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ABSTRACT
Improper input validation in Web Applications undermines
their security and this may have disastrous consequences for
the users. Input data can or cannot be harmful depending
on how they are used with regard to the interactions with the
clients and the accessed sensitive resources (e.g. databases
and files). Existing application frameworks cannot guaran-
tee safe input sanitization with respect to all vulnerabilities.
Also, when legacy code is incorporated that was not origi-
nally written for the Web, its security hardening is costly and
error-prone. We propose a reference monitor inlining ap-
proach that treats input injection vulnerabilities as a cross-
cutting concern. Our monitors enforce high-level security
policies for taint propagation control, by weaving checks
and repair actions into the untrusted code. Taint policies
are specified into JavaMOP, a programming framework for
generating runtime monitors, which are weaved into the ap-
plication through the automated Aspect Oriented Program-
ming process. When monitor design is guided by preliminary
static taint analysis, the incurred overhead can be reduced.
Further improvements are feasible through JavaMOP’s opti-
mizations. As a proof of concept, we present the design and
experimental validation of inlined monitors against SQL in-
jection and cross-site scripting attacks.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging; D.4.6 [Operating Systems]: Security and Pro-
tection—Information flow controls

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
http://dx.doi.org/10.1145/2491845.2491861
PCI 2013, September 19 - 21 2013, Thessaloniki, Greece
Copyright 2013 ACM 978-1-4503-1969-0/13/09 ...$15.00.

Keywords
Software Security, Inlined Reference Monitors, Dynamic Taint
Analysis, Aspect-Oriented Programming

1. INTRODUCTION
Web Application vulnerabilities such as cross-site script-

ing (XSS) and SQL injection are caused by flawed coding
in combination with improper sanitization of user input and
application output. Frameworks and security libraries that
are used today in web development aim to automate sani-
tization, in order to avoid ad hoc security fixes by the de-
velopers. However, web frameworks are designed based on
assumptions that may be not adequate for all types of SQL
injections and XSS attacks. If the application incorporates
legacy code that was not originally written for the Web,
then ad hoc security hardening by the developer cannot be
avoided. This task is error prone, because developers are
usually based on manual analysis of how the input and out-
put data are used. Instead of modifying the code, we believe
that security should be treated independently from the ap-
plication logic. Moreover, the defence should not depend on
fixed assumptions that are usually made in frameworks and
libraries and should be possible to adapt into new threats.

In this article, we introduce an approach for security pol-
icy enforcement at runtime. Policy enforcement is based
on reference monitor inlining [10] through Aspect-Oriented
Programming (AOP). A high-level policy specification in
the JavaMOP framework [17] determines where the secu-
rity code is inserted and what security state is added to the
application. Though security is treated as a cross-cutting
concern independent from the application logic, the Java-
MOP generated aspect code coexists as a part of the ap-
plication. Our Inlined Reference Monitors (IRMs) can thus
mediate the execution of any statement as opposed to alter-
natives based on external process monitoring, which cannot
enforce the whole range of possible security policies through
IRMs. Reference monitor inlining also has the potential to
be more efficient than external monitoring, since it is free of
overhead for context switching to the operating system en-
vironment. Moreover, in the JavaMOP framework that was



designed specifically for monitor-oriented programming, we
can utilize advanced features for optimizing the monitoring
overhead.

Security policies for mitigating XSSs and SQL injections
express taint propagation control properties. They are spec-
ified by a number of monitored events tracking how string
data propagate between program objects from the points
where they enter the program as tainted input (sources) to
points where they are used for security critical operations
(sinks). If the application fails to prevent taint propagation
before executing a critical operation, then our IRM calls
a sanitization method from a security library. We present
IRMs for SQL injection and XSS attacks and provide eval-
uation results for their effectiveness and efficiency using the
Wavsep attack benchmark [12] and real Web applications.

The paper is organized as follows. Related work is re-
viewed in Section 2. Section 3 discusses the problem of code
injection attacks in Web applications. Section 4 explains the
monitor-oriented programming approach for security policy
enforcement. Section 5 describes our runtime monitoring so-
lution for taint propagation control and Section 6 presents
in detail our IRMs for SQL injection and XSS attacks and
their evaluation. The paper concludes with a summary of
the pros and the weaknesses of our approach and future re-
search directions.

2. RELATED WORK
Related work for countering Web application vulnerabili-

ties propose static or dynamic analysis approaches, as well
as solutions that combine both of them.

2.1 Static analysis
FindBugs [16] is a widely used tool that provides support

for developing bug detector plugins, which can statically an-
alyze Java applications in search of flawed code patterns or
erroneous control flows. FindBugs detectors for Web appli-
cation vulnerabilities do not guarantee the absence of false
negatives and they often generate false positives, as it hap-
pens with all static analyses [6]. However, the bug detectors
for Web application vulnerabilities do not need code an-
notations, as is the case with many other static analyses.
Lapse+ [24] is another Java code inspection tool for taint
propagation flaws without code annotations. A more pre-
cise static taint analysis has been recently proposed in [30].
One interesting aspect of the tool implementing this analysis
is the provided support for integrating it with Web Appli-
cation frameworks.

2.2 Dynamic analysis
Dynamic analyses aim to prevent input injection attacks

at runtime, thus avoiding the imprecision of static analyses
due to their sensitivity characteristics [6]. However, most
dynamic analyses do not take into account input sanitization
operations that can be either safe or unsafe.

In [15], the authors introduce a dynamic analysis based
on positively tainted input. Their tool called Wasp prevents
possible SQL injection attacks. Data from trusted sources
are marked as such and the trust propagates to other data
through string manipulation operations. An SQL parser is
invoked before executing queries that recognizes SQL key-
words, operators and literals. All literals are expected to
originate from trusted data, thus resulting in a conservative
protection measure. For the developers, it is necessary to

define the trusted sources.
In [4], the authors propose a technique to prevent SQL in-

jection attacks by comparing the SQL statement parse tree
before and after completing it with the user’s input data.
This function is provided in the form of a library called SQL-

Guard. It is necessary to rewrite the application’s code, in
order to introduce library calls as appropriate.

In [26], the authors describe an approach to prevent SQL,
XSS and shell injection attacks by modifying the Web appli-
cations’ API platform. The proposed platform called CSSE

provides appropriate methods to store metadata for user-
provided input, string operations and string evaluations re-
garding their taint properties. Due to a risk for potential
errors, it is recommended the described modification to be
applied by experienced security professionals.

In contrast to the discussed dynamic analysis approaches,
our IRMs do not require code rewriting, data annotations
or modification of the API platform by a security expert.
IRMs are integrated into the Web Applications by taking
advantage of the automated AOP code weaving process.

2.3 Combined static and dynamic analysis
Approaches that combine static and dynamic analysis aim

to build efficient runtime monitors based on information
gathered through static analysis. In [13], the authors present
a tool called Amnesia for mitigating SQL injection attacks.
The tool provides support for external process monitoring
based on application specific models (regular expressions)
that are statically built for the legitimate SQL queries. The
applied static analysis yields over-approximations of the ac-
ceptable strings in SQL queries. External monitoring is ac-
companied by comparatively higher runtime overhead than
internal monitoring. A limitation of this approach is that
safe sanitization of user input is not taken into account for
eliminating unnecessary overhead.

In [3], the authors present Saner, a tool aiming to prevent
SQL and XSS injection attacks in PHP web applications.
The proposed approach is based on Pixy, a static analysis
tool that can detect faulty sanitization methods. At run-
time, an external automaton monitor prevents SQL and XSS
routines from using unsanitized user input.

In [21], the author introduces SecuriFly, a tool based
on a Program Query Language (PQL) to express vulnera-
bility specifications. PQL queries are used to generate non-
deterministic automata monitors capable to collect informa-
tion for relevant program events. The number of dynamic
checks and the associated overhead is reduced by an appro-
priate static analysis. Upon a detected attack, it is possi-
ble to execute a user-defined action. Monitoring efficiency is
highly dependent on the static analysis, which has been crit-
icized that it cannot be easily applied in all circumstances.

The IRMs proposed in this article inherit a series of op-
timization options provided by the JavaMOP framework,
while a preliminary static analysis can be also used for fur-
ther efficiency improvements.

3. CODE INJECTION ATTACKS
Web applications are executed over a client-server archi-

tecture with the web browser in the client role for rendering
the user’s interface and the web server in the server role.
Client-server interactions take place on top of the HTTP
protocol, with the http requests triggering the computation
of http responses on the server side.



Code injections refer to a class of attacks that exploit user
interactions in order to inject malicious code and trap the
application into executing it. Such an attempt may succeed
if the application lacks appropriate validation of input and
output data. In this case, the attacker may be able to ap-
pend harmful data (strings, characters, etc.) into a cookie,
an http request or a response. Some well-known types of
code injection attacks are:

• the SQL code injection

• the LDAP injection

• the SSI injection

• the XSS attacks

• the command injection attacks

Input entry program locations such as the receipt of http
requests and all cookie read operations are the sources of
data that are propagated throughout the program’s control
flow to locations called sinks, where some derived data is
consumed. An attacker can inject malicious data with var-
ious techniques [21], like for example parameter tampering,
url manipulation, hidden field manipulation, http header
tampering or cookie poisoning. The data reaching some sink
is used to access the application’s state (e.g. a database) or
to affect its output (e.g. the dispatch of http responses). If
this data is infected by a malicious input that exploits the
application’s behaviour, this can have harmful consequences
for the users.

More specifically, SQL injection attacks succeed, when
some specially crafted input is used by the application in
dynamically constructed SQL queries that are executed in a
back-end database. In this case, the consequences vary from
revealing the database structure to reading or modifying sen-
sitive data or even executing database administration com-
mands. The code in Listing 1 reads from an http request the
firstName of the user and appends it into a SELECT query.
If an attacker enters the string ’ OR ’1’=’1, this traps the
application into executing a query that contains the tautol-
ogy firstName = ’ ’ OR ’1’=’1’ in the WHERE clause. In
this way, the attacker accesses sensitive information stored
in the database.

Listing 1: Sample code for SQL Injection
St r ing name = req . getParameter ( ”f i rstName ” ) ;
Connection conn = . . .
S t r ing query = SELECT ∗ FROM authors

WHERE firstName = ’+name+’ ;
Statement stmt = conn . createStatement ( ) ;
stmt . executeQuery ( query ) ;

In XSS attacks, an attacker inserts malicious scripts in
dynamically generated web pages. When such a script is ex-
ecuted on a user’s web browser, it may change the content of
the html page, steal cookies or session tokens and may also
access or even modify sensitive information such as user ac-
count credentials. XSS attacks are categorized into stored,
reflected or DOM based attacks, with each one having dif-
ferent consequences. The code in Listing 2 [23] provides a
script, which can be used in an input included in a dynami-
cally generated page to steal a cookie from an authenticated
user. This is a typical example of a reflected XSS attack.

Listing 2: Sample script for XSS
<SCRIPT type=”text / j a v a s c r i p t ”>
var adr = ’ . . / e v i l . php? cakemonster=’ +

escape ( document . cook i e ) ;
</SCRIPT>

4. INLINED MONITORS FOR SECURITY
POLICY ENFORCEMENT

4.1 Inlined Reference Monitors
A security policy is a set of constraints on application

functions, as well as constraints on access by external enti-
ties and access to sensitive data, in order to protect the ap-
plication against malicious attacks. Security policies are en-
forced by appropriate mechanisms that observe the program
execution and take remedial actions if a policy violation is
detected. These mechanisms are called reference monitors
and they are designed to fulfill the following criteria:

• All actions relevant to the policy are recorded.

• Internal or external actions that may threaten the mon-
itor’s integrity should be excluded.

• It should be possible to analyze and prove the moni-
tor’s correctness.

Reference monitors keep track of the necessary security
state information for policy enforcement, which can be only
modified through a well-defined set of security updates. Var-
ious validity checks take place for the policy’s security prop-
erties, in order to prevent illegal actions that attempt to
violate any of them. Every single update is enacted by a
specific monitored event. This association with the observ-
able events in the application’s execution history is realized
through a high-level policy specification.
IRMs integrate the security control mechanism with the

application functionality by embedding it into the program’s
code (source code or executable) [10]. Program locations
where IRMs are attached are called insertion points. The
code rewriting process is automated through Aspect Ori-
ented Programming. If some monitored events are composed
from some other simpler events, these relationships affect the
code rewriting process for security policy enforcement.

4.2 Aspect-Oriented Programming
AOP [20] offers programming methods and tools that sup-

port modularization of program cross-cutting concerns at
the level of the source code. AOP implementations pro-
vide appropriate expressions that encapsulate each concern
in separated aspect code.

AspectJ [19] is an AOP extension for Java that allows
to specify and attach aspect code into a set of control flow
points, known as join points. A pointcut is a collection of join
points that refers to a function and its associated parameter
and return values. The code snippet attached to a given
pointcut is called advice and it is executed when a join point
of the pointcut is reached. An aspect consists of the pointcut
and its corresponding advice code.

A pointcut may be declared as one out of two possible
types, namely call or execution pointcuts. JavaMOP gener-
ated aspects are call-based, i.e. the advice code is executed



upon method calls. Two primitives are used in pointcut def-
initions. With the args primitive the method’s parameter
values are defined and with the target primitive we specify
the object for which the pointcut’s method is called.

Advice code may be executed with one of the following
ways: (i) before program’s join points, (ii) after program’s
join points regardless of whether the called methods do or do
not return normally, (iii) after returning, i.e. advice code
executed only if a join point method returns normally, (iv)
after throwing, i.e. executed upon a join point method
exception and (v) around program’s join points if we want
to modify the execution context of the called methods. De-
tailed information on using AspectJ can be found in [31].

The steps towards implementing IRMs based on AOP are:

1. Define the pointcuts needed for security policy enforce-
ment. This definition determines the program’s inser-
tion points.

2. Provide advice code that keeps track of the security
state and implements appropriate validity checks and
repair actions.

3. Use the aspect compiler to identify the program’s in-
sertion points, where the IRMs’ advice code is auto-
matically weaved.

4.3 Monitor-Oriented Programming
Monitor-oriented programming (MOP) [7] is a software

development and analysis framework that supports runtime
monitoring. Monitors are automatically synthesized from
high-level event specifications and formally expressed prop-
erties over the events. The generated monitors are then
integrated into a program to check its dynamic behaviours
during execution. When a monitored property is validated
at runtime, appropriate user-defined actions are triggered
and upon a property violation, a repair may be executed.
JavaMOP [17, 1, 18] is an instance of the MOP frame-

work that supports runtime monitoring for Java programs.
JavaMOP specifications are translated into AspectJ code for
monitoring. This code is weaved into the target program by
an AspectJ compiler. The whole programming process is
shown in Figure 1.

JavaMOP’s high-level specifications hide the implementa-
tion details for coordinating the execution of program events
from the developer. A direct implication is that steps 1 and 2
of the AOP process for IRMs (Section 4.2) are significantly
simplified. Moreover, it is easier to implement advanced
monitoring policies for improved efficiency such as those that
are already provided as JavaMOP options. Monitored se-
curity properties can be expressed in one of the supported
formal languages including Finite State Machines, Context-
Free Grammars, Linear Temporal Logic and others.

5. DYNAMIC TAINT ANALYSIS
Dynamic taint analysis [28] tracks the information flow be-

tween sources and sinks at runtime. Data from selected pro-
gram sources are considered as tainted. Program data that
depend on tainted values are marked as such and the rest
of them are considered as untainted. Tainted data are not
allowed to infect sensitive program sinks. Advanced taint
policies may enforce repair actions such as the sanitization
of tainted data upon reaching a sensitive sink.

Figure 1: JavaMOP and AspectJ code weaving

A taint policy specification involves the monitoring of
three disjoint sets of program events: (a) data entry through
tainted sources, (b) operations that propagate the taint to
values derived from tainted data or else stop it and (c) op-
erations consuming data at some program sink. Events in
each set depend on the language and the type of the mon-
itored program (e.g. locally executed or server-based, user
role etc.), as well as on the mitigated security problem (e.g
code injection, unpacking malware etc.).

In web applications, data entry events are distinguished
in those that concern user input and those corresponding to
read operations from trusted sources (e.g. secured cookies,
protected files etc.). A clear demarcation between trusted
and untrusted sources has to be defined for a given type of
monitored program and a targeted security vulnerability.

Events that propagate or stop the taint are distinguished
in those that transfer the taint label between program data
and those that remove it, as a consequence of a data vali-
dation or sanitization operation. The definition of taint re-
moval events is crucial for the correctness of a taint policy.
Data validation or sanitization operations either can take or
fail taking into account the context, in which tainted data
will be used. This may cause missing an existing informa-
tion flow to a sink (undertainting) or applying an improper
sanitization that violates the integrity of some valid data. A
safe set of taint removal events for a general taint policy has
to be restricted only to standard validation and sanitization
operations provided by the application’s API. On the other
hand, if a taint analysis only adds taint and ignores taint re-
moval events, this causes the problem of taint spread: more
and more data become tainted as the program executes with
steadily diminishing precision (overtainting).

Data consumed at some program sink can reach it di-
rectly from an untrusted program source or can have been
generated from at least one preceding propagation event.
The policy can simply prevent using tainted data in security
sensitive sinks or alternatively it can apply a sophisticated
repair operation, if available (e.g. safe data sanitization).

Dynamic taint analysis aims to determine exact taint val-
ues over concrete program execution paths, as opposed to
static taint analysis that either over- or under-approximates
taint over all possible execution paths [22]. Having described
the precision challenges for dynamic taint analysis, it is
also important to stress that high precision is usually ac-
companied by very high monitoring overhead especially for
compute-bound applications [27]. Overhead reduction can
be guided by preliminary static taint analysis, in order to
insert IRMs only for the vulnerable execution paths [5].

6. IRMs FOR SQL INJECTION AND XSS
IRMs generated with the JavaMOP framework have been



previously presented in [17] for a series of application secu-
rity policies. A draft taint policy specification for SQL in-
jection attacks is proposed, not covering all necessary data
entry, taint propagation/removal and data consuming events
for a practically applicable and effective solution. The taint
policies described in this section complete the aforemen-
tioned specification and apply appropriate repair operations
for two different Web application attacks, namely SQL injec-
tion and XSS. Effectiveness of the generated IRMs is evalu-
ated over a benchmark with many different attack cases and
their monitoring efficiency is measured over real-world Web
applications.

6.1 Program events for dynamic taint analysis
The input event set of the JavaMOP specifications for the

SQL injection and XSS IRMs includes the following point-
cut methods, used to retrieve parameter values from http
requests:

• HttpServletRequest.getParameter()

• HttpServletRequest.getParameterValues()

• HttpServletRequest.getAttribute()

• HttpServletRequest.getParameterMap()

Parameters that deliver user input, which is consumed
in SQL queries or in dynamically constructed html pages,
are considered as untrusted and their values are marked as
tainted. This is implemented in appropriate after returning
advice code. Demarcation of trusted sources from untrusted
ones is based on a preliminary static taint analysis. To this
end, we have used the Lapse+ tool.

The taint removal event set of the JavaMOP specifications
for the IRMs includes the following pointcut methods:

• Integer.Integer(), Integer.parseInt()

• Float.Float(), Float.parseFloat()

• Double.Double(), Double.parseDouble()

• Short.Short(), Short.parseShort()

• Long.Long(), Long.parseLong()

• Date.parse(), DateFormat.parse(),
SimpleDateFormat.parse()

• BigInteger.BigInteger()

• BigDecimal.BigDecimal()

The aforementioned Java API methods provide a stan-
dardized way to validate their parameter with respect to its
assumed data type. For tainted data that are found valid,
the executed after returning advice code removes the at-
tached taint label. The JavaMOP specification can be easily
extended with more taint removal events, but such an at-
tempt will have to consider the possible effects on the taint
analysis safety, as discussed in Section 5.

Taint propagation takes place upon creation of new strings
from existing tainted ones. The propagate event set for the
IRMs includes the following pointcut methods:

• StringBuilder.StringBuilder(),
StringBuilder.append()

• StringBuffer.StringBuffer(),
StringBuffer.append()

• String.String(), String.concat()

In advice code executed before these methods, the taint
label(s) of the parameter(s) are checked and an appropriate
label is associated with the returned string.

The usage event set for the SQL injection IRM consists
of the following pointcut methods used to access security
critical database resources:

• Statement.executeQuery()

• Statement.executeUpdate()

• Statement.addBatch()

• Statement.execute()

Finally, the corresponding event set for the XSS IRM in-
cludes methods used to append text in dynamically gener-
ated html pages:

• JspWriter.println(), JspWriter.print()

• PrintWriter.println(), PrintWriter.print(),

PrintWriter.write(), PrintWriter.append()

• BufferedWriter.write()

• CharArrayWriter.write(),

CharArrayWriter.append()

• OutputStreamWriter.write()

• PipedWriter.write()

• StringWriter.write(), StringWriter.write()

• FilterWriter

For both event sets, if the method parameters contain
tainted data, then our IRMs either prevent a potential at-
tack or they enforce an appropriate repair operation. This is
implemented in advice code executed around the program’s
join points.

6.2 JavaMOP specifications
The IRMs security state is encoded in two maps, defined

as shown in Table 1. The TaintedInput map stores all data
originated from untrusted sources. For efficiency reasons,
monitored data include only those retrieved from the pa-
rameters in ParamName of the input event methods. As we
already mentioned, these parameters can affect security crit-
ical operations and they are identified by a preliminary static
analysis. The TaintedStrings map stores only the tainted
strings derived from propagation events.

The pseudocode of Algorithm 1 summarizes the IRM ad-
vice code executed for every method in the input event set.
Upon a method call, if the parameter name is a member of
ParamName, the return value stored in TaintedInput is asso-
ciated with an instance of StringData with isTainted set
to true.

Algorithm 2 shows the monitoring logic for every method
in the taint removal event set. If a method call returns
a value of some valid data type and the used parameter



Table 1: IRM security state information

StringData

<isTainted, taintedData>

isTainted: boolean
taintedData: Set of
tainted data that infect
a string

ParamName<String>
Set of monitored
parameter names

TaintedInput

<String, StringData>
Map for the untrusted
input data

TaintedStrings

<String, StringData>
Map for tainted strings
from propagation events

Algorithm 1: After returning advice for the input event

Input: tainted ; // Returned from method1

param ; // Parameter of method2

sd ← new StringData;3

if param in ParamName <String> then4

sd.isTainted ← true;5

put <tainted, sd > in TaintedInput;6

is a member of TaintedInput, then isTainted changes to
false.

Algorithm 3 summarizes the IRM advice code executed for
every method in the propagate event. The code comprises
three conditional branches. The parameter value can be (i) a
member of TaintedInput, (ii) a member of TaintedStrings
or (iii) is not included in any of these and the method is
invoked for a member of TaintedStrings. TaintedStrings

is updated as appropriate for each of the mentioned cases.
Algorithm 4 shows the monitoring logic for every method

in the usage event set. For a method parameter in Taint-

edStrings, its associated StringData instance is retrieved.
If isTainted is true, then all members of taintedData

are replaced in the parameter with a sanitized value gen-
erated by an ESAPI [25, 11] method call. ESAPI security li-
braries provide a series of possible repair actions available for
many different programming languages/frameworks, such as
PHP, Java, .NET, ASP, ColdFusion, C/C++, Ruby and
Perl. For the SQL injection IRM, the encodeForSQL filtering
method is called. Respectively, sanitization for JavaScript
Web applications against XSS takes place through an en-

codeForJavaScript method call. Specialized html sanitiza-
tion checks can be applied by the encodeForHTML and en-

codeForHTMLAttribute methods.
Two JavaMOP options are utilized in order to improve

monitoring efficiency as much as possible:

• creation option
Monitoring starts upon the occurrence of a creation
event and ignores previous events. In our IRMs the

Algorithm 2: After returning advice for the taint re-
moval event

Input: param ; // Parameter of method1

rValue ; // Returned from method2

sd ; // Instance of StringData3

if rValue not null then4

if <param, sd > in TaintedInput then5

sd.isTainted ← false;6

Algorithm 3: Before advice for the propagate event

Input: param ; // Parameter of method1

target ; // Invoked object2

propagatedData ; // Propagated from method3

sd, sd1, sd2, sd3 ; // Instances of StringData4

if <param, sd1> in TaintedInput then5

if sd1.isTainted then6

if <target, sd2> in TaintedStrings then7

sd2.isTainted ← sd1.isTainted;8

add param in sd2.taintedData;9

put <propagatedData, sd2> in TaintedStrings;10

else11

create sd of StringData;12

sd.isTainted ← sd1.isTainted;13

add param in sd.taintedData;14

put <propagatedData, sd > in TaintedStrings;15

else if <target, sd3> in TaintedStrings then16

put <propagatedData, sd3> in TaintedStrings;17

if <param, sd1> in TaintedStrings then18

if sd1.isTainted then19

if <target, sd2> in TaintedStrings then20

sd2.isTainted ← sd1.isTainted;21

add every value of sd1.taintedData in22

sd2.taintedData;
put <propagatedData, sd2> in TaintedStrings;23

else24

put <propagatedData, sd1> in TaintedStrings;25

else if <target, sd3> in TaintedStrings then26

put <propagatedData, sd3> in TaintedStrings;27

if <target, sd3> in TaintedStrings then28

put <propagatedData, sd3> in TaintedStrings;29

Algorithm 4: Around advice for the usage event

Input: param ; // Parameter of the method1

sd ; // Instance of StringData2

if <param, sd > in TaintedStrings then3

if sd is tainted then4

foreach si in sd.taintedData do5

replace si with ESAPI(si) in param6



Table 2: Wavsep injections not properly sanitized
ESAPI methods GET & POST cases
encodeForSQL Nr. 6, 14, 15, 16, 17, 18, 19

• err. 500 responses
• err.200 responses
• err. 200 with differentiation

Nr. 1, 2, 3, 4, 5, 6, 7, 8
• identical 200 responses

encodeForJavaScript Nr. 12, 28

input event is annotated with this option.

• decentralized option
Monitors indexing trees are piggybacked into object
states in order to reduce the monitor lookup over-
head [7].

AspectJ code weaving is performed only for the class files
that include one or more events taking place in some taint
infection path. These files were identified through the pre-
liminary static analysis with the Lapse+ tool.

The two IRMs can be easily extended with new parame-
ter names in the set ParamName, additional monitored Java
methods in the JavaMOP events and different data valida-
tion and sanitization methods. If the set ParamName is not
used, then we obtain an application independent security so-
lution at the cost of a higher policy enforcement overhead.

6.3 Experimental evaluation
Experimental evaluation of the described IRMs was based

on two benchmarks. The Wavsep benchmark [12] is a test
suite with a series of SQL injection and XSS attacks of many
different types. Our IRMs detected all the attacks and re-
ported the tainted data reaching the security critical opera-
tion.

The used ESAPI method encodeForSql prevents a type of
SQL injection that exploits special characters like “’”. Ad-
ditional measures may be used to validate strings, such as
white or black character lists or casting to SQL data types
(integer, date etc.). These alternatives can be easily inte-
grated in the IRM based on the parameters that mark an
SQL query as tainted and their types. For the XSS IRM,
the ESAPI method encodeForJavaScript prevents also code
injections that exploit special characters. Table 2 shows
the Wavsep attack cases for which the used ESAPI meth-
ods do not provide proper sanitization. The encodeForSql

method failed to repair the SQL attack in 58 out of 130 cases,
whereas the encodeForJavaScript failed in only 4 out of the
64 attacks.

The second benchmark [14] has been used in the evalu-
ation of the Amnesia toolset for mitigating SQL injection
attacks [13]. It consists of five commercial Java Web appli-
cations from 5.5 to 16.5 kLOC (Employee Directory, Book-
store, Events, Classifieds, Portal) and two smaller applica-
tions with about 5 kLOC (Checkers and OfficeTalk) that
were developed by students. All SQL injection attacks were
detected and the runtime overhead of our monitoring solu-
tion was measured. Measurements took place in two differ-
ent settings:

1. The pure monitoring overhead without taking into ac-
count the cost associated with data validation and data

sanitization. This metric quantifies only the cost of ap-
plying the IRM in order to analyze taint propagation
from sources to sinks. The maximum pure monitoring
overhead was only 7%.

2. The policy enforcement overhead that accounts also
the cost of using the ESAPI library for sanitizing tainted
values. We observed an additional 10-15% overhead
depending on the number of encodeForSQL calls (the
method is not called for already validated data). The
aggregate cost for security policy enforcement is in the
order of 20%, corresponding to a CPU time of 40-50ms
for the commercial web applications.

To conclude, the measured pure monitoring overhead is neg-
ligible, whereas the policy enforcement overhead for using
the ESAPI library in a real application is affordable.

7. CONCLUSIONS
We presented an approach for defence against SQL injec-

tion and XSS attacks by enforcing security policies at run-
time. Policy enforcement takes place by reference monitor
inlining. This is performed by weaving a security aspect that
is automatically generated from a high-level policy specifica-
tion in the JavaMOP programming framework. JavaMOP
is a monitor-oriented programming framework used in run-
time verification. Our inlined reference monitors specify
taint propagation policies that check how data propagate
between program objects and enforce appropriate measures
when needed. Experimental evaluation showed 100% suc-
cess in stopping the SQL injection and XSS attacks of a test
benchmark and five commercial Web applications, at the
cost of an affordable overhead.

Future research work will focus on further improving mon-
itoring efficiency by utilizing the JavaMOP parametric mon-
itoring mechanism. An important research direction is the
formal specification of taint policy monitors [8, 9], in order
to reason for their correctness and compositions irrespective
of the Web application logic. The described approach can
be also applied for the enforcement of security properties
beyond those countered by dynamic taint analysis. The so-
called temporal safety or typestate properties [29] concern
a wide range of application security problems [2, 17] and
can be easily expressed with the existing JavaMOP formal
specification languages.
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