
branching of the state space, due to the intruder’s fake messages, without excluding 
possible attacks. Existing intruder models [6, 9, 29, 31, 33], whether they are based on mere 
state space exploration or whether they combine it with natural deduction-style reasoning or 
“lazy” evaluation, delimit the state space branching by exploiting information about the 
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messages that protocol participants expect. This optimization avoids generating from the 
intruder’s knowledge, fake messages that cannot have an effect in the protocol’s execution, 
if every protocol participant rejects them as unexpected.  

To the best of our knowledge, the MI intruder model is the first model that uses 
message metadata collected from a preliminary simulation run. This data enhances the 
intruder’s knowledge with additional information regarding protocol behavior facts that in 
some cases cannot be observed dynamically across the explored state space paths. It is thus 
possible to improve the pruning of the state space by exploiting known security principles. 
Given the intruder’s knowledge for the protocol execution, these principles allow 
determining in advance, whether an attack action can or cannot cause a security violation. 

An apparent weakness of the described two-stage model checking procedure is that it is 
likely to result in a less general protocol-specific intruder model. However, we believe that 
this may be more useful from a generic Dolev - Yao model that is potentially difficult to 
yield results for a computationally hard model checking task. A worth to mention limitation 
is that the MI intruder model can be implemented only in model checkers that allow 
simulated execution of the protocol model. This is true for many general-purpose model 
checkers, like Murφ and SPIN. In current implementation, the analyst is expected to 
interfere with the intruder model, in order to remove the useless attack actions. This 
requires some basic knowledge of the intrinsic details of the intruder model, but this 
shortcoming may be bypassed in a prospective MI-based model checking environment that 
will automate the described approach. 

The strength of the MI intruder model lies in the fact that it provides an approach for 
customizing the intruder behavior, in order to deliver additional model checking 
optimizations. For a potential extension concerning insertion of feasibility check for a new 
attack action the analyst will have to implement additional MI rules and metadata 
comparisons. Appropriate enabling conditions will be derived by natural deduction over the 
sequence of send and receive actions that specify the analyzed attack action. If necessary, 
the model may be extended by including additional metadata parameters, but this will cause 
modifications in the MI initialization code that stores metadata values for the intercepted 
messages. 

 Finally, besides the provided results for the combined use of the MI intruder model 
with partial order reduction, MI may be combined with symmetry reduction and/or other 
reduction techniques from those mentioned in current section. An open problem is our 
model’s potential integration into security model checkers that employ advanced state 
space exploration techniques, such as “lazy” evaluation. 

 
 

6. Conclusion 
 
The MI intruder model aims to restrict the inherent combinatorial complexity of security 
model checking with general Dolev-Yao intruder models. This is achieved through message 
inspection that allows customizing the intruder behavior, by taking into account protocol 
specific metadata for the structure and the characteristics of the exchanged messages. The 
only requirement is that it can be implemented in model checking environments that 



29 

support both simulation and model checking of the analyzed security protocol. We 
conducted a series of experiments for exploring the improvements in the model checking of 
the NSPK protocol, when compared with the generic Dolev-Yao intruder model. The 
PROMELA code for the MI-based model checking of the NSPK protocol is available 
online in [39]. 

The MI intruder model provides an open-ended framework for integrating additional 
protocol-specific model checking optimizations. More innovative extensions considered as 
future prospects include integration into the intruder’s knowledge of fine grained 
information for the patterns of messages expected by the protocol participants. In this case, 
appropriate MI rules will make it possible to further restrict the set of messages composed 
by the intruder. Other future perspectives are the incorporation of intruder model 
optimizations that exploit certain security protocol properties [9], as well as implementation 
of a customized intruder model for properties that involve liveness [13], like session 
termination or timeliness. In these cases, the intruder model has to fulfill specific fairness 
assumptions, which are not covered in the general case. A long-term development goal is 
the design of an integrated modeling environment that will provide the described 
functionality in a usable model checking package. 
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