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Abstract 

Secure authentication features of communication and electronic commerce protocols 

involve computationally expensive and memory intensive cryptographic operations that 

have the potential to be turned into denial-of-service (DoS) exploits. Recent proposals 

attempt to improve DoS resistance by implementing a trade-off between the resources 

required for the potential victim(s) with the resources used by a prospective attacker. Such 

improvements have been proposed for the Internet Key Exchange (IKE), the Just Fast 

Keying (JFK) key agreement protocol and the Secure Sockets Layer (SSL/TLS) protocol. 

In present article, we introduce probabilistic model checking as an efficient tool-assisted 

approach for systematically quantifying DoS security threats. We model a security protocol 

with a fixed network topology using probabilistic specifications for the protocol 

participants. We attach into the protocol model, a probabilistic attacker model which 

performs DoS related actions with assigned cost values. The costs for the protocol 

participants and the attacker reflect the level of some resource expenditure (memory, 

processing capacity or communication bandwidth) for the associated actions. From the 

developed model we obtain a Discrete Time Markov Chain (DTMC) via property 

preserving discrete-time semantics. The DTMC model is verified using the PRISM model 

checker that produces probabilistic estimates for the analyzed DoS threat. In this way, it is 

possible to evaluate the level of resource expenditure for the attacker, beyond which the 

likelihood of widespread attack is reduced and subsequently to compare alternative design 

considerations for optimal resistance to the analyzed DoS threat. Our approach is validated 

through the analysis of the Host Identity Protocol (HIP). The HIP base-exchange is seen as 

a cryptographic key-exchange protocol with special features related to DoS protection. We 

analyze a serious DoS threat, for which we provide probabilistic estimates, as well as 

results for the associated attacker and participants’ costs.   
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1. Introduction 

Formal techniques for verifying the absence of secrecy and authentication failures in 

cryptographic protocols have been effective in discovering design flaws that allow a 

malicious intruder to subvert a protocol’s guarantees. All these approaches adopt the basic 

assumptions of a general intruder model introduced by Dolev and Yao in [9]. These 

assumptions are: (i) The encryption method used is unbreakable; (ii) The intruder can 

prevent any message from reaching its destination and (iii) The intruder can create 

messages of his own. However, an attacker with the mentioned abilities can also subvert the 

availability of the protocol participants and in the related bibliography there are only a few 

recent works that address the quantitative analysis of availability threats and the alternative 

countermeasures. 

Our proposal introduces a probabilistic attacker model with assigned cost values that 

reflect the level of some resource expenditure (memory, processing capacity or bandwidth) 

for his actions. The model combines attack tactics selected from the formalized open-ended 

intruder model introduced by us in [5]. The analyzed DoS threat is expressed as a 

probabilistic reachability property that is automatically verified (according to [17] and 

[18]) with respect to an appropriate Discrete Time Markov Chain (DTMC) representing the 

protocol participants and attacker models. The overall analysis takes place in a probabilistic 

model checking toolset called PRISM [22]. This improves the usability of the analysis by 

the protocol designers and automates the generation of sensitivity results. It is thus possible 

to compare implementations with alternative parameter choices, for optimal resistance to 

the analyzed threat. 
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Our approach is described in terms of the performed analysis for the Host Identity 

Protocol (HIP) base-exchange. HIP aims to provide a “secure” multiaddressing mechanism 

that separates the two conflicting roles of host identifiers and network locations that IP 

addresses play in current Internet. The assigned costs quantifying the protocol’s processing 

workload are based on related HIP performance studies [13]. We realized that an attacker 

model embedding three basic attack tactics that successfully represent the combined effects 

of N zombie participants breaks the utilized DoS resistance mechanism. Appropriate 

queries expressed in Probabilistic Computation Tree Logic (PCTL) provide illuminating 

probabilistic estimates together with the attacker and victim’s costs for the analyzed DoS 

threat. Our analysis concludes with a sensitivity study of the obtained estimates with 

respect to the used model parameters. 

In section 2 we review the few works found in related bibliography, in order to point 

out the differences with the proposed analysis approach. Section 3 provides a brief 

introduction to probabilistic model checking and defines the DoS resistance property, in 

terms of an appropriate probabilistic attacker model. Section 4 presents the PRISM model 

for the HIP base-exchange and comments on the results of the performed PCTL queries. 

We conclude with a summary of the overall analysis approach and a comment on its 

usability and its potential impact.  

 

2. Related work 
 

Design of protocols that manage the available resources effectively in the presence of DoS 

attacks is a complex task. Interesting techniques that reduce memory storage and 

processing costs for the responder in a protocol session have been introduced in [3] and [6]. 

The client puzzles that were first proposed in [4] introduce time consuming and verifiable 

proofs of work that artificially increase the computational workload of initiators in protocol 
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sessions. This strategy aims to assure that initiators have expended a predetermined level of 

computational effort prior to a responder committing resources, but as we will see in the 

case of the HIP base-exchange it has the potential to introduce new DoS exploits. Other 

techniques like the cookies [15] are used to weakly assure the origin of requests, before 

applying stronger cryptographic operations that implement the protocol’s service. However, 

a gradually strengthening authentication can be successful only when its design is based on 

a careful analysis of the server resource usage. 

The importance of enabling availability analysis for a given cryptographic protocol was 

first shown by Meadows in [20]. In that work the author examines DoS in the context of the 

resource intensive task of authentication and develops a framework for weighting the cost 

to the defender against the cost to the attacker. The paper concludes with descriptions of 

potential integration scenarios of the proposed framework into the automated security 

analysis tools that were available at that time. In [26] the authors exploit Meadows’ 

framework to analyze the Just Fast Keying (JFK) protocol [2], in order to demonstrate its 

DoS prevention capabilities. Recently, the approach of [20] formed the basis for the 

analysis framework of [27] that according to the authors provides a more accurate 

representation of computational cost. However, quantitative evaluation takes place by 

simulation of the developed Timed Colored Petri Net model, without having exploited the 

formal analysis capabilities of the used toolset. 

An interesting stochastic modeling approach for quantifying the availability of software 

systems under DoS threats is the one introduced in [19]. In that work, the authors formulate 

the analyzed system in terms of an appropriate semi-Markov process (SMP). Starting with 

the SMP model it is then possible to derive the embedded DTMC that involves only the 

considered state transition probabilities. After having computed the steady-state DTMC 

probabilities, the assumed sojourn time distributions for the model’s states are used to 
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compute the SMP’s steady-state probabilities. This makes possible to calculate the system’s 

availability and subsequently perform parametric sensitivity analysis in order to examine 

the sensitivity of the computed availability. The overall approach requires stochastic 

modeling and analysis skills, since it is not carried out within an automated analysis tool 

like PRISM. Furthermore, the performed system-level analysis does not take into account 

the resource expenditure for the considered states and thus it is not possible to evaluate the 

message processing costs for DoS threats upon a security protocol model. 

The most closely related work found in the bibliography is the one published in [1]. In 

that work, the authors specify in probabilistic rewriting logic a DoS resistant 3-way 

handshaking in the Transmission Control Protocol (TCP). Similarly to our approach, the 

developed specification includes a number of honest participants and a simple attacker, 

flooding the protocol model with spurious requests at a specific rate (parameter of an 

exponential distribution). In the VESTA toolset [24], the developed algebraic specification 

generates a timed probabilistic model, which is then analyzed by Monte Carlo simulation 

using a sequence of interrelated statistical hypothesis tests. In this way the analyst checks 

on the generated sample if the quantitative property of interest is satisfied and this reflects 

the so-called statistical model checking approach. Compared to the probabilistic model 

checking analysis that is proposed in our work, this approach does not produce the same 

accurate results [25]. Moreover, the aforementioned analysis does not take into account 

message processing costs as we do and for this reason it is not possible to weight the cost to 

the honest participants against the cost to the attacker. For the resource intensive 

authentication features of modern security protocols this may be a significant analysis 

restriction. 
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3. Security protocol analysis with probabilistic model checking  
 

Security protocols exhibit varying and unpredictable patterns in their usage by the honest or 

potentially malicious protocol participants. This fact makes probabilistic model checking a 

promising approach towards the quantification of security threats. The whole analysis is 

based on labeling transitions between model states with information about the likelihood 

that they will occur ([17], [18]). 

 

3.1 Probabilistic model checking basic concepts 

In the PRISM language, a probabilistic model is defined as a set of m modules (reactive 

modules) M1,  . . ., Mm. Each module Mi is a pair (Vari, Ci) with Vari a set of integer-valued 

local variables with finite range and Ci a set of commands. We denote by Var the set of all 

local variables in the model, i.e. U
m

i iVarVar
1=

= . Each variable v ∈ Var has an initial value 

v . 

Each command c ∈ Ci takes the form (g, (λ1, u1), . . ., (λnc, unc)), comprising a guard g 

and a set of pairs (λj, uj) where λj ∈ R > 0 and uj is an update for each 1 ≤ j ≤ nc. A guard g is 

a predicate over the set of all local variables Var and each update uj corresponds to one 

possible transition of module Mi. If Vari contains ni local variables v1, . . ., vni, then an 

update takes the form ( 1
'
1 expr=v )∧ . . . ∧ (

ii nnv expr' = ) where each exprj is an expression in 

terms of the variables in Var. When in an update the values of some variables in Vari 

remain unchanged, the model description may omit this information. In a DTMC 

specification, the values λj determine the probability of the corresponding transition and for 

this reason λj ∈ (0, 1] for 1 ≤ j ≤ nc and 1
1

=∑ =

cn

j jλ . Also, in DTMCs terminating states are 

modeled by a single transition going back to the same state with probability 1. 

The DTMC model corresponding to a PRISM language description is constructed as the 

parallel composition of its modules by computing the reachable state space of the model 
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and discarding any unreachable states ([17], [18]). In every global state, there is a set of 

commands (belonging to any of the modules) which are enabled. The choice between 

which command is performed is probabilistic, with each enabled command selected with 

equal probability. 

Probabilistic model checking is based on a probability measure definition over the set 

Paths of all infinite paths starting in state s, for all states s ∈ S of the DTMC state space. 

We omit the details of this construction (refer to [16] and [17]) that makes it possible to 

determine the probability that paths in a DTMC are taken. However, this construction gives 

us the ability to quantify the probability that the DTMC behaves in a specified fashion, by 

identifying the set of paths which satisfy the given property specification and assuming that 

this probability is measurable using the aforementioned probability measure. 

Property specifications for DTMCs are expressed in PCTL [12], which is derived from 

the branching tree logic CTL (Computation Tree Temporal Logic) by exchanging the path 

quantifiers A (for all) and E (exist) with a probabilistic operator P. This operator defines an 

upper or a lower bound on the probability of the model evolution. As an example the 

formula P≥ p[φ] is true at a given time, if the probability that the future evolution of the 

system satisfies φ is at least p. In a similar manner, the formula P≤ p[φ] is true if the 

probability that the system fulfills φ is less than or equal to p. Apart from quantitative 

assertions, in PRISM we can also express properties which evaluate to a numerical value. 

These properties are specified in the form: 

P=?[φ] 

PCTL property specifications are checked by applying appropriate model checking 

algorithms on the model, by induction over their syntax. The underlying computation in 

PRISM involves a combination of: 
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• Graph-theoretical algorithms, for reachability analysis and qualitative probabilistic 

model checking; 

• Numerical computation (iterative solvers), for quantitative probabilistic model 

checking that in the case of a DTMC implies the solution of linear equation 

systems. 

In our analysis approach we exploit the notion of experiments, which is a way for 

automating multiple instances of model checking. This allows us to easily obtain the 

outcome of one or more properties as functions of model and property parameters. The 

results may be obtained in graphs within the PRISM model checking environment or 

alternatively in an external spreadsheet application for further study. 

Finally, the DoS resistance property, as it is defined in next section, implies the need to 

exploit the functions provided in PRISM for computing state rewards. These rewards 

represent consumption of an exhaustible resource (cost) that depending on the modeled 

DoS threat it may be communication capacity (bandwidth), memory or processing capacity. 

State rewards (that are also called cumulative rewards) are defined by means of a reward 

function ρ: S → R ≥ 0 such that a reward of ρ(s) is incurred, if the DTMC is in state s for 1 

time-step. 

In PRISM, the logic PCTL is extended to allow specification of reward properties. 

Thus, for some r ∈ R ≥ 0 and k ∈ N a state s satisfies R≤ r[C≤ k] if, from state s, the expected 

reward cumulated after k time-steps is less than or equal to r. As a last example, the 

formula R≥ r[FΦ] is true, if from state s the expected reward cumulated before a state 

satisfying formula Φ is reached will be at least r. 

 

3.2 The probabilistic attacker model 
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It is generally adopted [21] that an effective attacker model for the analysis of DoS threats 

can be weaker than the typical Dolev - Yao attacker, which is used in verifying typical 

authentication goals. This is justified by the fact that the attacks found to subvert protocols’ 

authentication goals do not necessarily arise in the case of DoS, although they are not ruled 

out entirely. The problem of determining the right set of abilities for the attacker model is 

connected to the understanding of the nature of the DoS resistance property. According to 

[8] “a DoS attack is characterized by an explicit attempt by the attacker(s) to prevent 

legitimate users of a service from using that service”. Thus, the result of a DoS attack can 

be regarded as the absence of some sort of progress properties expected from a DoS 

resistant protocol. In [10], the author characterizes these properties as “self-controlled” 

liveness properties and realizes that they form a particular subset of liveness properties, 

which the attacker cannot control. 

The strong assumptions of the Dolev - Yao attacker have been effective in the analysis 

of security guarantees that are formulated as safety properties (secrecy and authentication), 

but they are not entirely suitable for the analysis of security guarantees like DoS resistance 

that involves liveness [7]. A typical Dolev - Yao attacker has full control over the 

communication channels between the protocol participants and it is treated as a 

nondeterministic process that may attempt any possible attack. A protocol is considered 

secure if no possible interleaving of actions results in a security breach. However, the 

presence of non-determinism means that certain liveness properties cannot be established 

unless fairness is assumed. From this perspective, as far as fairness can be viewed as an 

abstraction of a probabilistic behaviour, it seems more natural to invest in a probabilistic 

model checking approach and to not adopt fairness assumptions, which are not valid for all 

attacker abilities considered in typical Dolev - Yao style analyses. 
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Some other facts that make the use of probabilistic model checking a preferable choice 

are: 

• The requirement to model the ability of an attacker to send randomly chosen 

messages or to model some sophisticated (yet probabilistic polynomial-time) 

computation to derive an attack from eavesdropped messages. 

• The need to model the probabilistic selection of implementation parameters, whose 

values affect the protocol’s security. 

• The need to capture the DoS faithfully, i.e. in terms of relative probabilities of 

certain observations by the attacker that depend solely on potentially probabilistic 

behaviours of the protocol participants (like for example the probability for a 

participant to resubmit a service request that was previously dropped from the 

server’s admission queue). 

A DoS attacker uses a fixed number N of compromised machines that are commonly 

called zombie machines, because they are identical to the machines used by honest protocol 

participants. The zombie participants create bogus protocol messages capable of tricking 

some honest protocol participant into fully expediting resources, before determining that 

the opened protocol sessions are bogus. Alternatively, instead of considering N zombie 

machines we may consider a powerful attacker with identity spoofing abilities that allow 

him to generate the combined effects of N zombie participants. 

Our proposal for the DoS attacker model uses the open-ended attack tactics base we 

proposed in [5], from where the analyst selects the right set of abilities for his DoS 

problem. The selected attack actions are combined into a single PRISM module and the 

analyst assigns to the performed operations cost values that depend on the operation’s 

resource expenditure, as well as on some resource constraint for the attacker. A similar 

cost assignment is performed for the honest protocol participants. In all cases, the assigned 
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values refer to the same exhaustible resource, which can be either, memory, processing 

power or communication bandwidth. 
 

Table 1 Resource costs for a DoS attacker with N zombie participants 
and resource costs for the honest protocol participants 

Variable Description 
N The number of zombie machines. 
#Ses The number of protocol sessions allowed for simultaneous processing by a 

protocol server.  
us/v The processing cost for a single protocol session in an honest participant 

having the capacity to process v instructions per second (us is the number of 
instructions required for the whole session).  

ks/m The processing cost for creating a fake protocol session in a zombie machine 
having the capacity to process m instructions per second (ks is the number of 
instructions required for the fake session).    

x Communication bandwidth for a zombie machine in bits per second. 
X Communication bandwidth for a honest server in bits per second. 

 

The severity of all resource exhaustion possibilities can be first assessed by computing 

all resource asymmetries between the attacker – with the considered resource constraints – 

and the honest protocol participants. For a protocol message that requires u instructions of 

computation by some protocol participant having the capacity to process v instructions per 

second, the processing cost is u/v seconds of computation. On the other hand, if the attacker 

processes m instructions per second and an assigned computation takes k instructions, then 

the considered cost is k/m seconds of computation. We assume the same resource 

expenditure for the attacker and the honest participants for the same operations and we 

calculate the corresponding costs as described. Table 1 summarizes the notation used in the 

following calculations for the resource costs and the resource asymmetries in a typical 

protocol case.  

For some N-zombie attacker if we assume that each zombie is connected to the network 

via a link with bandwidth x bits per second and a server participant is connected via a link 

with bandwidth X bits per second, then the zombies alone can saturate the server’s 

bandwidth when Nx ≥ X. Regarding the server’s processing power, this can be saturated 

when  
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N⋅ks/m ≥ (#Ses)⋅us/v  

where ks is the total number of instructions in a single protocol session for the attacker, us 

the number of instructions in a protocol session and #Ses the number of sessions allowed 

for simultaneous processing by the server. The problem of determining whether processing 

DoS threats dominate bandwidth DoS threats is a matter of comparing whether the 

server/zombie asymmetry is greater for bandwidth than for processing, i.e. whether 

x
X

mk
vuSes

s

s <
⋅

/
/)(#  

Our approach is then applied by taking into account the cost values for the most serious 

resource exhaustion DoS threat. 

For a given DoS threat, the DoS resistance property is quantified by the probability for 

an attacker representing the modeled threat to eventually prevent - with disproportionaly 

low cost - honest participants from using the protocol’s services. We are interested to 

discover protocol designs and implementation parameters that minimize this probability 

and for this reason we try to make sure that every time a honest participant takes part in 

some action that requires the use of significant amount of resources, the attacker cannot 

fraudulently cause him to reach that step without spending a significant amount of its own 

resources. 

We already noted that DoS protection is usually based on an appropriate cookie-based 

[15] or client puzzle mechanism [4], where a protocol participant passes a “cookie” (e.g. an 

“unforgeable” keyed hash value of the information identifying the connection) or a puzzle 

to another participant, in order to establish mutual trust, possibly in the form of some 

shared-secret. The idea is that the responder should remain stateless (protection against 

memory exhaustion) and refuse to perform expensive cryptographic operations (protection 

against processing power exhaustion), until it has verified the honesty of the initiator. In 

this setting, there are three key strategies by which an attacker can implement a DoS threat: 
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• Counterfeiting: The attacker sends invalid cookies, puzzles or puzzle solutions. 

• Time Shifting: The attacker is prepared for an attack by computing fake shared 

secrets (either by solving puzzles or manipulating cookies), in order to expend them 

in a massive DoS attack. 

• Message replays: The attacker may send the same valid cookie or puzzle solution 

many times. 

The aforementioned strategies assume that the attacker model performs three basic 

operations, i.e. message interception, message projection and message concatenation, 

mentioned in decreasing order of processing demands. The analyst implements a DoS 

threat by selecting the right set of attack tactics from the ones formalized by us in [5] and 

composes them into a single PRISM module with appropriate cost values for the performed 

operations. 

 

3.3 Attack tactics for DoS attacker models 

An atomic message may come from one of the sets: 

• Keys, with members that represent the keys used to encrypt messages, such that 

every key k ∈ Keys has an inverse k-1 ∈ Keys. For symmetric cryptography the 

decryption key is the same as the encryption key, i.e. k = k-1. 

• Agents, with members that represent the names of the honest protocol participants. 

• Nonces, which is an infinite set of randomly generated numbers. Members of 

Nonces are used as timestamps, i.e. any message containing one of them can be 

assumed having been generated after the nonce itself was generated. 

• Data, with members that represent the plaintext strings exchanged between the 

protocol’s participants. 
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• Bogus_data, with members that represent data created by the attacker for 

counterfeiting intercepted messages.  

We denote by At the attacker (At ∉ Agents). Also, we define the binary relation, 

  is_key_of = { (k, id): k∈ Keys, id ∈ Agents ∪ {At}, 

    “key k is used by the participant id”} 

such that |is_key_of (k)| =1 in the case of public key cryptography or |is_key_of (k)| =2 in 

the case of symmetric cryptography. 

The set Msgs of exchanged messages is defined inductively over the disjoint union  

  AMsgs = Keys ∪ Agents ∪ {At} ∪ Nonces ∪ Data ∪ Bogus_data 

that represents the set of atomic messages (Seti ∩ Setj = ∅ for any two Seti, Setj of the 

unified sets). More precisely: 

• If α ∈ AMsgs then α ∈ Msgs. 

• If msgx ∈ Msgs and msgy ∈ Msgs then msgx ⋅ msgy ∈ Msgs, where ⋅ represents 

message concatenation. 

• If msg ∈ Msgs and k ∈ Keys then {msg}k ∈ Msgs. 

Each ag ∈ Agents may attempt to execute the protocol for a bounded number of times 

say #Sesag and each such attempt is a separate protocol session noSes, such that 1 ≤ noSes 

≤ #Sesag. In a protocol session, ag plays either the role of the initiator or the responder.  

We denote by noSes
nsent ag  the finite-length concatenation sequence of messages sent by ag 

∈ Agents in the course of session noSes: 

)( ag
1

ag
nnn msgsentsent noSesnoSes ⋅= −  

with the first term equal to the null sequence that is, ) (ag
0 =noSessent . The sequence noSes

nsent ag  

represents participant’s ag history for session noSes, after having sent msgn. We denote by 

noSes
nrcvd ag  the finite-length concatenation sequence of messages received by ag in the 
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course of session noSes. In a given time instant the acquired participant’s knowledge for 

the ongoing protocol execution is given as 

agknowledge U
j

jag
ircvd

ag
)max( }{ = ∪ agin_knowledge, 

for all 1 ≤ j ≤ #Sesag, where agin_knowledge represents the initial knowledge base of ag (keys, 

agent identities and so on) and i > 0 represent the terms of the received message 

concatenation sequences. A protocol session for a honest participant ag ∈ Agents is 

defined formally as a 5-tuple 〈ag, j, agknowledge, j
historyag , PR〉, where 1 ≤ j ≤ #Sesag and PR is 

a process description given as a sequence of actions that represent the protocol definition 

for the considered role. We use the actions send1 and receive2 for sending and receiving 

messages to/from other protocol’s participants. The assumptions mentioned in section 1 for 

the general Dolev - Yao attacker model imply that in a given time instant the acquired 

attacker’s knowledge for the ongoing protocol executions is given as 

U
jag

)max( }{  jag
iknowledge sentAt = ∪ Atin_knowledge, 

for all 1 ≤ j ≤ #Sesag, ag ∈ Agents ∪ {At}, where Atin_knowledge represents the initial 

attacker’s knowledge base and i ≥ 1 represent the terms of the eavesdropped message 

concatenation sequences. 

The protocol model is given as the parallel composition of the models for all protocol 

sessions, including the attacker model, whose behavior depends on the defined attack 

tactics. DoS attack related actions are selected in a probabilistic manner and each possible 

path of the model corresponds to a non-empty alternating sequence of states and actions: 

τ = s0 α1 s1 α2 . . . sn, for some n ∈ N 

such that i
a

i ss i   1 ⎯→⎯−  for 0 < i ≤ n and for the transition relation → defined as 

→ ⊆ S × PS × A × Msgs × S 

                                                 
1 Action send(ag, v, msg) expresses the event whereby ag sends msg to v 
2 Action receive(v, u, msg) expresses the event whereby v receives msg from u 
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where S is the set of states, PS is the set of protocol sessions and A is the set of action 

names. 

In a DoS attacker model that combines message counterfeiting and message replays the 

DoS attack may take place anytime after the occurrence of some action send(ag, v, msg) 

with ag, v ∈ Agents and some msg ∈ Msgs that At alters with negligible processing cost, if 

msg is not encrypted. Alternatively, the DoS attack may also take place with substantial 

counterfeiting cost anytime after the occurrence of some action send(ag, v, {msg}k) such 

that At ∉ is_key_of (k) ∧ k-1∈ Atknowledge. The first mentioned action results in a state, where 

exists(msg, j
isentag )max( )3 = true 

for some 1 ≤ j ≤ #Sesag, with i ≥ 1 representing the terms of the eavesdropped message 

concatenation sequence and respectively, the second mentioned action results in a state, 

where 

exists({msg}k, j
isentag )max( ) = true 

The attacker model (At) manipulates message msg by applying a protocol-specific 

sequence of message projection and message concatenation operations, which in effect 

replace some part of msg with bg_data ∈ Bogus_data, such that for the altered message 

msg΄ we have  

exists(bg_data, msg΄) = true 

This message counterfeiting is denoted by 

alter(msg, bg_data) ⇒ msg΄ 

or respectively 

alter({msg}k, bg_data) ⇒ {msg΄}k 

and is completed by a straight message replay corresponding to the action send (At, v, 

msg΄) or the action send (At, v, {msg΄}k) in the second case. 

                                                 
3 Boolean predicate exists(msg, str) is true if the message msg ∈ Msgs appears in string str 
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N zombie participants trying to trap the victim v ∈ Agents in some form of resource 

exhaustion are represented by N distinct pairs of message counterfeiting and message 

replay actions. Every single pair of these two actions uses a different bg_data ∈ 

Bogus_data, which may be chosen randomly or in the case of a time shifting attack, it has 

been pre-computed by the attacker. 

Next we recapitulate the sequence of actions in a DoS resource exhaustion attack 

against victim v ∈ Agents, which is based on counterfeiting some message msg: 

 in s ∈ S: exists(msg, Atknowledge) = true 

 do for N times 

  ∃ bg_data ∈ Bogus_data: alter(msg, bg_data) ⇒ msg΄ 

  Bogus_data = Bogus_data – { bg_data } 

  msg = msg΄ 

  send (At, v, msg΄) 

 end_do 

When a DoS attack is based on counterfeiting some message {msg}k for k ∈ Keys such 

that At ∉ is_key_of (k) ∧ k-1∈ Atknowledge the given DoS attack definition is adjusted 

appropriately. In order to break a protocol’s secrecy “guarantee” a DoS attacker can 

combine the described sequence of actions with an appropriate attack tactic from the ones 

defined in [5]. 

The DoS attack succeeds if there is a reachable s΄ ∈ S where  

 for each counterfeited msg΄∈U
jA

)max( }{
t

At
i

jsent with 1 ≤ j ≤ #SesAt 

  ∃ m, 1 ≤ m ≤ #Sesv such that exists(msg΄, mv
ircvd )max( ) =true 

and s΄ represents a resource exhaustion state for participant v ∈ Agents, i.e. a state in which 

some implementation parameter or resource constraint hinders v from executing receive 

actions for all protocol messages that are send by ag ∈ Agents – {v}. If the probability to 
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reach s΄ is significant and the cumulative cost to the Attacker is disproportionally low when 

compared with the cumulative cost to v, then the DoS resistance property – as we define it 

in section 3.2 – is violated. 

Figure 1 provides a high level view of the analyzed DoS threat upon the HIP base-

exchange. Contrary to related analyses of HIP [27], which focus on the DoS resistance of 

the responder in a protocol session, our work examines a serious counterfeiting DoS threat 

against the initiator. The attacker (At) intercepts the message traffic between the initiator 

(I) and the responder (R) and alters the puzzle contained in msgR by simple message 

concatenations, in order to create N zombie messages that are subsequently sent to the 

initiator. The attack tactics used in the attacker model are the message integrity violation 

combined with multiple straight message replays. 

    

 
 

Figure 1. A DoS threat with message counterfeiting for N zombie participants 
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4. Analysis of a DoS threat against the HIP base-exchange protocol    

 

4.1 Introduction to the HIP base-exchange 

The main goal of HIP [14] is the separation of host identifiers from locations in the IPv4 

and IPv6 Internet. In a typical TCP/IP stack, IP addresses serve both roles and this fact 

introduces certain limitations regarding mobility and multi-homing. HIP is a new protocol 

layer that is introduced between the network and transport layers, in order to map the host 

identifiers to network addresses and vice versa.  

However, HIP also plays the role of a security protocol that defines host identifiers for 

naming the communication endpoints and performs authentication and IPsec security 

associations between them. The HIP base-exchange is built around a classic authenticated 

Diffie - Hellman key exchange, in an attempt to establish session keys between the 

communication endpoints. If the HIP base-exchange succeeds, all subsequent packets are 

protected by an Encapsulating Security Payload (ESP) header. Depending on the options 

selected at the time of security association establishment the used ESP header may provide 

confidentiality, data origin authentication, connectionless integrity, an anti-replay service 

and limited traffic flow confidentiality. 

In HIP, the host identity (HI) of the protocol participants plays the role of a public key: 

this identifier can be used to verify signatures without access to certificates or a public-key 

infrastructure. It is usually represented by the host identity tag (HIT), which is a 128-bit 

hash of the HI. As shown in Figure 2, the HIP base-exchange includes four messages that 

are supposed to provide a certain degree of DoS protection. The Initiator first sends the 

message I1 with the HITI and the HITR tags, to the Responder. We note that all messages 

contain the Initiator and Responder identity tags (HITI, HITR) in the header. 
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HITI I identity tag 
HITR R identity tag 
gR pre-computed part of 

R1 
sigR signature of R 
sigI signature of I 
C puzzle nonce 
k puzzle difficulty 
J puzzle solution 
LSBk returns the k least 

significant bits  
Ke, Ks generated Diffie-

Hellman keys 
Ex message x encrypted 

with Ke  
HKs cryptographic hash 

with key Ks 
HMAC HMAC based message 

authentication code 
computed using Ks 

Figure 2. The HIP Base Exchange 
 

Message R1 is partially pre-computed by the Responder, even before the receipt of I1. 

The pre-computed part (gR) includes (i) the HITR, (ii) the Responder’s Diffie-Hellman key, 

(iii) the Responder HI, (iv) the proposed cryptographic algorithms for the next steps of the 

base-exchange, (v) the proposed ESP transforms and (vi) an echo request field. The last 

mentioned field is used to store some data and relieves the Responder of maintaining 

protocol state data at this step (protection against memory exhaustion). The Responder 

signs the pre-computed part of R1 with sigR. All other parts of R1, i.e. the cryptographic 

puzzle and the HITI fields are populated after receiving an I1 and they are not protected by 

the signature sigR. A host may receive more than one R1 messages, either due to having 

sent multiple I1s or due to a replay of an old R1. 

The used puzzle has three components: the puzzle nonce C, the difficulty level k and the 

corresponding solution J. The puzzle solution is verified as follows: we compute the SHA-

1 hash of the concatenation of C, HITI, HITR and J and then we check that the k low-order 

bits of the hash are all zeros. 

LSBk(SHA-1(C | HITI | HITR | J), k) == 0 
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While the Initiator performs a brute-force search for J that takes O(2k) trials, the Responder 

verifies the solution by computing a single hash (protection against processing power 

exhaustion). 

On receiving R1 the Initiator checks that it has sent a corresponding I1 and verifies the 

signature using the Responder HI. Then, it solves the puzzle and creates the message I2 that 

includes HITI, HITR and a signed part gI. The signed part contains (i) the puzzle and its 

solution, (ii) the Initiator’s Diffie-Hellman key Ke, (iii) the HIP and ESP transforms 

proposed by the Initiator, (iv) the Initiator HI (public key) encrypted using Ke, which is 

shown as E1, (v) the HIP and ESP transforms proposed by the Initiator, (vi) a security 

parameter index for the Responder-to-Initiator security associations and (vii) the echo 

response generated for the received echo request. 

On receiving I2, the Responder verifies the puzzle solution, decrypts E1 that contains 

the Initiator HI, verifies the signature on I2 and computes the session key Ks. For the 

Initiator, the HIP base-exchange is concluded by the receipt of R2, which allows verifying 

the HMAC (hash-based message authentication code that is computed using the session 

key Ks) and the signature. The end of protocol session is signaled by a CLOSE/ 

CLOSE_ACK handshake that transmits a signed verifiable HMAC to both sides. 

If a host receives an unexpected message, it must drop the message. Also, an HIP 

implementation is free to drop an association at any time, based on its own policy. If a host 

decides to drop an association, it deletes the corresponding HIP state, including the keying 

material. Our probabilistic model checking approach allows validating potential DoS 

threats, in order to design implementation-specific DoS resistance policies. 

 

4.2 The PRISM model for the HIP base-exchange  
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The PRISM model for the HIP base-exchange implements the state machine shown in 

Figure 3. This machine captures the Initiator and Responder processes in a single system 

view, representing either an Initiator or a Responder. The protocol participants’ states are 

defined in Table 2. 
 

 
Figure 3. The HIP state transition diagram 

 
Table 2 The HIP base exchange states 

State Description 
Unassociated State machine start 
I1-sent Initiating base exchange 
I2-sent Waiting to complete base exchange 
R2-sent Waiting to complete base exchange 
established HIP association established 
closing HIP association closing, no data can be sent 
closed HIP association closed, no data can be sent 

 

We observe that there are states which imply a waiting time for the receipt of some 

specific message sent by the right participant. State I1-sent for example is reached either 
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from Unassociated or closed upon dispatch of I1 and in this state the participant 

waits for message R1 or I2, whose receipt triggers the actions shown in the corresponding 

transitions. States establish, close and closing represent successful establishment 

of HIP security associations.       

Our PRISM model includes four modules: (i) the Medium (m), representing the 

communication channel used by the protocol participants to exchange messages, (ii) the 

Initiator (I), (iii) the Responder (R) and (iv) the Attacker (At). In their parallel composition, 

the aforementioned modules interact by updates to their local variables. These updates 

correspond to the modeled state transitions.  
 

 
Figure 4. Global variables of the HIP model 

 

Figure 4 introduces the global declarations of the model. We note that the discrete time 

steps of our DTMC represent state transitions that reflect the occurrence of one or more 

events in the system model and they are not used as a means to represent time delays in 
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protocol execution. The constants in the first part of the shown declarations introduce 

processing time costs for the reward associations defined for the model’s states. The used 

values are based on the considered message processing demands (data taken from related 

HIP performance studies [13]) and on the relative differences between the interacting 

participants regarding their processing capacity (number of instructions processed per 

second). Variables c1 and c2 are local variables of module m and the formulae of Figure 4 

define values that jointly represent a message flow either from the Initiator to the 

Responder or vice-versa. Two variables are related to HIP implementation parameters: (i) 

proc_limit represents the number of messages that are served simultaneously by I and (ii) B 

denotes the maximum number of messages in Initiator’s admission queue. Finally, global 

variable a represents the number of R1 message replays generated by module At for each 

counterfeited message created by the attack tactics shown in Figure 1 and M expresses the 

total number of distinct counterfeited messages.  
 

 
 

Figure 5. The PRISM module for the communication medium (m)  
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Figure 5 shows the guarded commands  

[ ] <guard> → <command>; 

of module m. The command(s) corresponding to some guard specify the possible 

transition(s) for m, if the guard is true. The declarations of Figure 4 defined the possible 

message flows in m, which are the following: 

a. No messages (c1=2 & c2=2) – there is no undelivered message 

b. Message origin 1 (c1=1 & c2=2) – I (or At) sends a message to module R 

c. Message origin 2 (c1=2 & c2=1) – R (or At) sends a message to module I 

The values of c1 and c2 and the values of variable s3 (with s3=4 meaning that At received 

I1) and s1 (with s1=4 meaning that I is ready to receive some message) determine the 

different states where some command is enabled for module m. The message transmissions 

are implemented in two stages thus allowing interference of module At taking place in 

between them. In this way At has absolute control over the network, since the exchanged 

protocol messages can enhance the Attacker’s knowledge base. 

However, for the analyzed DoS threat it is enough the Attacker’s knowledge to include 

only the first two messages of the HIP base-exchange. The Attacker exploits the fact that 

the puzzle sent to the Initiator in message R1 is not included in the pre-computed signed 

part of the message. The puzzle is generated on demand based on a random nonce and a 

parameter k that adjusts the puzzle difficulty and in effect influences the Initiator’s cost to 

compute the solution. Certainly, the protocol requirement for generation of fresh puzzles 

protects the Responder from time shifting and message replay DoS threats, but at the same 

time makes the protocol vulnerable to the counterfeiting DoS threat shown in Figure 1. 

If in a HIP implementation there is no providence that will prevent the Initiator from 

accepting replayed R1s, then the considered Attacker (At) can prevent the Initiator from 

ever solving an authentic puzzle. This attack succeeds when the frequency of the 
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counterfeited messages is higher than the roundtrip between the Initiator and the 

Responder. In this case the first R1 that arrives at the Initiator after having sent I1 is always 

a replay of a counterfeited message and the protocol’s DoS resistance depends on the 

selected values of proc_limit, B and k. 
 

 
Figure 6. The PRISM module for the Attacker (At)  

 

Figure 6 shows the guarded commands of module At. The Attacker’s behavior is 

encoded into nine (9) distinct states represented by local variable s3. In state 2, module At 

intercepts I1 and subsequently forwards the intercepted message to the intended recipient. 

In state 5, module At intercepts R1 and subsequently sends to module I a trickle of 

counterfeited message replays that aim to trick the Initiator into spending its processing 

power for solving wrong puzzles. 

The modeled Attacker is supposed to create in total M counterfeited R1s with wrong 

puzzles. Each counterfeited R1 is replayed a times and these message replays are modeled 

with a single state transition. The number of message replays (a) is selected by module At 
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with equal probability between the two values shown in Figure 6. Finally, Figure 7 

introduces the processing costs that are assigned to selected states of module At. These 

costs correspond to the generation of the messages implementing the modeled DoS threat 

and the message transmission costs, which depend on the value of a.  
 

 
Figure 7. Processing costs assigned to selected Attacker states  

 
 

 
Figure 8. The PRISM module for the Initiator (I) 
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Figure 8 shows the guarded commands of module Ι. The Initiator’s behavior is encoded 

into seven (7) distinct states represented by local variable s1 and one state corresponding 

to DoS failure, which is activated when the local variable fail is assigned the value 2. 

The different module states and the associated conditions enable appropriate send and 

receive actions for the messages contained in the HIP base-exchange. Module I receives 

batches of a replays of counterfeited messages R1 and allocates threads taken from a pool 

of MAX threads, for processing the messages queued in the server’s admission queue. The 

reward association shown in Figure 9 assigns the processing cost to some state of module I, 

where the Initiator computes the solutions for the puzzles of a counterfeited R1 messages. 

These costs depend on the selected value of puzzle difficulty (k) that in fact determines the 

number of trials required in a brute-force search, in order to find the solution in a given 

puzzle (data based on related HIP performance studies [13]). To keep our description 

concise we omit the code of module R, which the reader can obtain from [23].     
 

 
Figure 9. Processing costs to the Initiator for different values of k  

 
 

4.3 Probabilistic model checking results 

For the generated DTMC, the PCTL query 

Q1: P=? [true U fail=2] 

evaluates the probability of taking a path that eventually reaches some state, where 

variable fail is equal to 2. In any such state, module I processes simultaneously 



30 

proc_limit messages with wrong puzzles and in the steady state the server’s admission 

queue includes B messages in total. As a consequence of these facts, any valid R1 

message will be dropped. According to what we mentioned in Section 3.2 for quantifying 

the DoS resistance of the modeled protocol, if the Attacker brings the system into this 

situation with high probability and the cumulated processing cost is disproportionaly low 

compared to the cost to the Initiator, we have proved an outstanding case of DoS threat.  
 

 
Figure 10. Probability to eventually reach a state where the Initiator is not available  

 

The results shown in Figure 10 reveal an unacceptably high probability (P=0.895) to 

eventually reach a state that reflects the discussed situation. 
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A more illuminating view of the variation of the probability to reach a state where 

module I is unavailable is the one of Figure 11. For the purposes of the shown PCTL 

experiment we defined the constants msgs_in_service and msgs_in_queue, in 

order to examine the behaviour of the model in a bounded range of values for the variables 

proc_limit and B. The shown results are obtained with the query: 

Q2: P=? [true U msgs_in_service=proc_limit & msgs_in_queue=B] 

where proc_limit is varied between 0 and 200 with step 50 and B is varied between 0 

and 400 with step 50.   
 

 
Figure 11. Probability to eventually reach a state where module I is unavailable for 

different values of proc_limit and B 
 

We note that the system’s DoS resistance is improved for allowed queue lengths of 250 

messages or more, under the condition that module I will not process simultaneously more 

than 50 messages. These findings provide valuable information for fine-tuning HIP 

protocol implementations.  

However, a complete view for the protocol’s DoS resistance is obtained only when 

having reviewed the results of the following reward queries regarding I’s and At’s 

processing costs. Query Q3 provides for different values of puzzle difficulty k the expected 

cumulated processing cost to module I, when having reached some state in which it is not 
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available any more. We note that the puzzle difficulty is originally selected by module R in 

a probabilistic manner. 

Q3: R[Initiator_cost]=? [true U msgs_in_queue=B & k=puz_dif] 

Figure 12 shows the obtained results for B varied between 0 and 100 with step 20 and 

assigned puzzle difficulty k selected from the values 1, 10, 15, 20, 25 (puz_dif). For 

allowed queue lengths between 0 and 60 the cumulated processing cost for module I can be 

dramatically increased, especially when the used puzzle difficulty is a number greater than 

20.   
 

 
Figure 12. Expected cumulated processing cost for Initiator when becoming unavailable 

 

Reward queries Q4 and Q5 complete the picture for the system’s DoS resistance. The 

graphs shown in Figure 13 provide a comparative view of the expected cumulated 

processing cost to module At against the cost incurred to module I when becoming 

unavailable: 

 Q4: R[Initiator_cost]=? [true U msgs_in_queue=B & k=puz_dif] 

 Q5: R[Attacker_cost]=? [true U msgs_in_queue=B & k=puz_dif] 

As before, B varied between 0 and 100 with step 20 and we generated results for puzzle 

difficulty 1, 10, 15, 20 and 25 (puz_dif). 
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The shown results provide valuable insight regarding the severity of the demonstrated 

DoS threat for different combinations of puzzle difficulty, the number of messages 

simultaneously processed by the Initiator and its allowed queue length. Our Attacker 

module counterfeits partially signed messages dispatched by module R and replays the 

counterfeited messages, in order to trick the module representing the Initiator into 

processing wrong puzzles. An efficient approach towards the deamplification of the 

demonstrated attack is the use of puzzle difficulty values between 10 and 18 and an 

appropriate adjustment in the allowed queue length for the Initiator and the number of 

messages simultaneously processed. We note that the puzzle difficulty values that make it 

possible to deamplify the demonstrated attack are also proposed as appropriate 

implementation parameters in technical reports for the HIP base-exchange ([14], [13]). 
 

 
Figure 13. Expected cumulated processing costs to the Initiator and the Attacker  

for k = 1, 10, 15, 25 
 

An alternative countermeasure with considerable implementation cost is the use of an 

R1 generation counter per host identity ([14]). This monotonically increasing counter will 
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indicate the current generation of puzzles and a host will accept puzzles from the same 

generation, but it may be also possible to accept puzzles from earlier generations. Again, 

our quantitative verification approach is a valuable means in the design of such 

countermeasures. 

In PRISM it is possible to combine multiple DoS attacks within the same model. In this 

case, the underlying probabilistic model will be a Markov Decision Process (MDP), instead 

of DTMC. However, an inherent risk in trying to quantify DoS resistance with an MDP 

model is the potentiality for state space explosion or inexpedient query response times that 

will make the needed experimentation practically infeasible. Also, comparison of the costs 

to the different protocol participants will not be easy, since when the PCTL reward queries 

that are applied to an MDP compute the minimum or maximum costs for the analyzed 

condition. These costs will correspond to different DoS attacks and for this reason there is 

no obvious way to compare the participants’ costs under the same DoS threat. 
 

Table 3 PCTL queries performance 

DTMC model generation 
CPU time (sec): 
255.547 

Number of states: 
8733343 

Number of transitions: 
31988778 

PCTL query Q1 
CPU time (sec): 
178.532 

Memory allocation (KB): 
173808.1 

Jaccobi iterations: 
500 (in 148.11 sec) 

PCTL query Q2 (proc_limit=200 msgs, B=400) 
CPU time (sec): 
204.953 

Memory allocation (KB): 
178593.2 

Jaccobi iterations: 
488 (in 187.86 sec) 

PCTL query Q3 (k=10) 
CPU time (sec): msgs_in_queue: Jaccobi iterations: 
7.547 20 113 (in 6.52 sec) 
16.109 40 213 (in 15.17 sec) 
27.625 60 313 (in 25.78 sec) 
36.359 80 413 (in 35.20 sec) 
45.547 100 513 (in 44.64 sec) 

PCTL query Q5 (k=20) 
CPU time (sec): msgs_in_queue: Jaccobi iterations: 
7.469 20 173 (in 6.47 sec) 
16.218 40 273 (in 15.19 sec) 
27.516 60 373 (in 25.72 sec) 
36.016 80 473 (in 34.78 sec) 
45.875 100 573 (in 45.78 sec) 
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In Table 3, we provide representative performance statistics for the queries shown in 

this paragraph. All experiments took place on a Pentium IV machine (3.6 GHz) with 2 GB 

memory and as we see the required CPU time for the used iterative solver to converge is 

determined by the size of the generated DTMC state space. This finding makes it worth to 

comment on the efficiency and the scalability of our analysis approach with respect to the 

system model size. We observe that the consumed CPU time for the performed PCTL 

queries increases with sublinear rate with respect the number of messages allowed in the 

server’s admission queue. The main factors that affect the growth of the DTMC state space 

are:  

• Protocol implementation parameters such as the size of the servers’ admission 

queues and the number of messages that are served simultaneously. 

• The attack tactics implemented by the modeled Attacker and parameters such as the 

number of counterfeited messages and the number of message replays in the DoS 

attack. 

The parameters used in the analysis of the HIP base-exchange represent realistic 

protocol implementation cases that were also used in related performance measurement 

studies. On the other hand, the DoS attack tactics of section 3.3 require interception of one 

particular protocol message and for this reason it is reasonable to assume that the provided 

statistics are representative cases of the vast majority of analysis problems targeted by our 

approach. However, if the implemented DoS attacker combines additional attack tactics 

from the ones described in [5] (e.g. parallel sessions, type flaws etc.) then we propose the 

analyst to consider using a smaller number of counterfeited messages and a higher number 

of message replays that will be assigned on a deterministic basis.    
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5. Conclusion 

This work introduces a quantitative verification approach as a means for deamplification of 

DoS security threats or for studying the effectiveness of countermeasures, which can be 

applied in potential protocol implementations. Our approach is based on a general 

probabilistic attacker model encompassing the most common DoS attack strategies. We 

treated the protocol’s DoS resistance property as a quantifiable measure that depends (i) on 

the probability to reach a state where some protocol participant becomes unavailable and 

(ii) the requirement for the attacker to cause this event with disproportionaly low cost 

compared to the cost incurred to the victim. The general framework makes it possible to 

model any form of resource expenditure and in effect the analyst develops a cost model 

representing the most prominent resource exhaustion possibility (communication 

bandwidth, memory or processing power). 

The overall analysis takes place in a mature probabilistic model checking tool called 

PRISM. We developed a probabilistic model for the HIP base-exchange protocol that uses a 

client puzzle mechanism for protection against DoS. The model is coupled to a reward 

structure representing the processing costs for the protocol participants and the considered 

instance of the general attacker model. The obtained results provide valuable insight 

regarding the severity of the demonstrated DoS threat in different protocol implementation 

cases. 

To the best of our knowledge, our work is the first attempt to quantify DoS security 

threats with probabilistic model checking. We believe that the proposed approach can be 

utilized in the design of new security protocols and protocol implementations. The analyst 

works with a toolset that allows focusing on the formulation of the protocol as a state-

transition system associated with an appropriate cost model. In general this task is not 

particularly difficult for most security experts. Moreover, the PCTL queries for quantifying 
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the protocol’s DoS resistance can be potentially generated by an appropriate specification 

pattern system that will guide the specification of probabilistic and reward properties based 

on a structured English grammar [11].   

As a future research prospect, we plan to extend the range of DoS attack strategies 

included in the general attacker model. A first priority aim is to make it possible to develop 

model instances, where a number of attackers collude in some way, in order to perform a 

distributed denial of service attack (e.g. the well known “cookie jar” attack). 
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