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Abstract 

Architecture is fundamental for fulfilling requirements related to the non-functional 

behavior of a software system such as the quality requirement that response time does not 

degrade to a point where it is noticeable. Approaches like the Architecture Tradeoff 

Analysis Method (ATAM) combine qualitative analysis heuristics (e.g. scenarios) for one 

or more quality metrics with quantitative analyses. A quantitative analysis evaluates a 

single metric such as response time. However, since quality metrics interact with each 

other, a change in the architecture can affect unpredictably multiple quality metrics. This 

paper introduces a quantitative method that determines the impact of a design change on 

multiple metrics, thus reducing the risks in architecture design. As a proof of concept, the 

method is applied on a simulation model of transaction processing in client-server 

architecture. Factor analysis is used to unveil latent (i.e. not directly measurable) quality 

features represented by new variables that reflect architecture-specific correlations between 

metrics. Separate Analyses of Variance (ANOVA) are then applied to these variables, for 

interpreting the tradeoffs detected by factor analysis in terms of the quantified metrics. The 

results for the examined transaction processing architecture show three latent quality 

features, the corresponding groups of strongly correlated quality metrics and the impact of 

architecture characteristics on the latent quality features.    
 

KEYWORDS:  Software quality, Software architecture, Runtime software metrics, Design 

tradeoffs, Architecture validation, Transaction processing, Simulation  

 

1. Introduction 

Software architecture is defined as: “the structure or structures of the system, which 

comprise software components, the externally visible properties of those components, and 

the relationships among them” [8]. Architecture sets the boundaries for runtime quality 
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(performance, fault handling, shared resource usage, security etc.) although it cannot be a 

basis for precise predictions [17], since runtime behavior also depends on implementation 

details. Nonetheless, software architecture can support analyses that provide confidence for 

the effects of a design decision (e.g. replication) on quality metrics such as reliability. 

We have seen the emergence of methods for analysing quality in software architectures 

like for example ATAM [14], SBAR [10], SAAM [26] and HoPLAA [42]. All methods 

combine qualitative analysis heuristics, such as questioning techniques and use cases, with 

quantitative analyses specific to particular metrics. However, a single change in the 

software architecture may affect multiple metrics, due to interactions between them [29]. 

We propose a quantitative method for discovering architecture-specific metric 

correlations that are affected by the combined effect of architecture characteristics (e.g. 

level of concurrency, degree of process distribution etc.). These correlations are justified by 

latent quality features, which cannot be measured directly, but they can assist in managing 

potentially complex tradeoffs. 

As a proof of concept, the method is applied on a simulation-based evaluation of a 

transactional architecture that complies with the Process Coordinator pattern [21]. The 

pattern is commonly used to implement business processes that issue requests to several 

server components. Issues like decomposition of the software functionality, allocation of 

shared resources and communication among the architecture’s components form a complex 

and interesting design problem. Furthermore, experience reports [8] indicate large 

variations in server availability, performance and scalability of distributed transaction 

management. The quality metrics investigated in this work are also important for other 

architecture patterns like the Broker and the Publish-Subscribe pattern [21]. 

In the first stage of the proposed method, factor analysis is performed. Factor analysis 

reveals groupings of highly correlated metrics and estimates new and fewer uncorrelated 
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variables that represent the latent quality features. Members of these groupings are 

positively or negatively correlated. For the transactional architecture at hand, factor 

analysis is applied on data obtained by a series of experimental runs of the ACID Sim 

Tools [1, 36] simulator, developed by the authors.  

In the second stage, separate Analyses of Variance (ANOVA) are performed for each 

latent quality feature. 

The proposed method is a systematic way for relating the variability of quality metrics 

and the implied tradeoffs to specific architecture characteristics. The analysis uses data that 

can be obtained from an appropriate simulation environment [4, 5] or a benchmarking 

prototype [7, 9, 55]. It is based on minimal assumptions for the data distributions, 

irrespective of the analyzed quality metrics and the architecture characteristics that are 

taken into account. We believe that the method is applicable to all architecture patterns 

where the investigated metrics matter and that it is effective in any architecture with 

interacting quality metrics. However, the latter remains to be confirmed in future research 

work.  

Section 2 describes the concerns of architecture tradeoff analysis and the published 

related work. Section 3 provides the process of the proposed method. Section 4 introduces 

the metrics of interest in transactional client-server architecture, as well as a synthetic 

transaction processing workload that utilizes the servers to a considerable extent. Section 5 

shows how the first stage of the method is performed. Section 6 shows the application of 

ANOVA for detecting the architecture characteristics that are critical for the investigated 

quality metrics. The paper concludes with a brief discussion on the benefits of the method 

and the future research prospects. 
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2. Architecture tradeoff analysis and related work  

In a software project, the architecture is determined in the early design phase [23, 33, 48], 

where the cost to fix an error is orders of magnitude less than in later development phases 

[54]. An architecture validation process [21] evaluates design decisions with respect to 

possibly prioritized and conflicting quality requirements. Fulfillment of a quality 

requirement has positive or negative effects on other metrics, due to interactions between 

them. Design decisions that violate a quality requirement are identified as architectural 

risks, while those that improve quality metrics without violating a requirement are 

identified as “good” decisions [22]. A decision is considered as an architectural risk or an 

improvement, based on assumptions for the impact on the system’s behavior. For example, 

in a Process Coordinator architecture, the designer assumes deterioration of throughput 

when increasing the degree of process distribution.   

In related bibliography, there are attempts (e.g. [11] and [19]) to tabulate the effects of 

the different metrics on each other. Most of these tables are developed by logical reasoning 

and experience, rather than existing evidence on the metrics interaction in some specific 

architecture. In [45], the authors argue that metric dependencies are a property of the 

architecture. Reliability and performance, for example, can be in conflict in a design that 

supports a checksums and retry pattern, but they are simultaneously optimized in a 

replication-based architecture. 

Quantitative techniques should address the fact that metric dependencies are 

architecture-specific and should provide evidence for the existing tradeoffs. They should be 

general enough in order to be applicable in diverse architectures, without being constrained 

by the specific quality metrics that are analyzed simultaneously. Finally, it is desirable to 

attribute the variability of the metrics to specific architecture characteristics. This allows 

identifying what in ATAM [14] is called a sensitivity point or a tradeoff point. A sensitivity 
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point represents a key architectural decision, which can be a property of one or more 

components (and/or component relationships [15]), that is critical for fulfilling a quality 

requirement. A tradeoff point is a property that affects multiple quality metrics and in fact 

represents one of the most critical decisions in an architecture design. 

Predictable Assembly from Certifiable Components (PACC) [39] is a framework for 

the evaluation of the ability of a system to meet quality requirements. It supports 

quantitative evaluation for different metrics, provided that an appropriate analytic theory is 

available in a form called reasoning framework. Our proposal aims to identify sensitivity 

and tradeoff points rather than building a reasoning framework for a specific metric. From 

this point of view, the two approaches focus on supplemental concerns. 

Software Performance Engineering (SPE) [49] is a process that uses queuing network 

models to identify architecture alternatives that meet performance objectives. Evaluation of 

trade-offs between performance and other quality metrics is beyond the scope of SPE. 

Furthermore, our method does not presume a specific type of model as opposed to SPE, 

which is based on queuing network analysis. 

Table 1 summarizes the main characteristics of representative quantitative tradeoff 

analyses found in the bibliography. We refer to a hybrid mathematical programming and 

analytic approach, a simulation-based measurement technique and a simulation-based 

statistical analysis that focus on different architecture tradeoff problems. Important 

observations that motivate the proposed method are: 

 Existing evaluation techniques quantify only those quality metrics that are used in 

the tradeoff analysis. This is restrictive, since the technique cannot detect 

unanticipated effects of architecture characteristics to other quality metrics. 

 They assume a priori knowledge of a tradeoff point in a software architecture. 

Moreover, they cannot discover additional sensitivity and tradeoff points. 
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 It is not possible to attribute the variability of metrics to architecture characteristics 

other than the tradeoff point, thus ignoring the effects of other architecture 

characteristics. 

 
Table 1: Characteristics of quantitative techniques for architecture tradeoff analysis  

Authors, year, reference Litoiu, Rolia, Serazzi 
2000 [32] 

Paul, Gupta, Badrinath  
2003 [44] 

Katsaros, Angelis, Lazos  
2007 [25] 

Scope of quantitative 
analysis  

Distributed application 
systems 

Checkpointing and recovery 
protocols 

Distributed systems with 
independent checkpointing 
activities 

Tradeoff points 
 

Process replication or 
threading levels and 
process activation 
policies. 

Checkpoint intervals Checkpoint intervals for the 
independent checkpointing 
activities. 

Runtime qualities Utilization of processes 
and devices. 

Overhead due to 
checkpointing and recovery 
activities and quality of 
recovery. 

Response times for the 
fault-affected and the fault-
unaffected computations. 

Aim of quantitative analysis To determine process 
replication or threading 
levels, in order to avoid 
unnecessarily queuing 
delays for clients and 
unnecessarily high 
consumption of memory. 

To assess the protocols’ 
performance in different 
execution environments. 

To determine checkpoint 
intervals fulfilling the 
response-times goals at the 
lowest possible fault-
tolerance cost. Trades the 
gains of a potential 
improvement in the quality 
of recovery against the 
overhead caused in normal 
processing. 

Analysis approach Hybrid mathematical 
programming and 
analytic evaluation. 

Simulation-based 
measurement. 

Simulation-based statistical 
analysis. 

Effects of architecture 
characteristics on the 
measured runtime qualities 

It only takes into account 
the architecture 
properties included in the 
model. Estimations are 
produced only for the 
tradeoff points.  

Implicitly takes into 
account all simulated 
architecture characteristics. 

Implicitly takes into 
account all simulated 
architecture characteristics. 
Detailed estimations are 
produced only for the 
tradeoff points.  

 

In the following sections, we introduce a method that overcomes the mentioned 

limitations and provides evidence for architecture tradeoffs. At early design stages, the 

method supports evaluation of the initial architecture design. At late stages the derived 

knowledge for metric interactions can be used to fine-tune the system’s runtime behavior. 

We assume a basis for experimentation provided by a simulation model [4, 5] or a 

benchmarking prototype [7, 9, 51, 53, 55]. However, the statistical approach is general, in 



8 

the sense that it is not bound to a particular simulation or to some quantification theory [6] 

specific to a metric. 

 

3.  The proposed method in the context of an architecture process 

A process for the software architecture includes phases which collectively contribute to the 

creation and validation of the architecture against the functional and quality requirements.  

Gorton in [21] provides an architecture process (Figure 1) which includes three phases: 

(i) determination of architectural requirements, (ii) architecture design and (iii) validation.  

These three phases are repeated iteratively, since validation may lead to unsatisfactory 

results, in which case the architect needs to reconsider the architecture design and/or refine 

or modify the requirements. 
 

 

Figure 1: The proposed method in the context of the generic architecture process 
 

The proposed method is applied to the third phase of this process, namely to the 

validation phase and the method’s steps are shown on the right side of Figure 1. Other 
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concerns like the application of architectural patterns or tactics to improve the architecture 

design [54], although important, are not directly covered by our proposal. They constitute 

complementary issues, in the sense that they affect and are affected by the architecture 

validation. When an architecture design fails to meet the quality requirements the design 

should be modified. In this case, the proposed method highlights certain quality problems 

to consider. 

Figure 1 shows the steps of the method, in the context of the architecture process: 

1.  Construction of the prototype or the simulation model. 

2.  Validation of the prototype or the simulation model: Includes all necessary 

activities that assure an accurate representation of the real-world. These activities 

are specific to the adopted prototype or simulation model. Approaches for ensuring 

validity of simulation models are discussed in [18] and [35]. 

3.  Experimental runs and collection of results for the subsequent statistical analysis. 

4.  Application of factor analysis to the quality metrics measured in step 3 for 

estimating new variables representing the latent quality features. 

5.  Reification Process: It is the process of interpreting axes in multidimensional space 

[30]. The process is meaningful in principal component analysis and in factor 

analysis, where new latent variables are extracted. Latent quality features found in 

the previous step are interpreted. 

6.  Application of ANOVA for each new variable of step 4, in order to study and 

interpret design tradeoffs in terms of the quality metrics. 

7.  General interpretation of the results: The results of the architecture validation are 

discussed and decisions are made regarding the architecture characteristics which 

affect the metrics.  
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The involved roles that interact and cooperate in the various steps of the method are: the 

architect, the prototype developer or modeling expert and the statistical expert. Other 

stakeholders that provide additional information may be involved, especially during results 

interpretation, when the architect determines the appropriate course of action. 

    

4. Transactional software architecture and the ACID Sim Tools simulator  

In a transaction processing architecture, like the Enterprise JavaBeans [13], clients issue 

transaction requests to application servers that support a range of configuration and 

deployment options. A server maintains a repository of components with encapsulated 

objects and provides their runtime environment. In this environment objects may invoke 

methods of other objects residing in the same or in another component or server.  

Α transaction is a program execution that reads and/or modifies the state of persistent 

objects via the invoked object methods [34]. It consists of a sequence of methods executed 

on one or more servers. Invoked methods incur computations with specific CPU time 

demands. A transaction is either committed or is aborted because of inconsistencies in 

objects state, potential deadlocks or overload conditions. For deadlock resolution, a timeout 

policy is often applied where a timer is activated upon initiation of a transaction and when 

the timer expires the transaction is aborted. The objects cooperate with a transaction 

manager to provide system-wide Atomicity, Consistency, Isolation and Durability (ACID) 

guarantees for the performed operations. 

Typical quality requirements for a successful transactional architecture design are: 

 High number of committed transactions per time unit. 

 Short response times for committed transactions, where response time is the time 

span between issuing the transaction request and the instant of transaction commit. 

 High server availability. 
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Transactional applications involve a series of complex architecture tradeoffs that make 

evident the need for systematic quality design. For example, high availability depends on 

the recovery time after server failures, which is determined by the size of the log files. A 

factor that affects the log file size is the frequency of log truncations, called checkpoints. A 

relatively small log file, which is important for high availability, indirectly reduces the 

number of committed transactions per time unit, due to increased contention for the 

available I/O bandwidth. Regarding the locks on the objects involved in aborted 

transactions, they are withheld and therefore are inaccessible to other transactions until the 

last valid object state is retrieved from the log file. Thus, it is important to have fast 

rollbacks of aborted transactions, which is achieved by relatively small log files. But as we 

already noted small log files are associated with increased I/O contention and this certainly 

delays the retrieval of log file records.      

The architecture design is further complicated by lock contention, which is susceptible 

for thrashing phenomena. Too many transactions running concurrently result in a situation 

where most transactions are blocked, because of lock conflicts and only few transactions 

remain active. The maximum number of concurrently executing transactions 

(multiprogramming level) is used to delimit the degree of concurrency. A low 

multiprogramming level prevents thrashing but may lead to CPU underutilization and lower 

throughput. 

Checkpoint frequency, multiprogramming level and transaction timeout policy are 

examples of architecture characteristics that affect one or more quality metrics. A 

quantitative evaluation technique should provide the means to quantify the significance and 

the combined effect of these characteristics in different workload scenarios (e.g. local to 

highly distributed transactions, I/O bound or CPU bound resource contention).  
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4.1 The ACID Sim Tools simulator 

ACID Sim Tools is a toolset that integrates facilities for building, validating and controlling 

the execution of simulation models for transaction processing architectures. It is based on a 

minimal set of assumptions that represent an object-based computational model like the 

OMG Core Object Model [40]. It extends the Objective Modular Network Testbed 

(OMNeT++) simulation framework [43, 52] and includes: 

 A model definition language and a graphical user interface for the specification of 

the architecture and the associated input parameters; 

 Class hierarchies that combined with the code generation functionality allow 

specification, verification [37] and rapid implementation of simulations for new 

transaction models; 

 Embedded debugging functions and an OMNeT++ graphical user interface that 

supports interactive simulation and model inspection. 

The architecture designer combines a transaction protocol with a concurrency control 

protocol and simulates the resulting architecture with different parameters. The 

implemented transactions protocols are the two-phase commit (2PC) variants named 

presume nothing (PRN), presume commit (PRC) and presume abort (PRA). For 

concurrency control the tool provides strict two-phase locking and basic timestamp 

ordering. A simulation model consists of a set of modules that communicate by exchanging 

messages: 

 QSource - generates arrivals of transaction requests for a specific transaction class. 

A transaction class represents a sequence of invoked methods that corresponds to an 

execution path in a program. 

 Atomic Commit Processing (Acp) - simulates a transaction manager that acts either 

as a transaction coordinator or a transaction worker. The latter participates in a 



13 

transaction and the former collects the workers votes and decides the transaction 

outcome. 

 Log-Manager - simulates the stable storage of a transactional server, i.e. the I/O 

costs for storage - retrieval of object states and the status of processed transactions  

 Concurrency Control - simulates the concurrency control and isolation guarantees 

[2]. As in [16], we do not consider resource consumption for concurrency control, 

since its CPU demands cannot be easily quantified.  

A transactional server consists of an Acp, a Log-Manager and a Concurrency Control 

module. Different implementations can be provided for each module.  

The simulation tool supports metrics for systematic experimentation with the tradeoffs 

between performance and recovery costs (e.g. suspended processing of transactions arrived 

during server recovery and in workers awaiting the decision for incomplete transactions). 

The evaluated metrics are:  

 server availability; 

 percentage of committed transactions - termed as throughput - for (i) distributed 

transactions, (ii) local transactions and (iii) groups of transaction classes that content 

for a shared lock;  

 mean response times for the aforementioned groups; 

 mean blocking times (the time span between the voting of a worker and the receipt 

of the coordinator’s decision), for the same groups. 

ACID Sim Tools supports the method of independent replications, for simulation output 

analysis. The number of simulation runs is determined dynamically, based on the required 

confidence interval half-width. 
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4.2 A synthetic transaction processing workload for a case application scenario 

In order to demonstrate the effectiveness of the proposed method in exploring the 

variability and the interactions between quality metrics, we introduce a synthetic 

transaction workload with relatively high CPU and I/O resource utilization. Other 

workloads of interest are scenarios with mainly local or highly distributed transactions, as 

well as scenarios with I/O bound or CPU bound resource contention.  

 

Table 2: CPU time demands of methods and state sizes of persistent objects  
  

Server Object State Size (Kb) 
- exponential - 

Method Name CPU demands (sec)
- exponential - 

READ/WRITE 

acp1 obj1 5 meth111 0.01 READ 
   meth112 0.05 READ 
 obj2 5 meth121 0.01 READ-WRITE 
   meth122 0.01 READ 
   meth123 0.01 READ 
 obj3 5 meth131 0.04 READ-WRITE 
   meth132 0.01 READ 
 obj4 5 meth141 0.01 READ-WRITE 
   meth142 0.01 READ 
   meth143 0.01 READ 
 obj5 5 meth151 0.01 READ-WRITE 
   meth152 0.01 READ 
   meth153 0.01 READ 
acp2 obj6 5 meth211 0.05 READ-WRITE 
   meth212 0.05 READ 
 obj7 5 meth221 0.05 READ-WRITE 
   meth222 0.01 READ 
 obj8 5 meth231 0.01 READ 
   meth232 0.01 READ 
 obj9 5 meth241 0.05 READ-WRITE 
   meth242 0.05 READ 
 obj10 5 meth251 0.05 READ-WRITE 
   meth252 0.01 READ 
 obj11 5 meth261 0.01 READ 
   meth262 0.01 READ 
 obj12 5 meth271 0.05 READ-WRITE 
   meth272 0.05 READ 
 obj13 5 meth281 0.05 READ-WRITE 
  5 meth282 0.01 READ 

 

 

Figure 2: Component interface for obj1 in UML 
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The selected workload refers to a hypothetical case study, which is the norm in the 

transaction processing field, even for industrial benchmarking workloads like TPC-C [46]. 

It uses a number of persistent objects, implemented as components, which are distributed in 

two servers as shown in Table 2. Components provide their operations through interfaces, 

such as the component for obj1 shown in Figure 2. 

Table 2 specifies the state size of the objects residing in the two servers, the means of 

exponentially distributed CPU time demands for the provided methods and whether the 

methods update their object state. 
  

Table 3: Transactional server system parameters 

 
Network Latency / message: 0.06 sec  

Server Disk Read Latency Disk Write Latency Mean Time To Repair 
acp1 4.271e-05 sec/Kb 51.252e-05 sec/kb 4 sec 
acp2 4.271e-05 sec/Kb 51.252e-05 sec/kb 4 sec 

 

System-related parameters (Table 3) describe the runtime environment where the 

transactional architecture is deployed. Disk I/O latency is set based on specifications of 

commercial products. Fixed network latency is assumed since the two servers exchange 

only small-size control messages. Communication between servers is considered reliable, 

i.e. message delivery is guaranteed, which is a Quality of Service possibility foreseen in 

[41]. 
 

 

Figure 3: UML sequence diagram for transaction tr1 
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In the simulated flat transaction model, object methods are invoked sequentially, as 

shown in the UML sequence diagram for the first transaction class depicted in Figure 3. 

The synthetic workload includes nine transaction classes, which are given in Table 4 along 

with their associated parameters.  
 

Table 4: Classes of transaction and object state alterations 
 

Transaction Class Methods invoked Characteristics 
tr1 meth111, meth122, meth132 local (acp1) – read only 
tr2 meth111, meth222, meth112 distributed – read only 
tr3 meth112, meth211, meth121 distributed – read/write 
tr4 meth242, meth252, meth232 local (acp2) – read only 
tr5 meth242, meth142, meth242 distributed – read only 
tr6 meth242, meth141, meth251 distributed – read/write 
tr7 meth262, meth272, meth282 local (acp2) – read only 
tr8 meth262, meth152, meth262 distributed – read only 
tr9 meth262, meth151, meth271 distributed – read/write 

 

The modules used to simulate the described transaction workload appear in Figure 4 as 

they are visualized in the OMNeT++ interactive simulation environment.  
 

Figure 4: Architecture and workload representation (left panel) and the OMNeT++ 

interactive simulation environment (right panel) 
 

For the verification of transaction models we employ the ACID Model Checker utility 

[37], which uses the state machine based model definition adopted by the ACID Sim Tools. 
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Specifically, it is verified that: (i) there are no unreachable states and non-terminating 

execution paths in the state machines corresponding to the worker and the coordinator, (ii) 

the transition relation is not partially defined, which would cause simulation run-time 

errors, (iii) workers conform to the decision of the coordinator, (iv) workers and the 

coordinator reach exactly one of the two possible decisions (commit or abort), (v) a 

transaction is committed if and only if all workers have voted for commit, (vi) the 

transaction participants eventually reach a decision, even in the presence of communication 

and system failures. 

Model validation determines if the model is an accurate representation of the real-world 

from the perspective of its intended uses [18]. In order to confirm the utility and 

effectiveness of the developed model in realizing the anticipated interactions between the 

quality metrics, a series of experiments was conducted. The experiments include scenarios 

with: (i) mainly local transactions, (ii) highly distributed transactions, (iii) I/O bound 

resource contention and (iv) CPU bound resource contention.  

Another validity concern is whether the model’s structure contradicts the knowledge 

about the structure of the real system [35]. ACID Sim Tools simulates systems that 

implement the architectures specified in [13, 41] and as far as we know there are no 

discrepancies between the simulated models and the referred specifications. 

Validation of consistency [35] includes face validity and parameter verification. Face 

validity tests if the model abstractions result in a recognizable representation of the real 

system. Parameter verification tests that model parameters and their numerical values have 

real system equivalents. Regarding face validity, the ACID Sim Tools simulator models all 

essential interactions between the components of a transaction processing architecture. 

Also, parameters (e.g. disk read/write latency and network latency) and their numerical 

values stem from existing vendor specifications or reported measurements. 
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Detailed guidelines for the use of ACID Sim Tools in the context of the proposed 

method are provided in the Appendix.       

 

5. Experimentation, factor analysis and reification for latent quality 

features 

In the described software architecture, quality metrics are influenced by a tradeoff between 

recovery costs and performance. Recovery costs are not directly measurable (a latent 

quality feature), while performance is expressed by a number of metrics that disclose 

different aspects of the runtime behavior (Table 5). In addition to the metrics shown, we 

also quantified the availability of the two servers, under the considered fault load. 

Transactions that share an object are placed in the groups of the last three columns of Table 

5. Objects of transaction tr2 are not accessed by other transactions and consequently tr2 

does not appear in any of the three groups.   
  

Table 5: Performance metrics for the synthetic transaction workload     
 

 All 
distributed 
transactions 

All local 
transactions 

Group 1: transaction 
classes  
tr1, tr3 

Group 2: transaction 
classes  
tr4, tr5, tr6 

Group 3: transaction 
classes  
tr7, tr8, tr9 

Throughput 
(ratio of 
committed 
transactions) 

tput_distr  tput_local tput_confl0 tput_confl1 tput_confl2 

Mean response 
time 

response_distr response_local response_grp0 response_grp1 response_grp2 

Mean blocking 
time 

blocking_distr  blocking_grp0 blocking_grp1 blocking_grp2 

 

The proposed method is based on a two-stage exploratory study that aims to identify all 

potential tradeoff points, with respect to the quality metrics of interest. Tradeoff points are 

selected from the considered architecture characteristics based on evidence, provided by 

factor analysis, for the statistical significance of the detected quality metrics dependencies. 
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5.1 Experimental design  

A series of experiments is conducted, as required by step 3 of the proposed method (refer to 

section 3), in order to collect data for the quality metrics of Table 5 and the measured server 

availability. The experimental research for the synthetic workload at hand complies with 

the guidelines given in [28]. The research questions we posed are:    

i.  Question 1: Which are the latent quality features that determine the dependencies 

between the analyzed quality metrics? 

ii.  Question 2: Which architecture characteristics are the sensitivity and the tradeoff 

points? 

iii.  Question 3: Given the tradeoff points, which architecture characteristics have 

statistically significant effects on the latent quality features?  

iv.  Question 4: How are the quality metrics affected by the statistically significant 

architecture characteristics?   

The experimental context includes the following background information for 

experimental runs with the ACID Sim Tools, as well as information for the used statistical 

analysis software: (i) The length of simulation runs for the selected experimental design 

was determined through repetitive trials, so that the obtained results quantify the metrics, 

when being in the steady-state. (ii) For all considered cases of fault load (server failures are 

by definition “rare” events), the model initialization bias was eliminated when the elapsed 

simulated time was at least 55h 30m. With this preliminary analysis [27] the length of the 

performed simulation runs was set to the aforementioned value. (iii) The CPU time required 

for a simulation run in a personal computer with a single-core processor and 1 GB RAM 

varied between a few minutes to 12 minutes, depending on the used simulation parameters. 

ACID Sim Tools exhibited a stable behavior, without memory leaks and the memory usage 

was between 5 % and 50 % of the system’s memory. (iv) Data analysis was conducted 
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using the SPSS statistical software, on simulation results obtained for the 14 performance 

metrics of Table 5 and the two metrics that quantify the servers’ availability (in total 16 

dependent variables). 

Experimental design was based on preliminary simulation runs that were used to 

explore the variability of the quality metrics across the architecture design space. In all 

cases, concurrency control adhered to the widely used strict two-phase locking (2PL) 

scheme. Experiment factors correspond to the investigated architecture characteristics. 

Table 6 presents the levels of experiment factors that delimit the experimentation area, 

where we observed significant variation of the analyzed metrics. Three different fault load 

levels stressed the simulated model with relatively “rare” or more frequent server failures 

(Poisson process). The two levels of transaction arrival rates (Poisson process) resulted in a 

radically different system load. 
 

Table 6: Experimental factors that influence recovery costs and performance    
 

Factors (architecture characteristics) Level 1 Level 2 Level 3 
Atomic commit protocol (ACP) 
- all servers - 

Two-Phase Commit 
Presume Nothing (PRN)  

Two-Phase Commit 
Presume Commit (PRC) 

Two-Phase Commit 
Presume Abort (PRA) 

Multiprogramming Level (MPL) 
- all servers - 

2 3 4 

Checkpoint intervals (CI) - periodic 
(sec) for all servers 

500 1300 2100 

Transaction timeouts (TT) in sec  
- all transaction classes - 

0.9 1.1 1.3 

Mean interarrival times (MIT), exp.  
- all transaction classes - 

0.6 0.4  

Mean interarrival time of server fail 
-stop failures (MITofSF) - exponential 

18 m 5 hours 51m 12 hours 

 

Given the factor levels of Table 6, we performed the full factorial experiment including 

one simulation run for each combination of factor levels, i.e. simulation results were 

collected from 3  3  3  3  2  3 = 486 runs. An appropriate alternative for 

experimentation with less CPU demands is the use of an experimental design with fewer 

runs, like the uniform design that is utilized in [25]. 
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5.2 Factor analysis and reification 

Factor analysis (FA) reduces the problem dimensionality by computing new, fewer 

dependent variables that contain most of the information provided by the simulated metrics.  

The idea is to “group” the 16 dependent variables (the output of the experimental runs) 

in such a way, that the highly correlated variables will be loaded in the same group. These 

groupings are represented by new variables in the form of “scores”, thus reducing the 

dimensionality of the original data. The new variables resulting from this procedure are 

uncorrelated and can be studied separately with respect to the experiment factors.  

In essence, FA aims to discover - in the original dataset - latent variables termed 

factors, by exploiting the correlation structure of the dependent variables. To avoid 

confusion with the term “factor”, as it is also used for the experiment’s factors of Table 6, 

the latent variables from now on are called “components”, a terminology consistent with 

the applied method. 

Factor analysis requires that the dependent variables are normally distributed and for 

this reason we applied Blom’s transformation [12] that utilizes the ranks ir  of the n values 

(simulation output) and the cumulative Normal distribution function )(1 x . The formula 

for the Blom transformation is  












 
4/1

8/31

n

r
s i
i              (1) 

and the transformed metrics were found to almost perfectly fit the standard normal 

distribution with mean 0 and standard deviation 1. 

The applied transformation also preserves the correlation structure of the original 

dataset. For example, in Figure 5 we see the strong negative correlation between tput_local 

and blocking_distr in the original (5a) and in the transformed (5b) variables. Moreover, we 

observe that the normalization (right panel) portrays better the correlation between them. 
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(a) (b) 

Figure 5. Strong negative correlation between tput_local and blocking_distr in the original 

and in the transformed dataset 
 

On the transformed normalized dependent variables we performed a FA procedure 

based on Principle Components with Varimax rotation [20]. Varimax rotation is a 

procedure which searches for a linear combination of the original components such that the 

variance of the loadings is maximized. It helps to group the dependent variables since each 

of them tends to be associated with one (or a small number) of components and at the same 

time each component represents only a small number of variables.  

The new variables, i.e. the component scores, were calculated by the Anderson-Rubin 

Method [3], which estimates score coefficients. The scores that are produced have a mean 

of 0, standard deviation of 1, and are not correlated. 

The FA resulted in three components that explain 88.81% of the variance of the 16 

original variables (metrics). Thus, the dimensions of the output space are reduced 

significantly by exploiting the correlation structure of the normally transformed outcomes. 

Table 7 shows the loadings of the variables on the three components and therefore the 

grouping of the quality metrics. The sign shows the direction of the detected correlation. 

For example, tput_local is loaded to the same component as blocking_distr but their 

loadings have different signs, due to their negative correlation. This is an evidence for the 
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following metric dependency: longer blocking times for distributed transactions result in 

lower throughput for locally processed transactions. The reason is that most withheld locks 

are managed by blocked distributed transactions and the local transactions are queued in the 

servers for one or more locks, with increased probability of a transaction timeout. All 

groupings are presented in Table 8. 
 

Table 7: Rotated component matrix obtained by FA     
 

Normal score using Bloom’s Formula 

Component 

C1 C2 C3 

availability0 -.800 .009 .115 

availability1 -.794 -.002 .106 

tput_local -.831 .132 .406 

tput_distr -.131 -.125 .978 

tput_confl0 -.166 .098 .955 

tput_confl1 -.138 -.227 .950 

tput_confl2 -.140 -.239 .947 

response_local .031 .724 -.389 

response_distr .095 .953 -.203 

response_grp0 -.036 .948 -.205 

response_grp1 -.017 .975 .122 

response_grp2 -.013 .989 .040 

blocking_distr .967 .062 -.054 

blocking_grp0 .935 .068 -.126 

blocking_grp1 .944 .007 -.034 

blocking_grp2 .948 .038 -.050 

Extraction Method: Principal Component Analysis 
Rotation Method: Varimax with Kaiser Normalization

 

Table 8: Groupings of the quality metrics derived from FA     
 
Component C1  
(explains 35.35% of the total variance) 

availability0 (-), availability1 (-),  
tput_local (-),  
blocking_distr (+),  
blocking_grp0 (+), blocking_grp1 (+), blocking_grp2 (+) 

Component C2  
(explains 27.64% of the total variance) 

response_local (+),  
response_distr (+),  
response_grp0 (+), response_grp1 (+), response_grp2 (+) 

Component C3  
(explains 25.83% of the total variance) 

tput_distributed (+),  
tput_confl0 (+), tput_confl1 (+), tput_confl2 (+) 
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The reification process answers to the first posed question (section 5.1) and involves the 

interpretation of the components derived from FA. Their meanings in the considered 

transaction processing workload are:  

 Component C1 summarizes the variability of all metrics that are mostly affected by 

I/O costs, due to checkpoints and recovery. We observe that high values for C1 are 

related to high values of blocking times for the distributed transactions and low 

values of servers’ availability and throughput for the locally processed transactions 

and vise versa. 

 Component C2 summarizes the variability of all response time metrics that were 

found to be positively correlated with the new variable. 

 Component C3 summarizes the variability of the throughput metrics that seem to be 

affected mainly by communication latencies. We pinpoint that the throughput for 

the locally processed transactions was included in component C1, as opposed to all 

other throughput metrics.  

 

6. Analyses of variance for detecting risks related to quality requirements  

Sensitivity and tradeoff points are the research focus of the second question stated in 

section 5.1. They can be initially detected by visual inspection of box-plots, which depict 

the variability of the three components with respect to each factor. The impact of the 

considered factors differs for each component as shown in Figure 6. 

Checkpoint intervals have a significant impact on the quality metrics of C1 (Figure 6a). 

This factor is clearly a sensitivity point for the servers’ availability, the throughput of the 

locally processed transactions and the blocking times of the distributed transactions, since 

all these metrics can be simultaneously optimized. 
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Figures 6b and 6c show that C2 and C3 increase with increasing values of timeout 

intervals. Higher values of C3 correspond to improved throughput while in C2, higher 

values correspond to longer response times (refer to the correlation signs of Table 8). 

Timeout interval affects multiple metrics, which cannot be optimized simultaneously and 

thus it is a typical tradeoff point. 
 

 
(a) (b) (c) 

Figure 6. Effects of the experimental factors on the three components  
 

6.1 Analyses of Variance for the three components  

For a deeper understanding of the tradeoff points and in order to answer the third research 

question of section 5.1, we apply Factorial Analysis of Variance (ANOVA) for the three 

components. ANOVA is used for studying the factor effects to some dependent continuous 

variable resulting from a multifactor experiment. In our case, we consider each component 

as dependent variable and for every component a 6-way ANOVA is performed, in order to 

study the effects of the 6 factors of Table 6 on the component. 

ANOVA essentially builds an additive model with the main effects of the factors and 

their interactions and is accompanied by a number of statistical tests and measures which 

assist the inference concerning the relation between the factors and the dependent variable 

(we refer to [20] for a detailed account and their realization in SPSS). More specifically: 
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 Factors which have significant effect on the dependent variable are assessed by the 

statistical F-test. We consider as statistically significant the effect of a factor or an 

interaction if the significance of the F-test is less than 0.05. 

 The fitting of the ANOVA model, i.e. the proportion of variability of the dependent 

variable that is explained by the modeled factors is measured by the R-squared and 

the adjusted R-squared statistic with values in the [0,1] interval. 

 Partial eta-squared value shows which effects are the most important for explaining 

the dependent variable. For each effect (either main or interaction effect), the eta-

squared statistic quantifies the degree of association between the effect and the 

dependent variable and in fact describes the proportion of total variability 

attributable to a factor. 

 Post hoc tests are multiple comparison tests that identify statistically significant 

differences between the levels of each experimental factor with respect to the 

dependent variable. 

 Profile plots (or interaction plots) provide insight into the most important 

interaction effects. A profile plot is a line plot where each point indicates the 

estimated marginal mean of a dependent variable at one level of a factor. The levels 

of a second factor can be used to make separate lines. Each level in a third factor 

can be used to create a separate plot. 

In our analysis we tried for every component (dependent variable) various models 

starting from a model with the 6 main factor effects, all possible combinations of unordered 

pairs of factors (15 two-way interactions) and unordered triples of factors  (20 three-way 

interactions). Interactions of higher order are omitted, because interpretation of the results 

would be complicated. We present the obtained results for the factors and interactions with 

F-test value less than 0.05.  
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6.1.1 ANOVA for component C1 

Table 9 shows the statistically significant main and interaction effects for component C1. 

The R-squared statistic implies that this ANOVA model explains 93% of the variability of 

C1. From the partial eta squared statistic we infer that the most important effects are the 

MITofSF (92.1%), the interaction CI*MITofSF (71.2%) and the main effects of CI (21.3%), 

MIT (14.5%) and TT (10.5%). All other effects, although they were found to be statistically 

significant, explain only small proportions (less than 5%) of the variability of C1. 
 

Table 9: Statistically significant effects for component C1     
 

Effect F-statistic Sig. Partial Eta Squared 

ACP (atomic commit protocol) 5.886 .003 .025 

CI (checkpoint intervals) 62.643 .000 .213 

TT (transaction timeouts) 27.215 .000 .105 

MIT (mean interarrival times) 78.210 .000 .145 

MITofSF (mean interarrival time of server fail-stop failures) 2696.656 .000 .921 

CI * MITofSF 284.876 .000 .712 

CI * MIT 4.425 .012 .019 

MIT * MITofSF 4.635 .010 .020 

ACP * MITofSF 3.499 .008 .029 

TT * MIT 8.945 .000 .037 

R Squared = ,937 (Adjusted R Squared = ,934) 

 

Table 10: Significant differences between factor levels for component C1     
 

  500 1300 2100 

CI (checkpoint intervals) 500   

1300    

2100    

  0.9 1.1 1.3 

TT (transaction timeouts) 0.9   

1.1   

1.3    

 

Post hoc tests results are presented in Table 10. Factor levels for the MIT and the 

MITofSF are omitted, since we focus only on the examined architecture characteristics. 

Cells with a tick represent pairs of factor levels which have statistically significant 
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differences. The checkpoint interval of 500 sec differs significantly from the two other 

levels in terms of C1 and the same happens with all levels of transaction timeouts. 

The profile plot of Figure 7 shows the interaction between the CI and MITofSF 

(visualized as non parallel lines), which explains 71.2% of the variability of C1. The plot 

concerns the 2PC PRN protocol and is similar to the omitted plots for the PRC and PRA 

protocols, since ACP does not interact with the two other factors. 
 

 

Figure 7. The interaction effect between CI and MITofSF on component C1 
 

CI and MITofSF interact as follows. Frequent checkpoints reduce the recovery cost and 

at the same time increase I/O demand. For rare failures (level 43200 sec) the incurred cost 

during normal processing is not justified, because it overwhelms the recovery gains. For 

frequent failures the gains in recovery costs are more significant than the losses in I/O 

bandwidth thus improving the server availability and the blocking times of the processed 

distributed transactions. 
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6.1.2 ANOVA for component C2 

Table 11 shows the statistically significant factor effects for component C2 (response time 

metrics). The R-squared implies that the model explains 99.5% of the variability of C2. All 

factors have significant main effect, but there are also various significant 2-way and 3-way 

interactions. The most important effects in terms of the computed partial eta squared 

statistic are the main effects of TT (99.3%), MIT (96.5%), MPL (95.1%) and their 3-way 

interaction MPL*TT*MIT (60.1%). ACP seems to have an important role either as a main 

effect (40.4%) or in various interactions. 
 

Table 11: Statistically significant effects for component C2 (response time metrics)     
 

Effect F-statistic Sig. Partial Eta Squared 

ACP (atomic commit protocol) 130.303 .000 .404 

MPL (multiprogramming level) 3761.003 .000 .951 

CI (checkpoint intervals) 18.469 .000 .088 

TT (transaction timeouts) 26339.988 .000 .993 

MIT (mean interarrival times) 10540.846 .000 .965 

MITofSF (mean interarrival time of server fail-stop failures) 37.216 .000 .162 

CI * MITofSF 5.003 .001 .050 

MIT * MITofSF 11.016 .000 .054 

ACP * MITofSF 41.395 .000 .301 

TT * MITofSF 3.616 .007 .036 

TT * MIT 84.863 .000 .307 

ACP * TT 9.833 .000 .093 

MPL * TT 88.956 .000 .481 

CI * MIT * MITofSF 4.262 .000 .062 

MPL * CI * MITofSF 2.227 .010 .065 

ACP * MPL * MITofSF 2.438 .014 .048 

ACP * TT * MITofSF 4.526 .000 .086 

ACP * MPL * MIT 4.241 .002 .042 

ACP * TT * MIT 2.611 .035 .026 

MPL * TT * MIT 144.837 .000 .601 

ACP * MPL * TT 5.764 .000 .107 

R Squared = .995 (Adjusted R Squared = ,993) 

 

The results of the post hoc tests in Table 12 suggest that when the used protocol is 2PC 

PRA, the response times exhibit significant differences compared to the response times in 
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the two other cases. Also, the obtained results for MPL and TT show that all levels differ 

significantly, which is in accordance with Figure 6b. 

 
Table 12: Significant differences between factor levels for component C2 (response time 

metrics)     

 
  2PC PRN 2PC PRC 2PC PRA 

ACP (atomic commit protocol) 2PC PRN   

2PC PRC   

2PC PRA    

  2 3 4 

MPL (multiprogramming level) 2    

3    

4    

  .9 1.1 1.3 

TT (transaction timeouts) .9   

1.1   

1.3    

 
 

(a) (b)

Figure 8. The interaction effect between MPL, TT and MIT on component C2 

 

Figure 8 visualizes the 3-way interaction between the MPL, TT and MIT, which is the 

most important interaction effect. From the two plots we observe that for MIT = 0.4 (Figure 

8a) response times are longer than the response times for MIT = 0.6 (Figure 8b). We also 
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note a steep descending trend when varying the MPL between 2 and 4 and at the same time 

MIT = 0.6 and TT = 0.9, meaning that in this case an increase in the number of threads is 

more effective in achieving shorter response times than it is in all other cases. An important 

improvement is also evident when increasing MPL from 2 to 3 in the case of frequent 

arrivals (MIT = 0.4) and TT = 1.3 sec. 
 

6.1.3 ANOVA for component C3 

Table 13 shows the ANOVA results for C3 obtained from a model that explains 99.1% of 

the component’s variability. All factors have significant main effect, along with noteworthy 

interactions. The most important effects according to the partial eta squared statistic are the 

main effects of MIT (98.5%), TT (95.7%), MPL (91.0%), MITofSF (65.8%) and the 2-way 

interactions of the factors with the MIT and the MITofSF. 

The performed post hoc tests (Table 14) show that for 2PC PRA, the studied metrics 

exhibit significant differences when compared with the two other protocols. For the factors 

MPL, CI and TT all levels differ significantly. 

Figure 9 shows the interaction between TT and MIT that was found having the most 

significant effect. The plot concerns the 2PC PRN protocol and is very similar to the 

omitted plots for the PRC and PRA protocols, since ACP does not interact with the two 

other factors. The interesting finding here is that when TT is increased from 0.9 to 1.3 and 

MIT is 0.6 there is a much more steep improvement in the metrics of C3 than the one 

observed when MIT = 0.4. Thus, for improving the metrics of C3, an increase in TT when 

having frequent transaction requests is not as effective as it is in the case of rare requests. 

Profile plots that are omitted indicate interesting interactions for the ACP as a 

sensitivity point of the metrics in C2 and the CI as a sensitivity point of the metrics in C3. 
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Table 13: Statistically significant effects for component C3     
 

Effect F-statistic Sig. Partial Eta Squared 

ACP (atomic commit protocol) 48.171 .000 .207 

MPL (multiprogramming level) 1869.720 .000 .910 

CI (checkpoint intervals) 57.664 .000 .239 

TT (transaction timeouts) 4126.011 .000 .957 

MIT (mean interarrival times) 24767.104 .000 .985 

MITofSF (mean interarrival time of server fail-stop failures) 353.506 .000 .658 

CI * MITofSF 52.601 .000 .364 

CI * MIT 12.842 .000 .065 

ACP * CI 5.848 .000 .060 

MPL * CI 3.535 .008 .037 

CI * TT 12.760 .000 .122 

MIT * MITofSF 4.755 .009 .025 

ACP * MITofSF 46.461 .000 .336 

MPL * MITofSF 6.558 .000 .067 

TT * MITofSF 43.777 .000 .322 

MPL * MIT 311.983 .000 .629 

TT * MIT 568.012 .000 .755 

MPL * TT 11.876 .000 .114 

CI * MIT * MITofSF 2.514 .041 .027 

MPL * CI * MITofSF 2.959 .003 .060 

CI * TT * MITofSF 7.165 .000 .135 

ACP * CI * MIT 2.629 .034 .028 

MPL * CI * MIT 3.919 .004 .041 

CI * TT * MIT 3.283 .012 .034 

ACP * MIT * MITofSF 6.403 .000 .065 

MPL * MIT * MITofSF 16.472 .000 .152 

TT * MIT * MITofSF 35.348 .000 .278 

ACP * MPL * MIT 2.070 .038 .043 

ACP * TT * MIT 3.220 .001 .065 

MPL * TT * MIT 14.963 .000 .140 

R Squared = .991 (Adjusted R Squared = .988) 

 

In overall, through the shown ANOVA it was possible to identify the statistically 

significant factor effects and subsequently to interpret them in terms of the way they affect 

the quality metrics. All important interactions were explored and we commented on 

possible risks for specific combinations of factor levels. The derived conclusions provide 

answers to the fourth research question of section 5.1. 
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Table 14: Significant differences between factor levels for component C3     
 

  2PC PRN 2PC PRC 2PC PRA 

ACP (atomic commit protocol) 2PC PRN   

2PC PRC   

2PC PRA    

  2 3 4 

MPL (multiprogramming level) 2    

3    

4    

  500 1300 2100 

CI (checkpoint intervals) 500   

1300   

2100    

  .9 1.1 1.3 

TT (transaction timeouts) .9   

1.1   

1.3    

 

Figure 9. The interaction effect between TT and MIT on component C3 
 

6.2 The architecture runtime behavior visualized in 3-d scatterplots  

Having projected the experimental points - which were initially expressed by 16 quality 

metrics - in a 3-dimentional space, it is also possible to draw conclusions from 3-d 

scatterplots. All components are shown together, while experimental points are marked 

with different colors according to the factor levels. 
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(a) (b) 

Figure 10. 3-d scatterplots of the effects of TT on the 3 components 
 

Plots like the ones in Figure 10 help us to designate the factors that have a strong effect 

on the whole swarm of points, by identifying groupings of the points due to the levels of 

each factor. More specifically we provide (a) a matrix plot for all couples of components 

and (b) a 3-d scatterplot for all three components for the factor TT. 

The plots show a clear grouping of the experimental points, where the points for TT = 

0.9 are grouped in a swarm representing relatively low values of response times (C2) and 

low values for the throughput metrics of C3 that are mostly affected by communication 

latencies. This is explained, because a significant number of transactions exceeding 0.9 sec 

are aborted and thus they do not contribute to the metrics representing mean response times 

and throughputs.  

Similar groupings of the experimental points were found with respect to the MIT, where 

– as expected – the points for MIT = 0.4 are grouped in a swarm representing relatively 

high values for the metrics of component C2 and low values for the metrics of component 

C3. A significant number of transactions is aborted for MIT = 0.4, thus resulting in lower 

throughput for the distributed transactions and for the transaction groups of lock-conflicted 

classes. Furthermore, by these scatterplots it was found that the MITofSF distinguishes the 
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points corresponding to the level of 1080 sec, which in any case represents an extreme 

operating condition with very frequent server failures. 
 

6.3 Threats to validity and additional considerations   

Although it is shown that the proposed two-stage method can provide statistical evidence 

for the architecture tradeoff points and the important factor effects, an obvious threat to the 

internal validity of our exploratory study is the possibility of confounding. This term is 

often used to refer to all factors covarying with the considered independent variables 

(architecture characteristics), which also influence the dependent variables (quality metrics) 

but have not been included in the experiment’s design.  

In the considered architecture problem we have not recognized confounding variables. 

For the sake of illustration of a confounding problem, let us assume that resource 

consumption for concurrency control affects the simulation results. This would be a threat 

to the internal validity of the analysis, since concurrency control has not been taken into 

account in the experiment’s design. 

Also, if the method is applied on measurements from a benchmarking prototype, we 

consider that there are increased possibilities for confounding variables (e.g. runtime 

monitoring overhead), which have not been included in the experimental design.  

A threat to the external validity of our method is that the derived conclusions for the 

architecture tradeoff points cannot be generalized to other architecture designs or variants. 

As we already noted metric dependencies characterize only the analyzed architecture and 

the obtained results cannot provide evidence for metric interactions in any other 

architecture. However, we believe that the method is applicable to all architecture patterns 

where the investigated metrics matter. 

Regarding the anticipated conclusion validity, we emphasize that the proposed method 

is based on an experimental design and a statistical analysis that are both well-established 
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in theory and in practice. For the illustrated simulation-based evaluation of the architecture 

at hand, the reader is referred to the verification and validation tests for the ACID Sim 

Tools and the used simulation model (section 4.2). As a consequence of these, there are no 

obvious threats to the statistical validity of the drawn conclusions. 

Finally, an important issue is the extent to which we measure the data relevant to our 

hypothesis, which is termed in related work as construction validity. Our hypothesis for the 

analyzed transactional architecture is stated by the quality requirements that are mentioned 

in section 4. Typical threats like hypothesis guessing, researcher expectancy and evaluation 

apprehension are not relevant to our study. We used an extensive set of metrics, in order to 

be able to explore the variability in transaction processing performance and server 

availability under different circumstances of I/O, CPU and lock contention. The same 

metrics have been previously proved effective in related work on simulation-based 

performance evaluation (e.g. in [49]). 

An additional consideration regarding the proposed method is that the different views of 

architecture (logical, process, development and physical views) [31] are usually captured in 

some form of visual notation and a reliable transformation of this notation to a prototype or 

a simulation model is not automatic and requires expertise. Part of the problem is that the 

widely used visual notations like the UML, lack formal semantics [47] and their 

transformation to a formal simulation model has inherent technical difficulties and pitfalls. 

However, we believe that as the project teams acquire expertise with the tools that they use, 

the risk of inaccurate model representation and transformation is gradually reduced. 

Furthermore, the evolution and the ever-improving maturity of Model-Driven Software 

Development (MDSD) [50] techniques will eventually push the formalization of UML and 

other visual notations forward. This will allow automatic or semi-automatic translation into 
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several formal models, suitable for experimentation and simulation in the frame of the 

proposed method. 

 

7. Conclusion 

We introduced a quantitative method for disclosing the statistically significant quality 

tradeoffs in software architectures and for relating the variability of metrics to specific 

architecture characteristics. The described two-stage analysis is general, since it is not 

bound to a specific metric or a specific technique for acquisition of experimental data.  

The method is illustrated by evaluating a transactional software architecture based on 

simulation output for 16 quality metrics that was obtained with the ACID Sim Tools. The 

factor analysis in the first stage of our approach unveiled a strong correlation of specific 

metrics on a latent quality feature representing the I/O and recovery costs. Surprisingly, the 

throughput for the locally processed transactions was found negatively correlated with the 

aforementioned latent quality and uncorrelated to the throughput of the distributed 

transactions. 

The box-plots for the three components found by the FA revealed sensitivity and 

tradeoff points, i.e. architecture characteristics that affect one metric or multiple metrics 

that cannot be optimized simultaneously. In the second stage of the analysis, we performed 

Analyses of Variance for the components of the FA and in this way we attributed the 

variability of the analyzed metrics to specific architecture characteristics and interactions 

between them.  

Future research prospects include extensions of the current process, in order to address 

the problem of quality prediction for an architecture design based on new synthetic metrics 

[24, 38], as well as the problem of multi-objective optimization under specific cost 

constraints and tradeoff concerns. 
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Appendix 

 An effective procedure for using ACID Sim Tools in the context of the proposed method 

includes the following steps: 

1. Obtain the different views of the architecture design [31] in UML or in an 

architecture definition language. 

2. Examine if all architecture characteristics can be simulated by existing ACID Sim 

Tools modules. If not, use the specification language of ACID Sim Tools [37] to 

produce an implementation of the missing characteristics. 

3. Transform the architecture definition into the OMNeT++ model definition 

language. 

4. Verify that the anticipated correctness properties are fulfilled. 
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5. Set the values of model parameters by computing resource demands from 

benchmarks or other representative workloads; values for system parameters should 

correspond to real system equivalents.  

6. Validate the simulation model with respect to the validity concerns of section 4.2. 

7. Define the experimental design. 

8. Collect the simulation results and proceed to the subsequent two-stage analysis 

outlined in section 3. 

Steps 5 - 8 may be applied to parameter sets that represent different workloads. 


