
1

Quantification of interacting runtime qualities in software architectures:

insights from transaction processing in client-server architectures

Anakreon Mentis1 Panagiotis Katsaros1 Lefteris Angelis1

George Kakarontzas2

Department of Informatics

Aristotle University of Thessaloniki

54124 Thessaloniki, Greece

tel.: +30-2310-998532, fax: +30-2310-998419

1 {anakreon, katsaros, lef}@csd.auth.gr

2 gkakaron@teilar.gr

2

Abstract

Architecture is fundamental for fulfilling requirements related to the non-functional

behavior of a software system such as the quality requirement that response time does not

degrade to a point where it is noticeable. Approaches like the Architecture Tradeoff

Analysis Method (ATAM) combine qualitative analysis heuristics (e.g. scenarios) for one

or more quality metrics with quantitative analyses. A quantitative analysis evaluates a

single metric such as response time. However, since quality metrics interact with each

other, a change in the architecture can affect unpredictably multiple quality metrics. This

paper introduces a quantitative method that determines the impact of a design change on

multiple metrics, thus reducing the risks in architecture design. As a proof of concept, the

method is applied on a simulation model of transaction processing in client-server

architecture. Factor analysis is used to unveil latent (i.e. not directly measurable) quality

features represented by new variables that reflect architecture-specific correlations between

metrics. Separate Analyses of Variance (ANOVA) are then applied to these variables, for

interpreting the tradeoffs detected by factor analysis in terms of the quantified metrics. The

results for the examined transaction processing architecture show three latent quality

features, the corresponding groups of strongly correlated quality metrics and the impact of

architecture characteristics on the latent quality features.

KEYWORDS: Software quality, Software architecture, Runtime software metrics, Design

tradeoffs, Architecture validation, Transaction processing, Simulation

1. Introduction

Software architecture is defined as: “the structure or structures of the system, which

comprise software components, the externally visible properties of those components, and

the relationships among them” [8]. Architecture sets the boundaries for runtime quality

3

(performance, fault handling, shared resource usage, security etc.) although it cannot be a

basis for precise predictions [17], since runtime behavior also depends on implementation

details. Nonetheless, software architecture can support analyses that provide confidence for

the effects of a design decision (e.g. replication) on quality metrics such as reliability.

We have seen the emergence of methods for analysing quality in software architectures

like for example ATAM [14], SBAR [10], SAAM [26] and HoPLAA [42]. All methods

combine qualitative analysis heuristics, such as questioning techniques and use cases, with

quantitative analyses specific to particular metrics. However, a single change in the

software architecture may affect multiple metrics, due to interactions between them [29].

We propose a quantitative method for discovering architecture-specific metric

correlations that are affected by the combined effect of architecture characteristics (e.g.

level of concurrency, degree of process distribution etc.). These correlations are justified by

latent quality features, which cannot be measured directly, but they can assist in managing

potentially complex tradeoffs.

As a proof of concept, the method is applied on a simulation-based evaluation of a

transactional architecture that complies with the Process Coordinator pattern [21]. The

pattern is commonly used to implement business processes that issue requests to several

server components. Issues like decomposition of the software functionality, allocation of

shared resources and communication among the architecture’s components form a complex

and interesting design problem. Furthermore, experience reports [8] indicate large

variations in server availability, performance and scalability of distributed transaction

management. The quality metrics investigated in this work are also important for other

architecture patterns like the Broker and the Publish-Subscribe pattern [21].

In the first stage of the proposed method, factor analysis is performed. Factor analysis

reveals groupings of highly correlated metrics and estimates new and fewer uncorrelated

4

variables that represent the latent quality features. Members of these groupings are

positively or negatively correlated. For the transactional architecture at hand, factor

analysis is applied on data obtained by a series of experimental runs of the ACID Sim

Tools [1, 36] simulator, developed by the authors.

In the second stage, separate Analyses of Variance (ANOVA) are performed for each

latent quality feature.

The proposed method is a systematic way for relating the variability of quality metrics

and the implied tradeoffs to specific architecture characteristics. The analysis uses data that

can be obtained from an appropriate simulation environment [4, 5] or a benchmarking

prototype [7, 9, 55]. It is based on minimal assumptions for the data distributions,

irrespective of the analyzed quality metrics and the architecture characteristics that are

taken into account. We believe that the method is applicable to all architecture patterns

where the investigated metrics matter and that it is effective in any architecture with

interacting quality metrics. However, the latter remains to be confirmed in future research

work.

Section 2 describes the concerns of architecture tradeoff analysis and the published

related work. Section 3 provides the process of the proposed method. Section 4 introduces

the metrics of interest in transactional client-server architecture, as well as a synthetic

transaction processing workload that utilizes the servers to a considerable extent. Section 5

shows how the first stage of the method is performed. Section 6 shows the application of

ANOVA for detecting the architecture characteristics that are critical for the investigated

quality metrics. The paper concludes with a brief discussion on the benefits of the method

and the future research prospects.

5

2. Architecture tradeoff analysis and related work

In a software project, the architecture is determined in the early design phase [23, 33, 48],

where the cost to fix an error is orders of magnitude less than in later development phases

[54]. An architecture validation process [21] evaluates design decisions with respect to

possibly prioritized and conflicting quality requirements. Fulfillment of a quality

requirement has positive or negative effects on other metrics, due to interactions between

them. Design decisions that violate a quality requirement are identified as architectural

risks, while those that improve quality metrics without violating a requirement are

identified as “good” decisions [22]. A decision is considered as an architectural risk or an

improvement, based on assumptions for the impact on the system’s behavior. For example,

in a Process Coordinator architecture, the designer assumes deterioration of throughput

when increasing the degree of process distribution.

In related bibliography, there are attempts (e.g. [11] and [19]) to tabulate the effects of

the different metrics on each other. Most of these tables are developed by logical reasoning

and experience, rather than existing evidence on the metrics interaction in some specific

architecture. In [45], the authors argue that metric dependencies are a property of the

architecture. Reliability and performance, for example, can be in conflict in a design that

supports a checksums and retry pattern, but they are simultaneously optimized in a

replication-based architecture.

Quantitative techniques should address the fact that metric dependencies are

architecture-specific and should provide evidence for the existing tradeoffs. They should be

general enough in order to be applicable in diverse architectures, without being constrained

by the specific quality metrics that are analyzed simultaneously. Finally, it is desirable to

attribute the variability of the metrics to specific architecture characteristics. This allows

identifying what in ATAM [14] is called a sensitivity point or a tradeoff point. A sensitivity

6

point represents a key architectural decision, which can be a property of one or more

components (and/or component relationships [15]), that is critical for fulfilling a quality

requirement. A tradeoff point is a property that affects multiple quality metrics and in fact

represents one of the most critical decisions in an architecture design.

Predictable Assembly from Certifiable Components (PACC) [39] is a framework for

the evaluation of the ability of a system to meet quality requirements. It supports

quantitative evaluation for different metrics, provided that an appropriate analytic theory is

available in a form called reasoning framework. Our proposal aims to identify sensitivity

and tradeoff points rather than building a reasoning framework for a specific metric. From

this point of view, the two approaches focus on supplemental concerns.

Software Performance Engineering (SPE) [49] is a process that uses queuing network

models to identify architecture alternatives that meet performance objectives. Evaluation of

trade-offs between performance and other quality metrics is beyond the scope of SPE.

Furthermore, our method does not presume a specific type of model as opposed to SPE,

which is based on queuing network analysis.

Table 1 summarizes the main characteristics of representative quantitative tradeoff

analyses found in the bibliography. We refer to a hybrid mathematical programming and

analytic approach, a simulation-based measurement technique and a simulation-based

statistical analysis that focus on different architecture tradeoff problems. Important

observations that motivate the proposed method are:

 Existing evaluation techniques quantify only those quality metrics that are used in

the tradeoff analysis. This is restrictive, since the technique cannot detect

unanticipated effects of architecture characteristics to other quality metrics.

 They assume a priori knowledge of a tradeoff point in a software architecture.

Moreover, they cannot discover additional sensitivity and tradeoff points.

7

 It is not possible to attribute the variability of metrics to architecture characteristics

other than the tradeoff point, thus ignoring the effects of other architecture

characteristics.

Table 1: Characteristics of quantitative techniques for architecture tradeoff analysis

Authors, year, reference Litoiu, Rolia, Serazzi
2000 [32]

Paul, Gupta, Badrinath
2003 [44]

Katsaros, Angelis, Lazos
2007 [25]

Scope of quantitative
analysis

Distributed application
systems

Checkpointing and recovery
protocols

Distributed systems with
independent checkpointing
activities

Tradeoff points

Process replication or
threading levels and
process activation
policies.

Checkpoint intervals Checkpoint intervals for the
independent checkpointing
activities.

Runtime qualities Utilization of processes
and devices.

Overhead due to
checkpointing and recovery
activities and quality of
recovery.

Response times for the
fault-affected and the fault-
unaffected computations.

Aim of quantitative analysis To determine process
replication or threading
levels, in order to avoid
unnecessarily queuing
delays for clients and
unnecessarily high
consumption of memory.

To assess the protocols’
performance in different
execution environments.

To determine checkpoint
intervals fulfilling the
response-times goals at the
lowest possible fault-
tolerance cost. Trades the
gains of a potential
improvement in the quality
of recovery against the
overhead caused in normal
processing.

Analysis approach Hybrid mathematical
programming and
analytic evaluation.

Simulation-based
measurement.

Simulation-based statistical
analysis.

Effects of architecture
characteristics on the
measured runtime qualities

It only takes into account
the architecture
properties included in the
model. Estimations are
produced only for the
tradeoff points.

Implicitly takes into
account all simulated
architecture characteristics.

Implicitly takes into
account all simulated
architecture characteristics.
Detailed estimations are
produced only for the
tradeoff points.

In the following sections, we introduce a method that overcomes the mentioned

limitations and provides evidence for architecture tradeoffs. At early design stages, the

method supports evaluation of the initial architecture design. At late stages the derived

knowledge for metric interactions can be used to fine-tune the system’s runtime behavior.

We assume a basis for experimentation provided by a simulation model [4, 5] or a

benchmarking prototype [7, 9, 51, 53, 55]. However, the statistical approach is general, in

8

the sense that it is not bound to a particular simulation or to some quantification theory [6]

specific to a metric.

3. The proposed method in the context of an architecture process

A process for the software architecture includes phases which collectively contribute to the

creation and validation of the architecture against the functional and quality requirements.

Gorton in [21] provides an architecture process (Figure 1) which includes three phases:

(i) determination of architectural requirements, (ii) architecture design and (iii) validation.

These three phases are repeated iteratively, since validation may lead to unsatisfactory

results, in which case the architect needs to reconsider the architecture design and/or refine

or modify the requirements.

Figure 1: The proposed method in the context of the generic architecture process

The proposed method is applied to the third phase of this process, namely to the

validation phase and the method’s steps are shown on the right side of Figure 1. Other

9

concerns like the application of architectural patterns or tactics to improve the architecture

design [54], although important, are not directly covered by our proposal. They constitute

complementary issues, in the sense that they affect and are affected by the architecture

validation. When an architecture design fails to meet the quality requirements the design

should be modified. In this case, the proposed method highlights certain quality problems

to consider.

Figure 1 shows the steps of the method, in the context of the architecture process:

1. Construction of the prototype or the simulation model.

2. Validation of the prototype or the simulation model: Includes all necessary

activities that assure an accurate representation of the real-world. These activities

are specific to the adopted prototype or simulation model. Approaches for ensuring

validity of simulation models are discussed in [18] and [35].

3. Experimental runs and collection of results for the subsequent statistical analysis.

4. Application of factor analysis to the quality metrics measured in step 3 for

estimating new variables representing the latent quality features.

5. Reification Process: It is the process of interpreting axes in multidimensional space

[30]. The process is meaningful in principal component analysis and in factor

analysis, where new latent variables are extracted. Latent quality features found in

the previous step are interpreted.

6. Application of ANOVA for each new variable of step 4, in order to study and

interpret design tradeoffs in terms of the quality metrics.

7. General interpretation of the results: The results of the architecture validation are

discussed and decisions are made regarding the architecture characteristics which

affect the metrics.

10

The involved roles that interact and cooperate in the various steps of the method are: the

architect, the prototype developer or modeling expert and the statistical expert. Other

stakeholders that provide additional information may be involved, especially during results

interpretation, when the architect determines the appropriate course of action.

4. Transactional software architecture and the ACID Sim Tools simulator

In a transaction processing architecture, like the Enterprise JavaBeans [13], clients issue

transaction requests to application servers that support a range of configuration and

deployment options. A server maintains a repository of components with encapsulated

objects and provides their runtime environment. In this environment objects may invoke

methods of other objects residing in the same or in another component or server.

Α transaction is a program execution that reads and/or modifies the state of persistent

objects via the invoked object methods [34]. It consists of a sequence of methods executed

on one or more servers. Invoked methods incur computations with specific CPU time

demands. A transaction is either committed or is aborted because of inconsistencies in

objects state, potential deadlocks or overload conditions. For deadlock resolution, a timeout

policy is often applied where a timer is activated upon initiation of a transaction and when

the timer expires the transaction is aborted. The objects cooperate with a transaction

manager to provide system-wide Atomicity, Consistency, Isolation and Durability (ACID)

guarantees for the performed operations.

Typical quality requirements for a successful transactional architecture design are:

 High number of committed transactions per time unit.

 Short response times for committed transactions, where response time is the time

span between issuing the transaction request and the instant of transaction commit.

 High server availability.

11

Transactional applications involve a series of complex architecture tradeoffs that make

evident the need for systematic quality design. For example, high availability depends on

the recovery time after server failures, which is determined by the size of the log files. A

factor that affects the log file size is the frequency of log truncations, called checkpoints. A

relatively small log file, which is important for high availability, indirectly reduces the

number of committed transactions per time unit, due to increased contention for the

available I/O bandwidth. Regarding the locks on the objects involved in aborted

transactions, they are withheld and therefore are inaccessible to other transactions until the

last valid object state is retrieved from the log file. Thus, it is important to have fast

rollbacks of aborted transactions, which is achieved by relatively small log files. But as we

already noted small log files are associated with increased I/O contention and this certainly

delays the retrieval of log file records.

The architecture design is further complicated by lock contention, which is susceptible

for thrashing phenomena. Too many transactions running concurrently result in a situation

where most transactions are blocked, because of lock conflicts and only few transactions

remain active. The maximum number of concurrently executing transactions

(multiprogramming level) is used to delimit the degree of concurrency. A low

multiprogramming level prevents thrashing but may lead to CPU underutilization and lower

throughput.

Checkpoint frequency, multiprogramming level and transaction timeout policy are

examples of architecture characteristics that affect one or more quality metrics. A

quantitative evaluation technique should provide the means to quantify the significance and

the combined effect of these characteristics in different workload scenarios (e.g. local to

highly distributed transactions, I/O bound or CPU bound resource contention).

12

4.1 The ACID Sim Tools simulator

ACID Sim Tools is a toolset that integrates facilities for building, validating and controlling

the execution of simulation models for transaction processing architectures. It is based on a

minimal set of assumptions that represent an object-based computational model like the

OMG Core Object Model [40]. It extends the Objective Modular Network Testbed

(OMNeT++) simulation framework [43, 52] and includes:

 A model definition language and a graphical user interface for the specification of

the architecture and the associated input parameters;

 Class hierarchies that combined with the code generation functionality allow

specification, verification [37] and rapid implementation of simulations for new

transaction models;

 Embedded debugging functions and an OMNeT++ graphical user interface that

supports interactive simulation and model inspection.

The architecture designer combines a transaction protocol with a concurrency control

protocol and simulates the resulting architecture with different parameters. The

implemented transactions protocols are the two-phase commit (2PC) variants named

presume nothing (PRN), presume commit (PRC) and presume abort (PRA). For

concurrency control the tool provides strict two-phase locking and basic timestamp

ordering. A simulation model consists of a set of modules that communicate by exchanging

messages:

 QSource - generates arrivals of transaction requests for a specific transaction class.

A transaction class represents a sequence of invoked methods that corresponds to an

execution path in a program.

 Atomic Commit Processing (Acp) - simulates a transaction manager that acts either

as a transaction coordinator or a transaction worker. The latter participates in a

13

transaction and the former collects the workers votes and decides the transaction

outcome.

 Log-Manager - simulates the stable storage of a transactional server, i.e. the I/O

costs for storage - retrieval of object states and the status of processed transactions

 Concurrency Control - simulates the concurrency control and isolation guarantees

[2]. As in [16], we do not consider resource consumption for concurrency control,

since its CPU demands cannot be easily quantified.

A transactional server consists of an Acp, a Log-Manager and a Concurrency Control

module. Different implementations can be provided for each module.

The simulation tool supports metrics for systematic experimentation with the tradeoffs

between performance and recovery costs (e.g. suspended processing of transactions arrived

during server recovery and in workers awaiting the decision for incomplete transactions).

The evaluated metrics are:

 server availability;

 percentage of committed transactions - termed as throughput - for (i) distributed

transactions, (ii) local transactions and (iii) groups of transaction classes that content

for a shared lock;

 mean response times for the aforementioned groups;

 mean blocking times (the time span between the voting of a worker and the receipt

of the coordinator’s decision), for the same groups.

ACID Sim Tools supports the method of independent replications, for simulation output

analysis. The number of simulation runs is determined dynamically, based on the required

confidence interval half-width.

14

4.2 A synthetic transaction processing workload for a case application scenario

In order to demonstrate the effectiveness of the proposed method in exploring the

variability and the interactions between quality metrics, we introduce a synthetic

transaction workload with relatively high CPU and I/O resource utilization. Other

workloads of interest are scenarios with mainly local or highly distributed transactions, as

well as scenarios with I/O bound or CPU bound resource contention.

Table 2: CPU time demands of methods and state sizes of persistent objects

Server Object State Size (Kb)
- exponential -

Method Name CPU demands (sec)
- exponential -

READ/WRITE

acp1 obj1 5 meth111 0.01 READ
 meth112 0.05 READ
 obj2 5 meth121 0.01 READ-WRITE
 meth122 0.01 READ
 meth123 0.01 READ
 obj3 5 meth131 0.04 READ-WRITE
 meth132 0.01 READ
 obj4 5 meth141 0.01 READ-WRITE
 meth142 0.01 READ
 meth143 0.01 READ
 obj5 5 meth151 0.01 READ-WRITE
 meth152 0.01 READ
 meth153 0.01 READ
acp2 obj6 5 meth211 0.05 READ-WRITE
 meth212 0.05 READ
 obj7 5 meth221 0.05 READ-WRITE
 meth222 0.01 READ
 obj8 5 meth231 0.01 READ
 meth232 0.01 READ
 obj9 5 meth241 0.05 READ-WRITE
 meth242 0.05 READ
 obj10 5 meth251 0.05 READ-WRITE
 meth252 0.01 READ
 obj11 5 meth261 0.01 READ
 meth262 0.01 READ
 obj12 5 meth271 0.05 READ-WRITE
 meth272 0.05 READ
 obj13 5 meth281 0.05 READ-WRITE
 5 meth282 0.01 READ

Figure 2: Component interface for obj1 in UML

15

The selected workload refers to a hypothetical case study, which is the norm in the

transaction processing field, even for industrial benchmarking workloads like TPC-C [46].

It uses a number of persistent objects, implemented as components, which are distributed in

two servers as shown in Table 2. Components provide their operations through interfaces,

such as the component for obj1 shown in Figure 2.

Table 2 specifies the state size of the objects residing in the two servers, the means of

exponentially distributed CPU time demands for the provided methods and whether the

methods update their object state.

Table 3: Transactional server system parameters

Network Latency / message: 0.06 sec

Server Disk Read Latency Disk Write Latency Mean Time To Repair
acp1 4.271e-05 sec/Kb 51.252e-05 sec/kb 4 sec
acp2 4.271e-05 sec/Kb 51.252e-05 sec/kb 4 sec

System-related parameters (Table 3) describe the runtime environment where the

transactional architecture is deployed. Disk I/O latency is set based on specifications of

commercial products. Fixed network latency is assumed since the two servers exchange

only small-size control messages. Communication between servers is considered reliable,

i.e. message delivery is guaranteed, which is a Quality of Service possibility foreseen in

[41].

Figure 3: UML sequence diagram for transaction tr1

16

In the simulated flat transaction model, object methods are invoked sequentially, as

shown in the UML sequence diagram for the first transaction class depicted in Figure 3.

The synthetic workload includes nine transaction classes, which are given in Table 4 along

with their associated parameters.

Table 4: Classes of transaction and object state alterations

Transaction Class Methods invoked Characteristics
tr1 meth111, meth122, meth132 local (acp1) – read only
tr2 meth111, meth222, meth112 distributed – read only
tr3 meth112, meth211, meth121 distributed – read/write
tr4 meth242, meth252, meth232 local (acp2) – read only
tr5 meth242, meth142, meth242 distributed – read only
tr6 meth242, meth141, meth251 distributed – read/write
tr7 meth262, meth272, meth282 local (acp2) – read only
tr8 meth262, meth152, meth262 distributed – read only
tr9 meth262, meth151, meth271 distributed – read/write

The modules used to simulate the described transaction workload appear in Figure 4 as

they are visualized in the OMNeT++ interactive simulation environment.

Figure 4: Architecture and workload representation (left panel) and the OMNeT++

interactive simulation environment (right panel)

For the verification of transaction models we employ the ACID Model Checker utility

[37], which uses the state machine based model definition adopted by the ACID Sim Tools.

17

Specifically, it is verified that: (i) there are no unreachable states and non-terminating

execution paths in the state machines corresponding to the worker and the coordinator, (ii)

the transition relation is not partially defined, which would cause simulation run-time

errors, (iii) workers conform to the decision of the coordinator, (iv) workers and the

coordinator reach exactly one of the two possible decisions (commit or abort), (v) a

transaction is committed if and only if all workers have voted for commit, (vi) the

transaction participants eventually reach a decision, even in the presence of communication

and system failures.

Model validation determines if the model is an accurate representation of the real-world

from the perspective of its intended uses [18]. In order to confirm the utility and

effectiveness of the developed model in realizing the anticipated interactions between the

quality metrics, a series of experiments was conducted. The experiments include scenarios

with: (i) mainly local transactions, (ii) highly distributed transactions, (iii) I/O bound

resource contention and (iv) CPU bound resource contention.

Another validity concern is whether the model’s structure contradicts the knowledge

about the structure of the real system [35]. ACID Sim Tools simulates systems that

implement the architectures specified in [13, 41] and as far as we know there are no

discrepancies between the simulated models and the referred specifications.

Validation of consistency [35] includes face validity and parameter verification. Face

validity tests if the model abstractions result in a recognizable representation of the real

system. Parameter verification tests that model parameters and their numerical values have

real system equivalents. Regarding face validity, the ACID Sim Tools simulator models all

essential interactions between the components of a transaction processing architecture.

Also, parameters (e.g. disk read/write latency and network latency) and their numerical

values stem from existing vendor specifications or reported measurements.

18

Detailed guidelines for the use of ACID Sim Tools in the context of the proposed

method are provided in the Appendix.

5. Experimentation, factor analysis and reification for latent quality

features

In the described software architecture, quality metrics are influenced by a tradeoff between

recovery costs and performance. Recovery costs are not directly measurable (a latent

quality feature), while performance is expressed by a number of metrics that disclose

different aspects of the runtime behavior (Table 5). In addition to the metrics shown, we

also quantified the availability of the two servers, under the considered fault load.

Transactions that share an object are placed in the groups of the last three columns of Table

5. Objects of transaction tr2 are not accessed by other transactions and consequently tr2

does not appear in any of the three groups.

Table 5: Performance metrics for the synthetic transaction workload

 All
distributed
transactions

All local
transactions

Group 1: transaction
classes
tr1, tr3

Group 2: transaction
classes
tr4, tr5, tr6

Group 3: transaction
classes
tr7, tr8, tr9

Throughput
(ratio of
committed
transactions)

tput_distr tput_local tput_confl0 tput_confl1 tput_confl2

Mean response
time

response_distr response_local response_grp0 response_grp1 response_grp2

Mean blocking
time

blocking_distr blocking_grp0 blocking_grp1 blocking_grp2

The proposed method is based on a two-stage exploratory study that aims to identify all

potential tradeoff points, with respect to the quality metrics of interest. Tradeoff points are

selected from the considered architecture characteristics based on evidence, provided by

factor analysis, for the statistical significance of the detected quality metrics dependencies.

19

5.1 Experimental design

A series of experiments is conducted, as required by step 3 of the proposed method (refer to

section 3), in order to collect data for the quality metrics of Table 5 and the measured server

availability. The experimental research for the synthetic workload at hand complies with

the guidelines given in [28]. The research questions we posed are:

i. Question 1: Which are the latent quality features that determine the dependencies

between the analyzed quality metrics?

ii. Question 2: Which architecture characteristics are the sensitivity and the tradeoff

points?

iii. Question 3: Given the tradeoff points, which architecture characteristics have

statistically significant effects on the latent quality features?

iv. Question 4: How are the quality metrics affected by the statistically significant

architecture characteristics?

The experimental context includes the following background information for

experimental runs with the ACID Sim Tools, as well as information for the used statistical

analysis software: (i) The length of simulation runs for the selected experimental design

was determined through repetitive trials, so that the obtained results quantify the metrics,

when being in the steady-state. (ii) For all considered cases of fault load (server failures are

by definition “rare” events), the model initialization bias was eliminated when the elapsed

simulated time was at least 55h 30m. With this preliminary analysis [27] the length of the

performed simulation runs was set to the aforementioned value. (iii) The CPU time required

for a simulation run in a personal computer with a single-core processor and 1 GB RAM

varied between a few minutes to 12 minutes, depending on the used simulation parameters.

ACID Sim Tools exhibited a stable behavior, without memory leaks and the memory usage

was between 5 % and 50 % of the system’s memory. (iv) Data analysis was conducted

20

using the SPSS statistical software, on simulation results obtained for the 14 performance

metrics of Table 5 and the two metrics that quantify the servers’ availability (in total 16

dependent variables).

Experimental design was based on preliminary simulation runs that were used to

explore the variability of the quality metrics across the architecture design space. In all

cases, concurrency control adhered to the widely used strict two-phase locking (2PL)

scheme. Experiment factors correspond to the investigated architecture characteristics.

Table 6 presents the levels of experiment factors that delimit the experimentation area,

where we observed significant variation of the analyzed metrics. Three different fault load

levels stressed the simulated model with relatively “rare” or more frequent server failures

(Poisson process). The two levels of transaction arrival rates (Poisson process) resulted in a

radically different system load.

Table 6: Experimental factors that influence recovery costs and performance

Factors (architecture characteristics) Level 1 Level 2 Level 3
Atomic commit protocol (ACP)
- all servers -

Two-Phase Commit
Presume Nothing (PRN)

Two-Phase Commit
Presume Commit (PRC)

Two-Phase Commit
Presume Abort (PRA)

Multiprogramming Level (MPL)
- all servers -

2 3 4

Checkpoint intervals (CI) - periodic
(sec) for all servers

500 1300 2100

Transaction timeouts (TT) in sec
- all transaction classes -

0.9 1.1 1.3

Mean interarrival times (MIT), exp.
- all transaction classes -

0.6 0.4

Mean interarrival time of server fail
-stop failures (MITofSF) - exponential

18 m 5 hours 51m 12 hours

Given the factor levels of Table 6, we performed the full factorial experiment including

one simulation run for each combination of factor levels, i.e. simulation results were

collected from 3 3 3 3 2 3 = 486 runs. An appropriate alternative for

experimentation with less CPU demands is the use of an experimental design with fewer

runs, like the uniform design that is utilized in [25].

21

5.2 Factor analysis and reification

Factor analysis (FA) reduces the problem dimensionality by computing new, fewer

dependent variables that contain most of the information provided by the simulated metrics.

The idea is to “group” the 16 dependent variables (the output of the experimental runs)

in such a way, that the highly correlated variables will be loaded in the same group. These

groupings are represented by new variables in the form of “scores”, thus reducing the

dimensionality of the original data. The new variables resulting from this procedure are

uncorrelated and can be studied separately with respect to the experiment factors.

In essence, FA aims to discover - in the original dataset - latent variables termed

factors, by exploiting the correlation structure of the dependent variables. To avoid

confusion with the term “factor”, as it is also used for the experiment’s factors of Table 6,

the latent variables from now on are called “components”, a terminology consistent with

the applied method.

Factor analysis requires that the dependent variables are normally distributed and for

this reason we applied Blom’s transformation [12] that utilizes the ranks ir of the n values

(simulation output) and the cumulative Normal distribution function)(1 x . The formula

for the Blom transformation is

4/1

8/31

n

r
s i
i (1)

and the transformed metrics were found to almost perfectly fit the standard normal

distribution with mean 0 and standard deviation 1.

The applied transformation also preserves the correlation structure of the original

dataset. For example, in Figure 5 we see the strong negative correlation between tput_local

and blocking_distr in the original (5a) and in the transformed (5b) variables. Moreover, we

observe that the normalization (right panel) portrays better the correlation between them.

22

(a) (b)

Figure 5. Strong negative correlation between tput_local and blocking_distr in the original

and in the transformed dataset

On the transformed normalized dependent variables we performed a FA procedure

based on Principle Components with Varimax rotation [20]. Varimax rotation is a

procedure which searches for a linear combination of the original components such that the

variance of the loadings is maximized. It helps to group the dependent variables since each

of them tends to be associated with one (or a small number) of components and at the same

time each component represents only a small number of variables.

The new variables, i.e. the component scores, were calculated by the Anderson-Rubin

Method [3], which estimates score coefficients. The scores that are produced have a mean

of 0, standard deviation of 1, and are not correlated.

The FA resulted in three components that explain 88.81% of the variance of the 16

original variables (metrics). Thus, the dimensions of the output space are reduced

significantly by exploiting the correlation structure of the normally transformed outcomes.

Table 7 shows the loadings of the variables on the three components and therefore the

grouping of the quality metrics. The sign shows the direction of the detected correlation.

For example, tput_local is loaded to the same component as blocking_distr but their

loadings have different signs, due to their negative correlation. This is an evidence for the

23

following metric dependency: longer blocking times for distributed transactions result in

lower throughput for locally processed transactions. The reason is that most withheld locks

are managed by blocked distributed transactions and the local transactions are queued in the

servers for one or more locks, with increased probability of a transaction timeout. All

groupings are presented in Table 8.

Table 7: Rotated component matrix obtained by FA

Normal score using Bloom’s Formula

Component

C1 C2 C3

availability0 -.800 .009 .115

availability1 -.794 -.002 .106

tput_local -.831 .132 .406

tput_distr -.131 -.125 .978

tput_confl0 -.166 .098 .955

tput_confl1 -.138 -.227 .950

tput_confl2 -.140 -.239 .947

response_local .031 .724 -.389

response_distr .095 .953 -.203

response_grp0 -.036 .948 -.205

response_grp1 -.017 .975 .122

response_grp2 -.013 .989 .040

blocking_distr .967 .062 -.054

blocking_grp0 .935 .068 -.126

blocking_grp1 .944 .007 -.034

blocking_grp2 .948 .038 -.050

Extraction Method: Principal Component Analysis
Rotation Method: Varimax with Kaiser Normalization

Table 8: Groupings of the quality metrics derived from FA

Component C1
(explains 35.35% of the total variance)

availability0 (-), availability1 (-),
tput_local (-),
blocking_distr (+),
blocking_grp0 (+), blocking_grp1 (+), blocking_grp2 (+)

Component C2
(explains 27.64% of the total variance)

response_local (+),
response_distr (+),
response_grp0 (+), response_grp1 (+), response_grp2 (+)

Component C3
(explains 25.83% of the total variance)

tput_distributed (+),
tput_confl0 (+), tput_confl1 (+), tput_confl2 (+)

24

The reification process answers to the first posed question (section 5.1) and involves the

interpretation of the components derived from FA. Their meanings in the considered

transaction processing workload are:

 Component C1 summarizes the variability of all metrics that are mostly affected by

I/O costs, due to checkpoints and recovery. We observe that high values for C1 are

related to high values of blocking times for the distributed transactions and low

values of servers’ availability and throughput for the locally processed transactions

and vise versa.

 Component C2 summarizes the variability of all response time metrics that were

found to be positively correlated with the new variable.

 Component C3 summarizes the variability of the throughput metrics that seem to be

affected mainly by communication latencies. We pinpoint that the throughput for

the locally processed transactions was included in component C1, as opposed to all

other throughput metrics.

6. Analyses of variance for detecting risks related to quality requirements

Sensitivity and tradeoff points are the research focus of the second question stated in

section 5.1. They can be initially detected by visual inspection of box-plots, which depict

the variability of the three components with respect to each factor. The impact of the

considered factors differs for each component as shown in Figure 6.

Checkpoint intervals have a significant impact on the quality metrics of C1 (Figure 6a).

This factor is clearly a sensitivity point for the servers’ availability, the throughput of the

locally processed transactions and the blocking times of the distributed transactions, since

all these metrics can be simultaneously optimized.

25

Figures 6b and 6c show that C2 and C3 increase with increasing values of timeout

intervals. Higher values of C3 correspond to improved throughput while in C2, higher

values correspond to longer response times (refer to the correlation signs of Table 8).

Timeout interval affects multiple metrics, which cannot be optimized simultaneously and

thus it is a typical tradeoff point.

(a) (b) (c)

Figure 6. Effects of the experimental factors on the three components

6.1 Analyses of Variance for the three components

For a deeper understanding of the tradeoff points and in order to answer the third research

question of section 5.1, we apply Factorial Analysis of Variance (ANOVA) for the three

components. ANOVA is used for studying the factor effects to some dependent continuous

variable resulting from a multifactor experiment. In our case, we consider each component

as dependent variable and for every component a 6-way ANOVA is performed, in order to

study the effects of the 6 factors of Table 6 on the component.

ANOVA essentially builds an additive model with the main effects of the factors and

their interactions and is accompanied by a number of statistical tests and measures which

assist the inference concerning the relation between the factors and the dependent variable

(we refer to [20] for a detailed account and their realization in SPSS). More specifically:

26

 Factors which have significant effect on the dependent variable are assessed by the

statistical F-test. We consider as statistically significant the effect of a factor or an

interaction if the significance of the F-test is less than 0.05.

 The fitting of the ANOVA model, i.e. the proportion of variability of the dependent

variable that is explained by the modeled factors is measured by the R-squared and

the adjusted R-squared statistic with values in the [0,1] interval.

 Partial eta-squared value shows which effects are the most important for explaining

the dependent variable. For each effect (either main or interaction effect), the eta-

squared statistic quantifies the degree of association between the effect and the

dependent variable and in fact describes the proportion of total variability

attributable to a factor.

 Post hoc tests are multiple comparison tests that identify statistically significant

differences between the levels of each experimental factor with respect to the

dependent variable.

 Profile plots (or interaction plots) provide insight into the most important

interaction effects. A profile plot is a line plot where each point indicates the

estimated marginal mean of a dependent variable at one level of a factor. The levels

of a second factor can be used to make separate lines. Each level in a third factor

can be used to create a separate plot.

In our analysis we tried for every component (dependent variable) various models

starting from a model with the 6 main factor effects, all possible combinations of unordered

pairs of factors (15 two-way interactions) and unordered triples of factors (20 three-way

interactions). Interactions of higher order are omitted, because interpretation of the results

would be complicated. We present the obtained results for the factors and interactions with

F-test value less than 0.05.

27

6.1.1 ANOVA for component C1

Table 9 shows the statistically significant main and interaction effects for component C1.

The R-squared statistic implies that this ANOVA model explains 93% of the variability of

C1. From the partial eta squared statistic we infer that the most important effects are the

MITofSF (92.1%), the interaction CI*MITofSF (71.2%) and the main effects of CI (21.3%),

MIT (14.5%) and TT (10.5%). All other effects, although they were found to be statistically

significant, explain only small proportions (less than 5%) of the variability of C1.

Table 9: Statistically significant effects for component C1

Effect F-statistic Sig. Partial Eta Squared

ACP (atomic commit protocol) 5.886 .003 .025

CI (checkpoint intervals) 62.643 .000 .213

TT (transaction timeouts) 27.215 .000 .105

MIT (mean interarrival times) 78.210 .000 .145

MITofSF (mean interarrival time of server fail-stop failures) 2696.656 .000 .921

CI * MITofSF 284.876 .000 .712

CI * MIT 4.425 .012 .019

MIT * MITofSF 4.635 .010 .020

ACP * MITofSF 3.499 .008 .029

TT * MIT 8.945 .000 .037

R Squared = ,937 (Adjusted R Squared = ,934)

Table 10: Significant differences between factor levels for component C1

 500 1300 2100

CI (checkpoint intervals) 500

1300

2100

 0.9 1.1 1.3

TT (transaction timeouts) 0.9

1.1

1.3

Post hoc tests results are presented in Table 10. Factor levels for the MIT and the

MITofSF are omitted, since we focus only on the examined architecture characteristics.

Cells with a tick represent pairs of factor levels which have statistically significant

28

differences. The checkpoint interval of 500 sec differs significantly from the two other

levels in terms of C1 and the same happens with all levels of transaction timeouts.

The profile plot of Figure 7 shows the interaction between the CI and MITofSF

(visualized as non parallel lines), which explains 71.2% of the variability of C1. The plot

concerns the 2PC PRN protocol and is similar to the omitted plots for the PRC and PRA

protocols, since ACP does not interact with the two other factors.

Figure 7. The interaction effect between CI and MITofSF on component C1

CI and MITofSF interact as follows. Frequent checkpoints reduce the recovery cost and

at the same time increase I/O demand. For rare failures (level 43200 sec) the incurred cost

during normal processing is not justified, because it overwhelms the recovery gains. For

frequent failures the gains in recovery costs are more significant than the losses in I/O

bandwidth thus improving the server availability and the blocking times of the processed

distributed transactions.

29

6.1.2 ANOVA for component C2

Table 11 shows the statistically significant factor effects for component C2 (response time

metrics). The R-squared implies that the model explains 99.5% of the variability of C2. All

factors have significant main effect, but there are also various significant 2-way and 3-way

interactions. The most important effects in terms of the computed partial eta squared

statistic are the main effects of TT (99.3%), MIT (96.5%), MPL (95.1%) and their 3-way

interaction MPL*TT*MIT (60.1%). ACP seems to have an important role either as a main

effect (40.4%) or in various interactions.

Table 11: Statistically significant effects for component C2 (response time metrics)

Effect F-statistic Sig. Partial Eta Squared

ACP (atomic commit protocol) 130.303 .000 .404

MPL (multiprogramming level) 3761.003 .000 .951

CI (checkpoint intervals) 18.469 .000 .088

TT (transaction timeouts) 26339.988 .000 .993

MIT (mean interarrival times) 10540.846 .000 .965

MITofSF (mean interarrival time of server fail-stop failures) 37.216 .000 .162

CI * MITofSF 5.003 .001 .050

MIT * MITofSF 11.016 .000 .054

ACP * MITofSF 41.395 .000 .301

TT * MITofSF 3.616 .007 .036

TT * MIT 84.863 .000 .307

ACP * TT 9.833 .000 .093

MPL * TT 88.956 .000 .481

CI * MIT * MITofSF 4.262 .000 .062

MPL * CI * MITofSF 2.227 .010 .065

ACP * MPL * MITofSF 2.438 .014 .048

ACP * TT * MITofSF 4.526 .000 .086

ACP * MPL * MIT 4.241 .002 .042

ACP * TT * MIT 2.611 .035 .026

MPL * TT * MIT 144.837 .000 .601

ACP * MPL * TT 5.764 .000 .107

R Squared = .995 (Adjusted R Squared = ,993)

The results of the post hoc tests in Table 12 suggest that when the used protocol is 2PC

PRA, the response times exhibit significant differences compared to the response times in

30

the two other cases. Also, the obtained results for MPL and TT show that all levels differ

significantly, which is in accordance with Figure 6b.

Table 12: Significant differences between factor levels for component C2 (response time

metrics)

 2PC PRN 2PC PRC 2PC PRA

ACP (atomic commit protocol) 2PC PRN

2PC PRC

2PC PRA

 2 3 4

MPL (multiprogramming level) 2

3

4

 .9 1.1 1.3

TT (transaction timeouts) .9

1.1

1.3

(a) (b)

Figure 8. The interaction effect between MPL, TT and MIT on component C2

Figure 8 visualizes the 3-way interaction between the MPL, TT and MIT, which is the

most important interaction effect. From the two plots we observe that for MIT = 0.4 (Figure

8a) response times are longer than the response times for MIT = 0.6 (Figure 8b). We also

31

note a steep descending trend when varying the MPL between 2 and 4 and at the same time

MIT = 0.6 and TT = 0.9, meaning that in this case an increase in the number of threads is

more effective in achieving shorter response times than it is in all other cases. An important

improvement is also evident when increasing MPL from 2 to 3 in the case of frequent

arrivals (MIT = 0.4) and TT = 1.3 sec.

6.1.3 ANOVA for component C3

Table 13 shows the ANOVA results for C3 obtained from a model that explains 99.1% of

the component’s variability. All factors have significant main effect, along with noteworthy

interactions. The most important effects according to the partial eta squared statistic are the

main effects of MIT (98.5%), TT (95.7%), MPL (91.0%), MITofSF (65.8%) and the 2-way

interactions of the factors with the MIT and the MITofSF.

The performed post hoc tests (Table 14) show that for 2PC PRA, the studied metrics

exhibit significant differences when compared with the two other protocols. For the factors

MPL, CI and TT all levels differ significantly.

Figure 9 shows the interaction between TT and MIT that was found having the most

significant effect. The plot concerns the 2PC PRN protocol and is very similar to the

omitted plots for the PRC and PRA protocols, since ACP does not interact with the two

other factors. The interesting finding here is that when TT is increased from 0.9 to 1.3 and

MIT is 0.6 there is a much more steep improvement in the metrics of C3 than the one

observed when MIT = 0.4. Thus, for improving the metrics of C3, an increase in TT when

having frequent transaction requests is not as effective as it is in the case of rare requests.

Profile plots that are omitted indicate interesting interactions for the ACP as a

sensitivity point of the metrics in C2 and the CI as a sensitivity point of the metrics in C3.

32

Table 13: Statistically significant effects for component C3

Effect F-statistic Sig. Partial Eta Squared

ACP (atomic commit protocol) 48.171 .000 .207

MPL (multiprogramming level) 1869.720 .000 .910

CI (checkpoint intervals) 57.664 .000 .239

TT (transaction timeouts) 4126.011 .000 .957

MIT (mean interarrival times) 24767.104 .000 .985

MITofSF (mean interarrival time of server fail-stop failures) 353.506 .000 .658

CI * MITofSF 52.601 .000 .364

CI * MIT 12.842 .000 .065

ACP * CI 5.848 .000 .060

MPL * CI 3.535 .008 .037

CI * TT 12.760 .000 .122

MIT * MITofSF 4.755 .009 .025

ACP * MITofSF 46.461 .000 .336

MPL * MITofSF 6.558 .000 .067

TT * MITofSF 43.777 .000 .322

MPL * MIT 311.983 .000 .629

TT * MIT 568.012 .000 .755

MPL * TT 11.876 .000 .114

CI * MIT * MITofSF 2.514 .041 .027

MPL * CI * MITofSF 2.959 .003 .060

CI * TT * MITofSF 7.165 .000 .135

ACP * CI * MIT 2.629 .034 .028

MPL * CI * MIT 3.919 .004 .041

CI * TT * MIT 3.283 .012 .034

ACP * MIT * MITofSF 6.403 .000 .065

MPL * MIT * MITofSF 16.472 .000 .152

TT * MIT * MITofSF 35.348 .000 .278

ACP * MPL * MIT 2.070 .038 .043

ACP * TT * MIT 3.220 .001 .065

MPL * TT * MIT 14.963 .000 .140

R Squared = .991 (Adjusted R Squared = .988)

In overall, through the shown ANOVA it was possible to identify the statistically

significant factor effects and subsequently to interpret them in terms of the way they affect

the quality metrics. All important interactions were explored and we commented on

possible risks for specific combinations of factor levels. The derived conclusions provide

answers to the fourth research question of section 5.1.

33

Table 14: Significant differences between factor levels for component C3

 2PC PRN 2PC PRC 2PC PRA

ACP (atomic commit protocol) 2PC PRN

2PC PRC

2PC PRA

 2 3 4

MPL (multiprogramming level) 2

3

4

 500 1300 2100

CI (checkpoint intervals) 500

1300

2100

 .9 1.1 1.3

TT (transaction timeouts) .9

1.1

1.3

Figure 9. The interaction effect between TT and MIT on component C3

6.2 The architecture runtime behavior visualized in 3-d scatterplots

Having projected the experimental points - which were initially expressed by 16 quality

metrics - in a 3-dimentional space, it is also possible to draw conclusions from 3-d

scatterplots. All components are shown together, while experimental points are marked

with different colors according to the factor levels.

34

(a) (b)

Figure 10. 3-d scatterplots of the effects of TT on the 3 components

Plots like the ones in Figure 10 help us to designate the factors that have a strong effect

on the whole swarm of points, by identifying groupings of the points due to the levels of

each factor. More specifically we provide (a) a matrix plot for all couples of components

and (b) a 3-d scatterplot for all three components for the factor TT.

The plots show a clear grouping of the experimental points, where the points for TT =

0.9 are grouped in a swarm representing relatively low values of response times (C2) and

low values for the throughput metrics of C3 that are mostly affected by communication

latencies. This is explained, because a significant number of transactions exceeding 0.9 sec

are aborted and thus they do not contribute to the metrics representing mean response times

and throughputs.

Similar groupings of the experimental points were found with respect to the MIT, where

– as expected – the points for MIT = 0.4 are grouped in a swarm representing relatively

high values for the metrics of component C2 and low values for the metrics of component

C3. A significant number of transactions is aborted for MIT = 0.4, thus resulting in lower

throughput for the distributed transactions and for the transaction groups of lock-conflicted

classes. Furthermore, by these scatterplots it was found that the MITofSF distinguishes the

35

points corresponding to the level of 1080 sec, which in any case represents an extreme

operating condition with very frequent server failures.

6.3 Threats to validity and additional considerations

Although it is shown that the proposed two-stage method can provide statistical evidence

for the architecture tradeoff points and the important factor effects, an obvious threat to the

internal validity of our exploratory study is the possibility of confounding. This term is

often used to refer to all factors covarying with the considered independent variables

(architecture characteristics), which also influence the dependent variables (quality metrics)

but have not been included in the experiment’s design.

In the considered architecture problem we have not recognized confounding variables.

For the sake of illustration of a confounding problem, let us assume that resource

consumption for concurrency control affects the simulation results. This would be a threat

to the internal validity of the analysis, since concurrency control has not been taken into

account in the experiment’s design.

Also, if the method is applied on measurements from a benchmarking prototype, we

consider that there are increased possibilities for confounding variables (e.g. runtime

monitoring overhead), which have not been included in the experimental design.

A threat to the external validity of our method is that the derived conclusions for the

architecture tradeoff points cannot be generalized to other architecture designs or variants.

As we already noted metric dependencies characterize only the analyzed architecture and

the obtained results cannot provide evidence for metric interactions in any other

architecture. However, we believe that the method is applicable to all architecture patterns

where the investigated metrics matter.

Regarding the anticipated conclusion validity, we emphasize that the proposed method

is based on an experimental design and a statistical analysis that are both well-established

36

in theory and in practice. For the illustrated simulation-based evaluation of the architecture

at hand, the reader is referred to the verification and validation tests for the ACID Sim

Tools and the used simulation model (section 4.2). As a consequence of these, there are no

obvious threats to the statistical validity of the drawn conclusions.

Finally, an important issue is the extent to which we measure the data relevant to our

hypothesis, which is termed in related work as construction validity. Our hypothesis for the

analyzed transactional architecture is stated by the quality requirements that are mentioned

in section 4. Typical threats like hypothesis guessing, researcher expectancy and evaluation

apprehension are not relevant to our study. We used an extensive set of metrics, in order to

be able to explore the variability in transaction processing performance and server

availability under different circumstances of I/O, CPU and lock contention. The same

metrics have been previously proved effective in related work on simulation-based

performance evaluation (e.g. in [49]).

An additional consideration regarding the proposed method is that the different views of

architecture (logical, process, development and physical views) [31] are usually captured in

some form of visual notation and a reliable transformation of this notation to a prototype or

a simulation model is not automatic and requires expertise. Part of the problem is that the

widely used visual notations like the UML, lack formal semantics [47] and their

transformation to a formal simulation model has inherent technical difficulties and pitfalls.

However, we believe that as the project teams acquire expertise with the tools that they use,

the risk of inaccurate model representation and transformation is gradually reduced.

Furthermore, the evolution and the ever-improving maturity of Model-Driven Software

Development (MDSD) [50] techniques will eventually push the formalization of UML and

other visual notations forward. This will allow automatic or semi-automatic translation into

37

several formal models, suitable for experimentation and simulation in the frame of the

proposed method.

7. Conclusion

We introduced a quantitative method for disclosing the statistically significant quality

tradeoffs in software architectures and for relating the variability of metrics to specific

architecture characteristics. The described two-stage analysis is general, since it is not

bound to a specific metric or a specific technique for acquisition of experimental data.

The method is illustrated by evaluating a transactional software architecture based on

simulation output for 16 quality metrics that was obtained with the ACID Sim Tools. The

factor analysis in the first stage of our approach unveiled a strong correlation of specific

metrics on a latent quality feature representing the I/O and recovery costs. Surprisingly, the

throughput for the locally processed transactions was found negatively correlated with the

aforementioned latent quality and uncorrelated to the throughput of the distributed

transactions.

The box-plots for the three components found by the FA revealed sensitivity and

tradeoff points, i.e. architecture characteristics that affect one metric or multiple metrics

that cannot be optimized simultaneously. In the second stage of the analysis, we performed

Analyses of Variance for the components of the FA and in this way we attributed the

variability of the analyzed metrics to specific architecture characteristics and interactions

between them.

Future research prospects include extensions of the current process, in order to address

the problem of quality prediction for an architecture design based on new synthetic metrics

[24, 38], as well as the problem of multi-objective optimization under specific cost

constraints and tradeoff concerns.

38

Acknowledgments

We acknowledge the anonymous referees for their helpful comments, which contributed to

improving the quality of the article.

References

[1] ACID Sim Tools Site, http://mathind.csd.auth.gr/acid/html/index.html (accessed: Nov. 2008)

[2] Alturi, V., Bertino, E., Jajodia, S. “A Theoretical Formulation for Degrees of Isolation in

Databases”, Information and Software Technology, 39 (1), 1997, pp. 47-53

[3] Anderson, T. W., Rubin, H. “Statistical Inference in Factor Analysis”, Proc. 3rd Berkeley

Symposium on Mathematical Statistics and Probability, Vol. 5, 1956, pp. 111-150

[4] Balsamo, S., Marzolla, M. “Simulation modelling of UML software architectures”, Proc. of

the 17th European Simulation Multiconference (ESM), Nottingham, UK, 2003, pp. 562-567

[5] Balsamo, S., Marzolla, M., Di Marco, A., Inverardi, P. “Experimenting different software

architectures performance techniques: a case study”, ACM SIGSOFT Software Engineering

Notes, 29 (1), 2004, pp. 115-119

[6] Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M. “Model-Based Performance Prediction

in Software Development: A Survey”, IEEE Transactions on Software Engineering, 30 (5),

2004, pp. 295-310

[7] Bardram, J. E., Christensen, H. B., Corry, A. V., Hansen, K. M., Ingstrup, M. “Exploring

quality attributes using architectural prototyping”, Proc. of the 1st Int. Conf. on the Quality of

Software Architectures & 2nd Int. Workshop on Software Quality (QoSA and SOQUA),

LNCS 3712, Springer, 2005, pp. 155-170

[8] Bass, L., Clements, P., Kazman, R. Software Architecture in Practice, 2nd ed., SEI Series in

Software Engineering, Addison-Wesley, 2003

39

[9] Becker, S., Dencker, T., Happe, J. “Model-Driven Generation of Performance Prototypes”,

Proc. of the SPEC International Performance Evaluation Workshop (SIPEW), LNCS 5119,

Springer, 2008, pp. 79-98

[10] Bengtsson, P. O., Bosch, J. “Scenario-Based Architecture Reengineering”, Proc. of the 5th Int.

Conf. of Software Reuse (ICSR), 1998

[11] Berander, P. “Merging perspectives on software quality attributes”, In: Software quality

attributes and trade-offs, L. Lundberg, M. Mattsson and C. Wohlin, Eds., Blekinge Institute of

Technology, Sweden, 2005

[12] Blom, G. Statistical estimates and transformed beta variables, Wiley, New York, 1958

[13] Burke, B., Monson-Haefel, R., Enterprise JavaBeans 3.0, O’Reilly, 2006

[14] Clements, P., Kazman, R., Klein, M. Evaluating Software Architectures: Methods and Case

Studies, SEI Series in Software Engineering, Addison-Wesley, 2001

[15] Crnkovic I., Larsson, M., Preiss, O. “Concerning predictability in dependable component-

based systems: classification of quality attributes”, LNCS 3549, Springer, 2005, pp. 257-278

[16] Chrysanthis, P. K., Samaras, G., Al-Houmaily, Y. J. “Recovery and performance of atomic

commit processing in distributed database systems”, In: Recovery Mechanisms in Database

Systems, V. Kumar and M. Hsu, Eds., Prentice-Hall, 1998, pp. 370-416.

[17] Dobrica, L., Niemela, E. “Survey on Software Architecture Analysis Methods”, IEEE

Transactions on Software Engineering, 28 (7), 2002, pp. 638-653

[18] DoD, DoD Instruction 5000.61: “Modeling and Simulation (MandS) Verification, Validation,

and Accreditation (VVandA)”, Defense Modeling and Simulation Office, Office of the

Director of Defense Research and Engr. (online: http://www.dmso.mil/docslib), 2002

[19] Eguiluz, H. R., Barbacci, M. R. “Interactions among techniques addressing quality

attributes”, Tech. Report CMU/SEI-2003-TR-003, Software Engineering Institute, Carnegie

Mellon, Pittsburgh, 2003

40

[20] Field, A. Discovering Statistics Using SPSS, 2nd Edition, SAGE Publications, 2005

[21] Gorton, I. Essential Software Architecture, Springer, 2006

[22] Grunske, L. “Identifying ‘Good’ Architectural Design Alternatives with Multi-Objective

Optimization Strategies”, Proc. of the 28th Int. Conference on Software Engineering (ICSE),

2006, pp. 849-852

[23] Grunske, L. “Early quality prediction of component-based systems – A generic framework”,

The Journal of Systems and Software, 80, 2007, pp. 678-686

[24] Katsaros, P., Iakovidou, N., Soldatos, T. “Evaluation of composite object replication schemes

for dependable server applications”, Information and Software Technology, 48 (9), 2006, pp.

795-806

[25] Katsaros, P., Angelis, L., Lazos, C. “Performance and effectiveness trade-off for

checkpointing in fault-tolerant distributed systems”, Concurrency and Computation: Practice

and Experience, 19, 2007, pp. 37-63

[26] Kazman, R., Bass, L., Abowd, G., Webb, M. “SAAM: A Method for Analyzing the

Properties of Software Architectures”, Proc. of the 16th Int. Conf. on Software Engineering

(ICSE), 1994, pp. 81–90

[27] Kelton, W. D., Law, A. M. “An analytical evaluation of alternative strategies in steady-state

simulation”, Operations Research 32, 1984, pp. 169-184

[28] Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El Emam,

K., Rosenberg, J. “Preliminary guidelines for empirical research in software engineering”,

IEEE Transactions on Software Engineering, 28 (8), 2002, pp. 721-734

[29] Klein, J., Weiss, D. “What is Architecture?”, In: Beautiful Architecture: Leading Thinkers

Reveal the Hidden Beauty in Software Design, D. Spinellis & G. Gousios Eds., O’Reilly,

2009

41

[30] Krzanowski, W. J., Principles of Multivariate Analysis: A User’s Perspective, Oxford Science

Publications, 1993

[31] Kruchten, P. “Architectural blueprints – The 4+1 view model of software architecture”, IEEE

Software, 12 (6), 1995, pp. 42-50

[32] Litoiu, M., Rolia, J., Serazzi, G. “Designing process replication and activation: A quantitative

approach”, IEEE Transactions on Software Engineering, 26 (12), 2000, pp. 1168-1178

[33] Losavio, F., Chirinos, L., Perez, M. A. “Quality models to design software architectures”,

Proc. of Tech. of Object-Oriented Languages & Systems (TOOLS 38), 2001, pp. 123-135

[34] Martin, C. P., Ramamritham, K. “Toward formalizing recovery of (advanced) transactions”,

In: Advanced Transaction Models and Architectures, S. Jajodia and L. Kerschberg, Eds.

Kluwer, Boston, 1997

[35] Martis, M. S., “Validation of simulation based models: a theoretical outlook”, The Electronic

Journal of Business Research Methods, 4 (1), 2006, pp. 39-46

[36] Mentis, A., Katsaros, P., Angelis, L. “ACID Sim Tools: A simulation framework for

distributed transaction processing architectures”, Proc. of the 1st Int. Conf. on Simulation

Tools and Techniques (SimulationWorks Industry Track), Marseille, France, 2008

[37] Mentis, A., Katsaros, P. “The ACID model checker and code generator for transaction

processing”, Proc. of the 2009 High Performance Computing & Simulation Conference

(HPCS), Leipzig, Germany, IEEE, 2009, pp. 138-144

[38] Mentis, A., Katsaros, P., Angelis, L. “Synthetic metrics for evaluating runtime performance

of software architectures with complex tradeoffs”, (To appear in) Proc. of the 35th Euromicro

Software Engineering and Advanced Applications Conference (SEAA), Patras, Greece, IEEE

Computer Society, 2009

42

[39] Merson, P., Hissam, S. “Predictability by Construction”, In: Companion to the 20th Annual

ACM SIGPLAN Conf. on Object Oriented Programming Systems Languages and

Applications (OOPSLA), 2005, pp. 134-135

[40] Object Management Group, Object Management Architecture Guide, revision 3.0, OMG

Technical Committee Document ab/97-05-05, June 1995

[41] Object Management Group, Transaction Service Specification, version 1.3, OMG Technical

Committee Document ptc/2003-03-08, March 2003

[42] Olumofin, F. G., Misic, V. B., “A holistic architecture assessment method for software

product lines”, Information and Software Technology, 49, 2007, pp. 309-323

[43] OMNeT++ Community Site, http://www.omnetpp.org/ (accessed: Nov. 2006)

[44] Paul, H. S., Gupta, A., Badrinath, R., “Performance comparison of checkpoint and recovery

protocols”, Concurrency and Computation: Practice and Experience, 15, 2003, pp. 1363-1386

[45] Reussner, R., Firus, V. “Introduction to overlapping attributes”, In: Dependability Metrics, I.

Eusgeld, F. C. Freiling and R. Reussner, Eds., LNCS 4909, Springer, 2008, pp. 243-244

[46] Seng, J., "A study on industry and synthetic standard benchmarks in relational and object

databases", Industrial Management and Data Systems, 103 (7), 2003, pp. 516-532

[47] Shaw, M., Garlan, D. “Formulations and Formalisms in Software Architecture”, In: Computer

Science Today: Recent Trends and Developments, J. van Leeuwen Ed., LNCS 1000,

Springer, 1995, pp. 307-323

[48] Shaw, M., Garlan, D. Software Architecture: Perspectives on an Emerging Discipline,

Englewood Cliffs, NJ, Prentice Hall, 1996

[49] Smith, C. U., Williams, L. G. Performance Solutions: A practical guide to creating

responsive, scalable software, Addison Wesley, 2001

[50] Stahl, T., Völter, V., Model-Driven Software Development: Technology, Engineering,

Management, Wiley, 2006

43

[51] Transaction Processing Performance Council, “TPC Benchmark C”, Standard Specification,

Version 5.4, 2005: available at http://www.tpc.org/tpcc/

[52] Varga, A. “The OMNeT++ Discrete Event Simulation Environment”, In Proc. of the

European Simulation Multiconference (ESM), Prague, Czech Republic, 2001, pp. 319-325

[53] Vieira, M., Duraes, J., Madeira, H. “Dependability benchmarks for OLTP systems”, In:

Dependability Benchmarking for Computer Systems, K. Kanoun, L. Spainhower, Eds., IEEE

Computer Society & John Wiley & Sons, 2008

[54] Williams, B. J., Carver, J. C. “Characterizing software architecture changes: a systematic

review”, Information and Software Technology, 52, 2010, pp. 31-51

[55] Zhu, L., Liu, Y., Gorton, I., Bui, N. B. “Customized Benchmark Generation Using MDA”, In

Proc. of the 5th Working IEEE/IFIP Conference on Software Architecture, Washington DC,

USA, 2005, pp. 35-44

Appendix

 An effective procedure for using ACID Sim Tools in the context of the proposed method

includes the following steps:

1. Obtain the different views of the architecture design [31] in UML or in an

architecture definition language.

2. Examine if all architecture characteristics can be simulated by existing ACID Sim

Tools modules. If not, use the specification language of ACID Sim Tools [37] to

produce an implementation of the missing characteristics.

3. Transform the architecture definition into the OMNeT++ model definition

language.

4. Verify that the anticipated correctness properties are fulfilled.

44

5. Set the values of model parameters by computing resource demands from

benchmarks or other representative workloads; values for system parameters should

correspond to real system equivalents.

6. Validate the simulation model with respect to the validity concerns of section 4.2.

7. Define the experimental design.

8. Collect the simulation results and proceed to the subsequent two-stage analysis

outlined in section 3.

Steps 5 - 8 may be applied to parameter sets that represent different workloads.

