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Abstract. In dependable systems engineering safety assessment of complex 
designs that involve software and hardware components is one of the most difficult 
tasks required. Due to the different modelling languages and models that are used 
for complementary tasks, the model and specification artefacts are not easily 
shared by the experts involved in the design process. Moreover, the structural and 
semantic differences of the used language representations open a possibility for 
inconsistencies between the corresponding models. This work explores the role of 
an ontology representation of component failure behaviour as a basis for 
automated model transformations, as well as a library of reusable knowledge 
artefacts to be used in different modelling languages and models. The presented 
approach was motivated by recent findings and requirements derived from 
European industrial-driven research and development projects1. 
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1. Introduction 

In the design of complex critical systems, safety analysis has to be performed in a 
systematic manner and it is usually refined and updated iteratively as the design 
process proceeds. Safety assessment traditionally requires the combination of various 
results derived from various models. Due to the different modelling languages and 
models that are used for complementary tasks, software engineers research model 
transformation techniques [10] that enable them to cope with: 

• the heterogeneity in textual representation, syntax, semantics, and scope of the 
modelling languages and 

• the possible inconsistencies that are likely when we have concurrent 
development of models on the basis of different tools. 

                                                           
1 This work is partly funded by the European Space Agency (ESA) Contract Ref: RFQ3-

12080/07/NL/FM/na. 



This work explores the role of an ontology representation of component failure 
behaviour as a basis for automated model transformations, as well as a library of 
reusable knowledge artefacts to be used in different modelling languages and models. 
We present the architecture of a client application that will generate AltaRica 
specifications from models described in the Architecture Analysis & Design Language 
(AADL). AADL is a textual and graphical language introduced by the Society of 
Automotive Engineers (SAE) for the design and analysis of the software and hardware 
architecture of safety critical real-time systems. It can be used in conjunction with an 
Error Model Annex standard to add dependability-related information such as fault and 
repair assumptions and error propagations to an architecture model. AltaRica is a 
dependability language for formally specifying constraints automata that describe the 
behaviour of systems when faults occur. Several dependability tools can process 
AltaRica models, like for example symbolic simulators, model-checkers, fault tree 
generators, sequence generators and AltaRica graphical modellers (Cecilia OCAS & 
ARBOR), which are used to support industrial safety analysis processes. 

To limit the effort of building dependability models several studies [7, 9] propose 
the definition of error models that will be applied to a number of system components 
and will be tailored with component-specific information. This approach assumes the 
maintenance of libraries with error models and component definitions that will be 
reused from one project to the other. Most of these projects potentially involve a 
number of geographically distributed suppliers, subcontractors, developers, certifiers 
and other stakeholders and this raises the need for an open knowledge base, which will 
enhance collaboration and information sharing intra and inter organizationally. We 
invest on an ontology based representation of component failure behaviour that 
supports the exchange of models among the different modelling tools and the involved 
stakeholders and opens prospects to meet the following requirements: 

• To define a formal semantics in order to capture the meaning of error model 
definitions in a correct and complete manner.  

• To support error model definitions easy to process by tools through an XML-
based serialization format (which is not supported in current AADL tools). 

• To define a formal semantics that will be deployed as a network resource, in 
order to validate error model definitions against a central schema (similar to 
the validation of XML documents against their XML schema). 

• To provide a facility for describing the relationships with alternative models 
and languages in addition to AltaRica. 

• To allow queries for potential solutions to design problems on the Web.     

In Section 2 we report the findings of related previous work. Section 3 introduces basic 
concepts of compositional safety analysis and describes the AADL and AltaRica 
languages with their associated tools. Section 4 outlines the ontology based 
representation of component failure behaviour. Section 5 provides a simple case study 
to show the capturing of error models in AADL architecture designs and their 
transformation to AltaRica specifications. We conclude by summarizing the scope of 
the ongoing work towards the development of the outlined Semantic Web based safety 
engineering process. 



2. Related work 

The ASSERT European Integrated Project (Automated proof-based System and 
Software Engineering for Real-Time systems) has investigated, elaborated and 
experimented advanced methods to integrate failure propagation Altarica models to 
system designs developed in AADL. 

During this project, a major concern was raised related to the possibility of 
inconsistencies between the used failure propagation models, Altarica models and the 
other models that were developed according to the ASSERT process. In order to avoid 
these inconsistencies, Onera investigated the feasibility of a tool that generates an 
Altarica model from a model described in AADL and proposed the development of 
libraries of Altarica nodes that will be reused from one project to the other. The tool 
was based on a model transformation approach that extracts from the AADL model, the 
functional and hardware architecture of the system. The development of libraries 
worked well only for families of systems that did not differ too much, and generally, it 
was found difficult to model certain types of failure propagations in physical domain. 

Similar to Onera, LAAS investigated, during the first phase of the ASSERT 
project, an alternative approach where an AltaRica specification is enriched with failure 
propagations coming from AADL code written following the Error Annex standard. 
According to the ASSERT reports the Altarica code was found to be much more 
complex than before, but feasible, as long as component relationships and various 
kinds of analysis are defined [9]. 

3. Compositional Safety Analysis 

A service delivered by a system is its behaviour as it is perceived by its users and in the 
safety analysis domain this is well known as the external state. Correct service is 
delivered when the service implements the intended system function. Related to the 
abnormal system operations, three basic concepts are used: failure, error, and fault. A 
system fails when it deviates from the intended functions and behaviours. Service 
failure means that at least one or more external states of the system deviates from the 
correct service state. The forms of deviations are characterized in terms of failure 
modes. An error is the part of total system states that can result in a system failure. 
Error events are used to model internal state (behaviour of basic component). A failure 
occurs when an error propagates from internal states to external states, causing the 
whole system to fail. The causes of an error, either adjudged or hypothesized, are 
referred to as faults. A fault produces one or multiple errors when it is activated. A fault 
is active when it causes an error, otherwise it is considered as dormant [1, 2, 4]. 

Failure condition (FC) refers to a combination of failure modes applied to 
functions of the system under study. We considered the following generic failure 
modes of functions: total loss, partial loss and erroneous behaviour. The FC may also 
include conditions that describe the current mode of the system. A FC may be 
permanent or transient [9] and it is characterized by the following attributes: 

• SEVERITY classification that includes the categories Catastrophic, Hazardous, 
Major, Minor and No Safety Effect. 



• QUANTITATIVE OBJECTIVE, which is a failure rate value that can be 
stated per mission hour, or for a given mission phase. Typical values are 10-9 

/hour for Catastrophic FC, 10-7/hour for Hazardous. Other categories are 
dependent on project, reliability objectives, etc. 

• QUALITATIVE OBJECTIVE essentially describes the number N of 
individual faults which are considered for a given FC: “No combination of 
events with less than N individual faults shall lead to FC” with N = 2 for 
Catastrophic FC, N=1 for Hazardous and Major FC. 

Safety analysis provides information about the consequences of components/ 
system failures and is related to all other types of analysis. The aim is to identify 
hazards, to access the risk, and to support hazard control. The analysis requires error 
models and models capturing failures and environmental conditions. Classical 
techniques for safety analysis are the so-called HAZOP (Hazard and Operability 
Studies), FMEA (Failure Modes and Effects) and FTA (Fault Tree Analysis) [4, 5]. 

3.1. AADL 

The SAE Architecture Analysis & Design Language (AADL) is a textual and graphical 
language used to design and analyze the software and hardware architecture of safety 
critical real-time systems [3, 4]. AADL is used to describe functional interfaces to 
components (such as data inputs and outputs), performance-critical aspects (such as 
timing), how components interact, how application software components are allocated 
to execution platform components, as well as the dynamic behaviour of the runtime 
architecture (by supporting the concept of operational modes and mode transitions). 

AADL is designed to be extensible. By allowing users to extend the core language 
with additional features it is also possible to specify safety levels, criticalities, fault 
tolerance, and error handling. Extensions take the form of new properties and analysis 
specific notations that can be associated with components. The user just imports Annex 
libraries which extend the language and customize an AADL specification to meet 
project- or domain-specific requirements. AADL is currently provided with two basic 
annex libraries: the behaviour annex and the error model annex [7]. 

The Error Model Annex defines additional properties that describe reliability of the 
system components and a state machine that specifies error states. Thus the Error 
Model Annex can be used in conjunction with the description capabilities of AADL to 
add dependability-related information, such as fault and repair assumptions, error 
propagations and fault-tolerance policies. More precisely, error model types are used 
for modelling fault/error/failure behaviours. They may declare error states (possibly 
identified during a hazard analysis), failure modes (possibly identified during a Failure 
Mode and Effects Analysis), error events (used to model internal faults), as well as 
internal repairs and error propagations (which are used to model failure effects).  

The Error Model Annex supports a compositional approach to error modelling: 

• It enables reuse of error models. 

• Makes it easier to modify architecture specifications and automatically 
regenerate safety and reliability models. 



• It facilitates abstraction and mixed-fidelity modelling. 

• It enables improved traceability between architecture specifications and 
models and analysis results. 

The language features can be used to specify errors that propagate between 
components and connections, depending on the structure of the architecture model. 
There also language features used to specify how components vote to detect and 
mitigate errors in their subcomponents or in the components on which they depend. 
Provided the availability of appropriate tool support the language semantics can be 
used to check for consistency, completeness and traceability between the error models 
of interacting components, as well as between the error models of components and 
their subcomponents.  

AADL is supported by two open source tools: OSATE and TOPCASED. The latter 
is a Metamodelling Framework developed by Airbus and 20 companies and currently 
supports AADL Graphics, AADL XML, model transformation and the Behaviour 
Annex. The former is an Eclipse based tool developed by the Software Engineering 
Institute (SEI) and currently supports full language editing and semantic checking, 
multiple analysis plug-ins and integrated text and graphical editing with TOPCASED. 

3.2. AltaRica 

AltaRica [6] is a dependability language designed in the University of Bordeaux to 
formally specify constraints automata (formal models which describe the behaviour of 
systems when faults occur). Several dependability tools can process AltaRica models 
[4, 5, 6, 9]: symbolic simulators, model-checkers, fault tree generators, sequence 
generators, AltaRica graphical modelers (Cecilia OCAS & ARBOR), etc. In AltaRica 
the models have the following structure: 

• A model of a system consists of hierarchies of components called nodes. A 
node gathers flows, states, events, transitions and assertions. 

• A component has is own variables (internal or external), plus some flow 
variables it can only read and are shared with other components. Flows are the 
visible parameters of the component whereas states are internal variables. 

• Assertions are boolean formulae that state the constraints linking flows and 
internal states. Assertions are system invariants (they must always be true). 

• Transitions describe how the initial states may evolve. They are characterized 
by a guard (a boolean constraint over the component flows and state), an event 
name and a command part (value assignation of some state variables). 

• The system is primarily separated to physical subsystems, which are described 
as nodes and capture all events and behaviour of the subsystems. 

Our goal is the fault model to have as much information as possible about the 
various events in which the components of the system can malfunction. A failure can 
be defined as an event which can affect the state of the node. Failure modes are called 
the different forms of deviation from correct service and can be defined using a 
transition taken to the particular failure event. An AltaRica model-checker checks the 
set of properties that eliminate the failure events. Safety requirements are given as 



failure conditions specified in the form of Linear Temporal Logic formulae that have to 
be proved. An AltaRica fault-tree generator takes an AltaRica model as input and an 
unexpected event and subsequently generates a fault-tree describing the failure 
situations that lead to the unexpected event. Once the fault tree is generated, a fault tree 
analyzer can be used to compute the set of prime implicants on the non-temporal failure 
conditions. 

4. Ontology based representation of component failure behaviour 

The presented modelling languages (AADL and AltaRica) are both specification 
languages with different textual representations, syntax and scope, thus creating a wide 
semantic gap. Most current model transformation approaches (e.g. Model-driven 
software development [10] and OMG’s Model-driven Architecture) address the 
problem of different model representation formats by the use of metamodels, which in 
fact can express only the logical syntactical structures of the corresponding models and 
cannot specify their semantics [12]. However, true model integration can only be 
achieved on a semantical level [8]. 

Ontologies are considered a key element for semantic interoperability because they 
act as shared vocabularies that utilize a grammar for using this vocabulary. The 
grammar specifies (with formal constraints) what it means to be a well-formed 
specification and how the terms in the ontology’s controlled vocabulary can be used 
together. The semantics of the concepts of interest is specified in a logic-based 
representation language thus resulting in unambiguous and machine-processable 
specifications. Moreover, the used representation languages come with executable 
calculi enabling querying and reasoning at run time.  

The proposed safety engineering process (Figure 1) uses a domain ontology built 
in the Web Ontology Language (OWL) to provide a classification of all possible 
component failure modes [15] and associate them with constraints that state their 
meaning. The whole architecture includes two bindings that specify the semantic 
mapping from the AADL/Error Annex and AltaRica metamodels to the domain 
ontology. An AADL/Error Annex model is an instantiation of the corresponding 
metamodel and it is semantically interpreted by the underlying domain ontology. The 
logical and syntactical structures of the AADL models should obey to a number of 
metamodel constraints. These constraints are associated with OWL property types and 
the semantic mappings to the domain ontology are used by reasoners that apply 
inference rules on the relationships of the ontology concepts. Inference rules will help 
to detect lacks of model elements and semantically inconsistent parts. Rules will also 
infer additional assertions, which are not specified explicitly but will be derived 
through the AADL and failure mode semantics (e.g. derived error models [7]). We use 
the term model inference to refer to the aforementioned model validation, which is 
possible only in an ontology-based model transformation process. 

Reasoning functionality will be exploited also in semantic web clients other than 
the AADL to Altarica model transformation. One obvious prospect is the definition of 
the notion of component failure behaviour matching based on relationships like 
refinement and simulation [13].    



 
Fig.  1. Model transformation architecture 

 
In the proposed framework, additional rules related to the syntactic mapping of 

AADL models to AltaRica specifications will be implemented within the used model 
transformation tool chain (e.g. openArchitectureWare [11]). Interoperability between 
the model transformation tool chain and the ontology part of the shown architecture 
will be achieved through the EMF Ontology Definition Metamodel [14] that essentially 
provides a set of programming APIs for creating, modifying, and navigating an OWL 
ontology in which all objects are also treated as Eclipse Modelling Facility (EMF) 
model objects. This makes possible to utilize the comprehensive development facility 
of Eclipse that is required by the selected model transformation tools. 

 
 Fig.  2. Class hierarchy of the AADL/Error Annex ontology 

 
Figure 2 shows the class hierarchy of the AADL/Error Annex ontology and Figure 

3 presents a snapshot of the instances in the model transformation case study of the 
next section. The ontology follows a meta-modelling approach, defining classes for 



artefact definitions, implementations and instantiations. Actually two major artefacts 
are modelled, namely system and error model. Systems can consist of nested sub-
components. System and error model definitions have features, namely in/out ports, 
error events-propagations and states. Definitions are associated with implementations, 
which can further refine the models. Error model implementations define transitions 
between states, based on incoming events. Finally, artefact instantiations associate 
artefact implementations with a specific pattern of event/data flow occurrence. 

 
Fig.  3. Ontology representation of an Hydraulic System failure behavior 

5. Case study 

Our prototype architecture will be tested by simple and more complex case studies. A 
quite simple system design is the Aircraft Hydraulic Leakage Detection System shown 
in Figure 4. The purpose of this system is to detect and stop leakages in the two 
hydraulic systems, which feed the moving parts of an aircraft. Leakages in the 
hydraulic systems could in the worst case result in such low pressure that the airplane 
becomes uncontrollable. To avoid this, some of the branching oil pipes are protected by 
shut-off valves. These valves can be used to isolate a branch in which the leakage has 
been detected. Then, although the leaking branch will no longer function, the other 
branches will still keep the pressure and be able to supply the moving parts with power. 

The reading of oil level sensors and the controlling of the four shut-off valves are 
handled by three electronic components, as depicted in Figure 4. The H-ECU 
(Hydraulic Engine Control unit) is a software component that continually reads the oil 



reservoir levels of the two hydraulic systems (HS1 and HS2) and determines which 
shut-off valve to close accordingly. HS1 sensors determine valves B1 and C1, while 
HS2 sensors determine valves B2 and C2. However, it would be very dangerous if 
some electrical fault caused more than one valve to close at the same time. For this 
reason, two programmable logic devices, here called PLD1 and PLD2, continually read 
the signals to and the statuses of the valves, and if the readings indicate closing of more 
than one valve, they will disallow further close operations. Thus, PLD1 and PLD2 add 
fault tolerance to the shut-off subsystem implemented in the H-ECU. PLD2 will only 
accept a request from the H-ECU for closing a particular valve if the check, which is 
partially done in PLD1, indicates that everything is fine. A valve will close only when 
both the low-level signal, which is the shut-off signal directly from the H-ECU, and the 
high-side signal, which is the checked signal from PLD2 are present. 

 
Fig.  4. Hydraulic leakage detection subsystem 

 
The Hydraulic Leakage Detection System was modelled in AADL using the 

OSATE (Eclipse) graphical interface and the model was subsequently transformed to 
an AltaRica specification. The specification excerpt of Figure 5 represents the 
Hydraulic System (HS). 

Figure 3 shows the AADL/Error Annex ontology representation of the Hydraulic 
System component. There are two definition objects, one for the system 
HydraulicSystem and one for the error model state_, and two equivalent 
implementation objects. These are connected to the required feature, transition and 
state objects. Finally, there is one instantiation object for the occurrence pattern of the 
corrupted data error propagation. 

6. Conclusion 

This paper introduces a Semantic Web architecture that supports geographically 
distributed industry groups in performing compositional safety analyses on 
components/systems during the requirements definition and design phases. We 
presented the details of the model transformation architecture under development, but 
we also stated the scope of our proposal that in fact is versatile: 

• To support product/component manufacturers in sharing specifications of 
component failure behaviours intra and inter-organizationally and in looking for 
components that match a particular failure behaviour. 



• To cope with the heterogeneity in syntax, semantics, and scope of the modelling 
languages used in compositional safety analyses and the possible inconsistencies, 
that arise when we have concurrent development of models with different tools. 

 
system raulicSystem  Hyd
  features 
    HSSignal: out event port; 
  annex error {** 
   error model state_ 
   features 
   full: initial error state; 
   half,empty: error state; 
   failure: error event; 
   CorruptedData: out error propagation 
{Occurence => fixed 0.1}; 
   end state_; 
   
  **}; 
end HydraulicSystem; 
 
system implementation HydraulicSystem.impl 
  annex error {** 
error model implementation state_.impl 
transitions 
  full- [failure] -> half; 
  half- [failure] -> empty; 
end state_.impl;  
   **}; 
end HydraulicSystem.impl; 
 

node HDL_HS1 
 flow 
  icone : [1,1] : out ; 
  HSSignal : HDL_type_HS : out ; 
 state  
  state_ : {full,half,empty} ; 
 event  
  failure ; 
 init  
   state_ := full ; 
trans 
state_ = full |- failure -> state_ := half; 
state_ = half |- failure -> state_ := empty; 
assert 
(if state_ = full then HSSignal = Full 
 else if state_ = half then HSSignal = Half 
else HSSignal=Empty); 
extern 
   law <event failure> = exponential(1e-1) ; 
edon 
 

Fig.  5. AADL and AltaRica specifications for the HS1 and HS2 component failure behavior 
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