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Abstract

System requirements define conditions and capabilities to be met by a sys-
tem under design. They are a partial definition in natural language, with
inevitable ambiguities. Formalisation concerns with the transformation of re-
quirements into a specification with unique interpretation, for resolving am-
biguities, underspecified references and for assessing whether requirements
are consistent, correct (i.e. valid for an acceptable solution) and attainable.

Formalisation and validation of system requirements provides early evi-
dence of adequate specification, for reducing the validation tests and high-
cost corrective measures in the later system development phases. This article
has the following contributions. First, we characterise the specification prob-
lem based on an ontology for some domain. Thus, requirements represent
a particular system among many possible ones, and their specification takes
the form of mapping their concepts to a semantic model of the system. Sec-
ond, we analyse the state-of-the-art of pattern-based specification languages,
which are used to avoid ambiguity. We then discuss the semantic analyses
(missing requirements, inconsistencies etc.) supported in such a framework.

Third, we survey related research on the derivation of formal properties
from requirements, i.e. verifiable specifications that constrain the system’s
structure and behaviour. Possible flaws in requirements may render the de-
rived properties unsatisfiable or not realisable.

Finally, this article discusses the important challenges for the current re-
quirements analysis tools, towards being adopted in industrial-scale projects.
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1. Introduction

Requirements engineering is of vital importance in systems engineering. It
consists of the elicitation, specification and management of requirements,
with the aim to deliver a system that meets the stakeholders’ needs.

System requirements specify how the system will meet the higher-level
stakeholder requirements (also called early requirements). These require-
ments are a partial specification of a system solution to a design problem
that is not restricted to a specific design. Since requirements are usually
written using a controlled natural language (i.e. restricted in syntax and/or
lexical terms), they are inevitably ambiguous. This undermines our ability to
guarantee essential qualities, such as the absence of underspecified references
to system entities and inconsistencies, as well as that the specification is valid
for an acceptable solution (correct) and attainable. Possible flaws in system
requirements imply iterated costly cycles of validation testing and corrections
to the system’s design, during the later phases of system development.

Therefore, the potential to properly validate and refine the system re-
quirements, early in the development cycle, and to apply this to industrial-
scale projects is a challenge that has not yet been adequately addressed in
the current state of practice. Validation is associated with the problem of
transforming requirements into a formal specification amenable to verifica-
tion (requirements formalisation). This implies that all detected ambiguities
and underspecified references have been resolved, while a mapping to a pre-
cisely defined semantic model of the system has been specified. We therefore
assume that specification takes place with reference to a domain model, i.e.
an ontology with precisely defined logical relationships and facts about the
concepts mentioned in the requirements of a system’s domain. Potential
ambiguities can be eliminated if using a language of requirement patterns
with well-defined semantics. Then, various semantic analyses can be sup-
ported, like detecting cases of missing requirements, checking the absence of
contradictory specifications, discovering terms to be replaced with more con-
crete subclasses of a concept and so on. However, even after having applied
these analyses, there is not yet any guarantee for the absence of specification
flaws; though they improve the system requirements at the semantic level,

2



they cannot render them verifiable. This may be happen only if the system
requirements are satisfiable and realizable, something that can be decided
after they have been transformed into a formal specification.

This takes place, when capturing system requirements by properties in a
logic language, for the expected behaviours and structure of a correct system
design. While requirements are supposed to be independent from a particu-
lar system design, properties are expressed in terms of a formal model (i.e.
an abstracted representation in a specification language with formal seman-
tics) of the system under design and in fact constrain the system’s design.
Properties derivation can be based on a language of property patterns, where
each pattern has been assigned semantics in a logic language. Every single
requirement is covered by properties that can be derived through property
patterns associated with the specific patterns of the requirement’s specifica-
tion and by associating the requirement’s concepts to events of the system’s
formal model. This ensures that all requirements have a consistent interpre-
tation with respect to the system’s formal model. If the properties are not
satisfied by the model, then a modified design (and model) has to be pursued
or certain requirements that are not satisfied have to be refined.

This article covers all mentioned challenges of formalisation and valida-
tion of system requirements, reviews the latest state-of-the-art and discusses
the existing pattern languages, the available tools and their limitations with
respect to the potential of applying them in industrial-scale projects.

The rest of the article is structured as follows. The next section dis-
cusses the problems of ambiguity and underspecification in natural language
requirements. Section 3 presents the recent advances on the ontology-based
modeling of system requirements, their specification by means of appropriate
pattern languages and the supported semantic analyses. Section 4 discusses
the problem of requirement formalisation through the derivation of formal
properties. This problem is related to the problem of system design and
for this reason we also present the two main paradigms of model-based and
component-based system design. Both design paradigms are relevant to the
description of the four related tools in Section 5. Finally, Section 6 explains
the limitations and the important challenges for applying a requirements for-
malisation/validation approach to industrial-scale projects. The last section
concludes the paper and discusses some more future research prospects.
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2. Ambiguity and underspecification in natural language require-
ments

Ambiguity in a natural language requirement stems from the possibility of in-
terpreting it in di↵erent ways. The problem may be attributed to the syntax
(e.g. ambiguous grouping of connectives) or its semantics, i.e. when there are
multiple readings for a word or a vague adjunct [1], but it may be also due to
neglecting some contextual information of a word. Ambiguous requirements
with many interpretations allow interfacing code, usually written by di↵erent
engineers, to operate under diverse assumptions [2]. The problem is exacer-
bated if the author is not available for clarifications, when the requirements
are interpreted, during the system’s implementation. This is a particularly
hard problem, since there are various kinds of meaning [3] encoded in the
lexical or grammatical structure of sentences. For system requirements, we
focus on a sentence-meaning that is exhausted by the propositional content
of sentences, which is truth-conditionally explicable (i.e. the truth of the
proposition depends on something outside the language that is used [4]).

Also, a requirement may be impossible to be interpreted, when some re-
quired details are missing. In [5], this problem is referred as incompleteness
of individual requirements and it is associated with likely incomplete and/or
incorrect design of the system architecture, due to adopting potentially in-
correct guesses or assumptions. As expected, incomplete requirements are
not verifiable and they can imply serious safety issues in systems design. For
example [6], when the verb “send” is used, two arguments are expected, the
“sender” and the “recipient”. If the “recipient” is omitted, it is not possible
to know whether there are one or more recipients. Thus, for every predi-
cate (verb, noun, adjective, preposition), all obligatory arguments have to
be specified. A promising approach to address the incompleteness of individ-
ual requirements [5] is to adopt adequate notions of completeness, for every
single type of requirement (functional, inreface, extra-fuctional etc.).

Underspecifications refer to using words that denote an entire class of ob-
jects, without a modifier specifying a concrete instance of the class [7, 8]. Ev-
ery such word is compatible with multiple possible semantic interpretations,
thus leading to ambiguity, whose implications have been already discussed.

Industrial-scale projects are mostly based on guidelines for the way of
expressing system requirements, i.e. they introduce a style in language use,
for clarity. In a space system project, we encountered the following guideline:
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“A requirement will contain the word shall. Equivalent expressions
are allowed in exceptional cases: is required to, has to etc”.

Certain words that violate verifiability (e.g. “is not allowed”, “is required to
be not”, “must not”) may be excluded.

However, these guidelines do not help to eliminate the mentioned sources
of vagueness, which are inherent in all natural language specifications.

3. Semantic modeling of requirements and pattern-based specifi-
cation

Natural language requirements can be formalized only through a partial loss
of expressiveness. To eliminate the ambiguity of free-form syntax, a natural-
like artificial language is usually used [9, 10, 11, 12, 13, 14], which allows com-
bining specification patterns (boilerplates) through a strictly defined syntax
(context-free grammar) based on connectives with precise semantics. Boiler-
plates consist of attributes and fixed syntax elements such as:

< system > shall < function >

where “shall” is a fixed element, while < system > and < function > are at-
tributes of placeholders for user input. Boilerplates usually consist of at most
three clauses: (i) the prefix, for specifying a stimulation or a condition, (ii)
the main and (iii) the su�x, for specifying various constraints. Connectives
are used in the boilerplate syntax to introduce additional entities in a spec-
ification, or for determining time, order/sequence, consequence, comparison
and various types of conjunctions (coordinating, correlative, subordinating).

To avoid vague semantics, due to many word readings, boilerplates are
instantiated to specifications by mapping attributes to class instances from
an ontology with all concepts (and relationships) needed for writing require-
ments of a system [11, 12, 15, 16, 17]. Multiple ontologies are used (a require-
ment can refer to diverse system domains) that must comply with a domain-
independent ontology with all relationships between classes of attributes in a
system context (e.g. function invokesfunction, system performs function).
Figure 1 depicts the domain-independent ontology that we used in [9]. These
relationships characterise every concept instance of the domain-specific on-
tologies in the requirements and provide information for building the formal
model of the system [18] and for deriving verifiable properties [9, 19, 20, 21].
They also set a semantic analysis framework, which is used to detect missing
information and potential inconsistencies.
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Figure 1: Boilerplate attributes definition relationships in [9]

In [10, 12, 22], the following semantic analyses are proposed:

• Missing information. Requirements that are incomplete or still missing.
In the former case, some references to concept instances are missing for
one or more boilerplate attributes. In the latter case, we focus on
boilerplate attributes that have been instantiated, but they have not
yet been specified in any other requirement.

• Conflicting requirements. Similar requirements in terms of boilerplates
that assign to the same attributes, for the same subject, di↵erent con-
cept instances or use contradicting words or di↵erent quantities.

• Underspecifications. Requirements that assign attributes, which can be
replaced with instances of more concrete subclasses.

• Noise. Requirements with terms not defined in domain ontologies.

• Opacity. Requirements which assign irrelevant instances of concepts to
their attributes.

• Redundancy. Requirements with the same boilerplates and quantities
that assign semantically equivalent concepts to their attributes.

These ontology-based analyses can be implemented using SPARQL queries [23]
and SPIN inference rules [24].
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Any omission detected by the mentioned analyses enacts a need of refining
one or more requirements. The refinement of a set of requirements [25]
consists of: (i) identifying what cannot be guaranteed or e↵ected and (ii)
augmenting or replacing them until they are fully verifiable. This can be
ensured only after having derived formal properties that are really verifiable.

Example 1. This illustrative example was inspired from [26], where it was

first used to demonstrate system engineering methods for on-board software

design. It refers to a generic first-in-first-out queue (FIFO), whose function-

ality is given in Figure 2 as SysML natural language requirements linked with

“refine” relations (directed arrows, where the target refines the source).

Figure 2: FIFO requirements

The “concurrent readers/writers” and “element types” requirements refer

to the FIFO queue interface, whereas the “implementation language” require-

ment to an expectation, which by definition cannot be rendered verifiable. All

requirements, apart from the “implementation language” were manually im-

ported in our requirements ontology using a boilerplate syntax similar to the

one in [9]. Figure 3 demonstrates how the P15 prefix and M10 main boiler-

plates were combined for specifying the “Writer capability” requirement.
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Figure 3: Requirement boilerplate instantiation for the Writer capability requirement

The process followed to input requirements into the ontology is shown in

Figure 4. First, the boilerplates to be used from the list of existing boilerplates

are selected and their placeholders are presented according to the attributes

of their syntax. Each placeholder is then filled in using either a (sub)class of

the boilerplate attributes or an instance of that (sub)class (Figure 3).

Figure 4: Requirement specification process steps

All requirements with a (sub)class as an attribute are noted as having

missing information. Complete requirements (with instances in each place-
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holder) are analysed by applying the mentioned analyses that provide warn-

ings in a table (e.g. which attribute has not been instantiated by any re-

quirement, conflicting requirements etc). Warnings prompt to edit, refine or

add additional requirements and then to repeat the semantic analysis in the

updated requirements. In this example, the results of missing information

analysis prompted us to define the “full” and “empty” FIFO states.

Semantic analysis is based on the ontological representation of the boil-

erplate attribute values in Figure 5 (relationships comply with the domain-

independent ontology of Figure 1). Note that this representation refers to

concepts that do not exist in the boilerplate representation of the requirement

in Figure 3 (e.g. function 001, function 002, function 003, flow 001).

The reason is that the following two specification patterns are utilized.

Figure 5: Ontological representation of the Writer capability requirement

First, in the main boilerplate, we refer to two di↵erent systems (i.e. the

writer and the FIFO). This specification style, due to the used boilerplate,

entails the invocation of two di↵erent functions; it is therefore represented

with the invokes relationship between the push function (in main), and a

new function, say function 001. For the sake of understandability, we name

function 001 as add, to express that upon a push by the writer, the FIFO

shall add an element to the queue.

The second specification pattern concerns with referring to a state as pre-

condition specified in the prefix. This style, due to the prefix boilerplate,

entails a representation according to Figure 1, which assumes an additional

flow that sets the state (and the not state) and two additional functions:
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• function 002 to check the state defined in the prefix boilerplate,

• function 003 that acts as container, which contains the latter and the

function 001 that FIFO performs, as was previously mentioned.

Due to the container, relationships of function 001 (including invokes)

are applied to the container (function 003). We call function 002 as

check NOT FULL, and function 003 as check NOT FULL and add. Fig-

ure 5 eventually reflects the semantics: the writer performs a push, which

invokes FIFO to check that state is not FULL and add element to the queue.

The described specification patterns can be applied by integrating appro-

priate SPARQL rules, in order to infer the additional functions and relation-

ships. Alternatively, two or more separate requirements should be specified to

define what each system performs and how their functions are invoked. 4

The process of Figure 4 integrates the semantic analyses of [10, 12, 22]
together with those provided by our ontology architecture. Any variation
of this process is feasible if all completeness checks precede the rest of se-
mantic analysis. Completeness checks may even take place concurrently and
interleave with the specification of requirements. From the discussion on the
ontological representation of the requirement in Figure 3, we see that com-
pleteness depends on (i) the relationships of boilerplate attributes (domain-
independent ontology) and (ii) the boilerplates syntax and all concepts that
are not explicitly referred as attribute values, but are inferred from them.

Example 2. This example refers to the Electrical Power Subsystem (EPS)

of a spacecraft system for generating, storing, conditioning and provision of

electric power to all satellite units. EPS is decomposed into subunits (Fig-

ure 6), whose requirements have been expressed using our boilerplate syntax

(and attributes in Figure 1) as shown in Table 1. The main subunits are:

• Power Conditioning and Distribution Unit (PCDU): receives the elec-

tric power from the solar array and/or battery and distributes it to the

satellite subsystems through the Latching Current Limiter (LCL).

• Battery: stores electric power provided by the solar array during Sun

visibility and powers the satellite subsystems during eclipse phases. It is

charged/discharged by the Battery Charge/Discharge Regulator (BCDR).

• Main Error Amplifier (MEA): stabilizes power to the default voltage.
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• Solar Array: delivers power to the satellite subsystems through the

PCDU. It supplies the satellite during Sun exposure and in parallel

charges the battery after the eclipse phases.

• PCDU Telemetry & Telecommand (TMTC): controls PCDU with com-

mands external to the subsystem, e.g. power on/o↵, (dis-)charging from

Attitude & Orbit Control System (AOCS) and ground control.

Figure 6: Electric Power System decomposition

Table 1: Power subsystem requirements

ID Requirement
EPS-01 M16: <System:EPS> shall contain a <System:PCDU>.

EPS-02 M16: <System:EPS> shall contain a <System:Solar Array>.

EPS-03 M16: <System:EPS> shall contain a <System:Battery>.

EPS-04 M16: <System:PCDU> shall contain a <System:MEA>.

EPS-05 M16: <System:MEA> shall contain a <System:BCDR>.

EPS-06
M12: <System:EPS> shall have <StateSet:operational modes>
with values: <State:On>, <State:O↵>.

EPS-07
M10: <System:EPS> shall <Function:transmit>
<Item:bus voltage> to <System:platform>

Continued in next page
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Table 1 – Continued from previous page

ID Requirement

EPS-08
M10: <System:EPS> shall <Function:transmit>
<Item:bus voltage> to <System:payload>

EPS-09
M7: <System:EPS> shall <Function:start-up>,

S2: after <Flow:launcher separates>.

EPS-10

P11: If <Item:bus voltage> is <State:undervoltage>,

M7: <System:PCDU> shall <Function:power down certain

LCLs>,

S6: sequentially.

EPS-11

P11: If <Item:bus voltage> is <State:overvoltage>,

M7: <System:MEA> shall <Function:reset>
<Item:bus voltage> to <State:50 V +/- 0.5 V>.

EPS-12

P11: If <Item:battery voltage> is <State:below 45V>,

M7: <System:BCDR> shall <Function:charge>
<Item:battery voltage> to <State:50V +/- 0.5 V>.

EPS-13

P11: If <Item:battery voltage> is <State:over 55V>,

M7: <System:BCDR> shall <Function:discharge>
<Item:battery voltage> to <State:50V +/- 0.5 V>.

EPS-14

M7: <System:EPS> shall <Function:transmit>
<Item:operational, health and performance telemetries of

all units>.

EPS-15

P12: If <System:AOCS> <Function:forwards>
<Item:EPS related telecommands>,

M7: <System:PCDU TMTC > shall <Function:process>
<Item: EPS related telecommands>.

EPS-16

P12: If <System:ground control> <Function:forwards>
<Item:EPS related telecommands>,

M7: <System:PCDU TMTC> shall <Function:process>
<Item:EPS related telecommands>.

EPS-17
M10: <System:PCDU TMTC> shall <Function:transmit>
<Item:telemetries> to <System:ground control>.

EPS-18
M10: <System:PCDU TMTC> shall <Function:transmit>
<Item:telemetries> to <System:AOCS>.

All requirements based on the M10 boilerplate (EPS-07, EPS-08, EPS-17

and EPS-18) resemble the requirement of Figure 3, where the main clause
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Figure 7: Ontological representation of the EPS-17 requirement

refers to two di↵erent system attributes of the boilerplate. Similarly to Ex-

ample 1, the main clause representation includes (EPS-17 requirement in

Figure 7) the invokes relationship between the function referred in the boil-

erplate and an additional function (shown as function 001), which (the

analysis warns that) should be instantiated and specified in another require-

ment. We call function 001 as process, in order to denote that ground

control is expected to process telemetries upon receiving them.

Figure 8: Ontological representation of the EPS-12 requirement

Requirements that refer to a state in the prefix clause (EPS-10 to EPS-

13), similarly to the requirement of Figure 3, introduce a precondition to a

function occurrence. This semantics requires two additional functions, as

in Figure 8, since there is no direct relationship in our domain-independent

ontology (Figure 1) between any state and function attributes:
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• a function (function 001) to check the state in the prefix clause,

• a function (function 002) to act as a container of the latter and the

function that is specified in the main clause.

If the state attribute in prefix refers to an item, that item is related to the

new functions with the affects relationship.

Figure 9: Ontological representation of the EPS-15 and EPS-16 requirement

EPS-15 and EPS-16 use a di↵erent combination of prefix/main boiler-

plates that shows the need for an invokes relationship between function at-

tributes. In this case, such a representation is not attributed to the di↵erent

system attributes (AOCS or ground control and PCDU TMTC) in prefix and

main, but it is based solely on the use of the function attribute in prefix.

As shown in Figure 9, the AOCS and ground control perform a forwards

function, which invokes a process function performed by PCDU TMTC.

These specification cases show the role of prefix boilerplate in the invokes

relationship definition of the requirement’s ontological representation:

• when the prefix introduces a state attribute as precondition of main,

additional functions and flows are needed apart from those that are

explicitly mentioned in the requirement;

• when the prefix introduces a function attribute as precondition of main,

an invokes relationship is generated without additional definitions.

Finally, we highlight the role of a class of requirements, found in require-

ments documents, which cannot be expressed ontologically with the concepts
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of a domain-independent ontology. Instead, such requirements complement

the domain-specific ontologies. Specifically, EPS-01 to EPS-06 are related to

the design of the specified system and if they are not handled properly, they

will cause warnings for detected noise or opacity.

As noted, all specification patterns can be applied by integrating SPARQL

rules. Upon semantic analysis, newly created concepts are marked as missing

information, until they are further specified in other requirements. 4

4. Formal properties derivation and verification

Even if we can guarantee absence of semantic omissions in requirements spec-
ification, this does not mean that requirements are valid for an acceptable
system design. They could be unsatisfiable or not realizable! The conjunc-
tions and prepositions in prefix/su�x patterns cannot be evaluated over a
declarative-style specification, such as that created by instantiating boiler-
plates using domain ontologies. We need the model of a system design, in a
language with formally-defined operational semantics. Then, from the var-
ious combinations of prefix, main and su�x clauses we derive formal prop-
erties referring to events and state variables of the model that correspond
to the attribute values of the requirements. In component-based formalisms
such as BIP [27] and the SLIM language (a subset of the Architecture Anal-
ysis & Design Language - AADL extended with behavioural models) of the
COMPASS toolset [28], properties are specified in terms of atomic proposi-
tions that refer to specific components and their ports. Moreover, in SLIM,
properties may also refer to error variables and states of error models [29, 30].

Derivation of properties can be based on property patterns that are pa-
rameterizable, formalism-independent specification abstractions, which cap-
ture recurring problems in requirements formalisation. Patterns are used as
a data input mechanism to specify properties; they are expressed based on
a structured English grammar and they have formal semantics in logic lan-
guages. Each boilerplate is associated with a set of property patterns [9, 10],
such that every possible requirement specification is covered by adequate
properties. This is a prerequisite, for a logically consistent interpretation of
requirements with respect to the model of system design.

Example 3. An example of a properties derivation proposal that we intro-

duced in [9] is the following. Let us consider the prefix boilerplate:

P2: if <Flow:e1> and <State:s1>
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When P2 is used in a requirement specification, two properties are derived

that are expressed through the following property patterns from [31].

P2.1: globally, occ(e1) ^ obs(s1) precedes beg(M)

P2.2: globally, beg(M) responds to occ(e1) ^ obs(s1)

where beg(M), occ(e1), obs(s1) are mapped to events (component ports) corre-

sponding to the occurrence of the main specification (beg(M)), the occurrence

of e1 and the observation of s1 in execution traces of the model of system

design. P2.1 is a safety property, whereas P2.2 is a liveness property; for

both, a formal semantics has been defined in temporal logic languages. 4

The complexity of the properties formalisation problem is discussed in [32],
where the author points out that a su�ciently high level of precision must
be retained. The author examines the “simple” requirement “When you pick
up the phone, you get a dialtone” and provides four possible interpretations
in Linear-time Temporal Logic (LTL) [33] with di↵erent levels of precision.
It is eventually shown that for one who is not experienced in using tempo-
ral logic, it is unlikely to produce a precise formalisation of this requirement.
Moreover, even when such a precise formalisation is achieved, it is impossible
to recognize the initial specification, where the property comes from.

A widely used repository of patterns for functional properties is reported
in [31]. The semantics of these patterns [34] is defined in Computation Tree
Logic (CTL) [35] and in other logic languages. According to this approach,
every property is specified using a scope (optional) and a property pattern.
The scope (six di↵erent patterns) selects the subset of the model state-space,
where the property is expected to hold; for the rest of the state-space, the
property is undefined. The property pattern defines an expected occurrence
of a given event/state (four di↵erent patterns) or the relative order of multiple
events/states (four patterns) during system execution.

For extra-functional properties, the authors of [36, 37] were based on the
repository of [31], to introduce patterns for real-time specifications, while
in [38] the authors organized them in a unified framework and introduced
some additional patterns, which complete this repository. A di↵erent set of
patterns for timing properties has been also proposed in [39]. Finally, in [40]
the author has presented a repository of patterns for probabilistic proper-
ties, which have been used for real-world requirements focused on reliability,
availability, performance, safety, security, and performability.

However, for verifying extra-functional properties we need a model of the
system’s design in a formal language with suitable semantics (e.g. timed au-
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tomata for real-time properties, stochastic semantics for probabilistic prop-
erties). With respect to this, for the BIP language it is worth to mention:

• the BIP extension in [41] for specifying probabilistic aspects and a
stochastic semantics for the parallel composition of BIP components;

• the RT-BIP extension for modeling timing constraints as a timed au-
tomaton and for computing schedules meeting these constraints [42].

COMPASS implements a di↵erent approach and supports various analyses.
Instead of extending the SLIM language semantics, the tool utilizes model
extensions, such as error models and fault injections, which enable it to au-
tomatically inject faults into the nominal model. The extended model is
translated into a symbolic model amenable to formal verification and to a
Markov chain for probabilistic analyses. A combination of backend tools sup-
ports a multitide of analyses [43], including properties verification, functional
correctness, fault management, dependability and performability analyses.

4.1. Model-based and component-based system design

From the preceding discussion, derivation of formal properties from system
requirements is tightly intertwined with the system design, i.e. the problem
of defining the architecture, the modules, the interfaces and the data in a
system model. A widespread approach is the component-based design, in
which system design takes place by integrating blocks of functionality called
components that are coordinated so as to fulfill the system requirements.

Two di↵erent perspectives of model-based and component-based system
design exist, the so-called top-down and bottom-up design approaches.

In top-down design [44, 45, 46, 47], we have a top-down system decompo-
sition into components through which we mainly focus on allocating require-
ments to components, such that higher-level requirements are established.
Each component is seen as an open system, with inputs provided by other
components in the system or the external world and some outputs. All other
components and the exterior world is referred to as the component’s en-
vironment. Components are designed for a particular context and cannot
constrain their environment. Requirements are formalised as contracts [48]
consisting of assumptions for the environment and guarantees provided by
the component. In [49], a pattern-based contract specification approach was
introduced. When allocating requirements to a component [50], we must en-
sure that the assumptions for the components environment (assertions on its
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input or invariants) can be fulfilled. An overly weak assumption on the envi-
ronment can lead to overly strong (inconsistent) guarantees. Additional as-
sumptions may be needed to weaken the existing requirements. The RATSY
tool for property simulation can be used to improve the precision of addi-
tional assumptions [51]. In overall, at each step, a design decision has to
be made towards finding an appropriate component (and contract) decom-
position through which all higher-level requirements can be met. For this
purpose, a formal refinement relation was proposed in [52].

In bottom-up design [53, 9], at each step, a formal architecture pattern [54]
is applied to a set of components of the system model in BIP. Architectures
are reusable BIP models that characterize the interactions between a set
of component types. In essence, they are operators restricting component
behaviour for enforcing one or more properties. To apply them, certain
properties are assumed for their operands, which can be verified locally by
inspecting the components to which they are applied. If an assumed prop-
erty is not satisfied, the component behaviour has to be refined. A related
theory [55] provides a framework for architecture composition that guar-
antees preservation of properties established in a previous design step. In
overall, this is an incremental design approach that aims to avoid a pos-
teriori verification as much as possible (correctness-by-construction). The
design philosophy lies on the fact that when specifying system requirements,
a significant part of the specification comes from adapting requirements (and
design solutions) found in previous projects. Architecture patterns provide
the means to formally capture common solutions to recurring design prob-
lems in an abstract and reusable form. They drive the choice of component
coordination, decomposition into components and behaviour transformation,
but to be able to enforce a worthwhile set of properties we need a su�ciently
developed library of architecture patterns. This incurs a non-negligible in-
vestment cost. In a related research work [56], the authors open prospects
for defining architecture patterns, which enforce quantitative properties.

In overall, formalisation of system requirements is a two-stage process of
interpreting them (i) based on a semantic model of the system domain (spec-
ification), and (ii) with respect to a model of the system’s design (properties
derivation). Due to the creative nature of this process, its obvious depen-
dencies on two types of models and the form of the system design process
(top-down vs. bottom-up design), human involvement cannot be vanished
and therefore it can be only partially automated. In next section, we survey
some noteworthy proposals of tool-support in recent bibliography.
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5. Tools

At least three tools have been presented in related bibliography, but their
availability beyond the projects in which they were developed is unclear. A
fourth tool is available as part of the COMPASS toolset [28], which facilitates
formal specification of requirements in the context of AADL models [57].

In [11], the authors presented a tool called DODT that was developed in
the frame of the CESAR project [10]. DODT allows for projectional edit-
ing and typing of requirements based on a boilerplate syntax (Requirements
Specification Language - RSL), an attribute ontology and a domain-specific
ontology. The ontology-based validation checks in [22] have been imple-
mented, which allow detecting contradictions by pairwise comparison of re-
quirements, nouns that are not defined in the ontology and so on. Finally, a
language of property patterns with formal semantics is supported. Although
DODT does not implement an exact association of boilerplates with property
patterns, in [10] the authors provide suggestions for patterns that could be
suitable for capturing a given requirement.

The EARS-CTRL tool [58] was introduced to ensure by construction
well-formedness of requirements written using the Easy Approach to Re-
quirements Syntax (EARS) [13, 14] templates. The tool checks whether a
controller can be synthesized from a set of requirements. If a controller can-
not be synthesized, it is possible that conflicting requirements exist. EARS-
CTRL allows for projectional requirements’ editing, based on a glossary de-
fined for the domain of controller synthesis. Requirements are analyzed as
LTL formulas. The analysis’ e↵ectiveness depends on user-defined semantic
information (e.g. simple predicates) for the given glossary. Finally, model
synthesis is limited to a fragment of LTL that involves the universal path
quantifier, the next-step operator and the weak until temporal operator [59].

The RERD tool [9] supports the requirements specification and properties
derivation based on boilerplates and property patterns, as well as the incre-
mental construction of systems for discharging the derived properties through
the bottom-up design approach described in Section 4.1. While editing re-
quirements, the user interacts with underlying ontologies by querying them
and accessing their class instances for matching terms. In this way, the vo-
cabulary of boilerplate attributes is restricted to terms that are identifiable
within domain-specific ontologies and ontologies specific to the system under
design. The boilerplate attributes definitions relationships in Figure 1 play a
key-role in semantic analysis and property derivation, where each boilerplate
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has been associated with predefined property patterns that can formally cap-
ture it. For property enforcement, the user can choose among the available
architecture patterns and parameterize them by selecting components from
the incrementally built BIP model of the system. Then, the absence of dead-
locks in the resulting BIP model has to be checked, which is proposed to
take place using the D-Finder tool [60]. For the properties that cannot be
enforced using the existing architecture patterns, the user will have to use
external tools, such as the nuXmv model checker [61].

Regarding the COMPASS-based approach, in [57], the authors presented
a di↵erent approach, according to which formal properties are not instanti-
ated from patterns by replacing their placeholders with states/events asso-
ciated with boilerplate-specified attributes, but through assigning values to
attributes of the system model. More specifically, a set of properties was in-
troduced, which allow to associate values to specific AADL model elements.
A taxonomy of formal properties was then defined, with each of them being
expressed by the values associated to the corresponding AADL properties
or else using certain structures in the AADL model (e.g. subcomponents
and port connections). The formal semantics of the system properties relies
on the behavioural semantics of the SLIM language, whereas the logic used
to define most of them is a variant of Metric Temporal Logic (MTL) [62].
While the taxonomy of formal properties is comparatively limited in expres-
siveness, it completely eliminates the need to choose a pattern and invent an
instantiation. The formal properties can be analyzed for consistency among
di↵erent abstraction levels of the system model or can be used as assump-
tions/guarantees of components for contract-based design. For the latter
intent, COMPASS requires to further specify a contract refinement, which
links a contract to the contracts of subcomponents. This allows to perform
various analyses, such as the consistency or entailment for any subset of con-
tract properties, to check whether the contract refinements are correct, as
well as to tighten a contract such that the refinement still holds.

6. Limitations and challenges for industrial-scale projects

E↵ectiveness of ontology-based and pattern-based requirement specification
depends on: (i) the quality of the domain-specific ontologies, and (ii) the ex-
pressiveness of pattern languages and their potential to eliminate ambiguity.

Regarding the former matter, for the design of proper domain-specific
ontologies we need to involve requirement engineers, ontology engineers and
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domain experts, who are in charge of the system design. Such a process
requires gathering knowledge from previous projects (e.g. requirement spec-
ification documents, architecture design documents), identifying the impor-
tant concepts that are not specific to these projects and then classifying
them into abstract categories (identifiable functionality, exchanged informa-
tion between systems etc.). Categories must then be assigned to boilerplate
attributes from a conceptual model, such as the one in Figure 1, and their
interrelationships must be ontologically defined. It is also required to capture
tacit knowledge for the design problem, which is necessary to infer e.g. that
certain events or data ranges that respect the boilerplate attributes model
syntactically are not relevant semantically. Such knowledge may come for ex-
ample from laws of physics or other system engineering aspects. From the on-
tology engineering perspective, it is necessary to adopt adequate qualitative
(cohesion, adaptability etc.) and quantitative (coupling, computational e�-
ciency etc.) criteria, which help to uncover errors and ine�ciencies regarding
the modeling complexity and size of the ontologies. A complete treatment of
this problem is given in [63]. An additional challenge is how to organise the
collaboration/responsibility of the di↵erent departments/stakeholders that
may be involved in various ontologies, which in large system projects may
include, for example, domain ontologies common for multiple stakeholders.

Expressiveness of pattern languages is important for being able to for-
malise all system requirements that need to be validated. To a large extent,
the expressiveness depends on the set of connective words supported by the
syntax of the pattern language and their meaning. A restricted set of con-
nectives limits the language expressiveness, whereas a more extensive set of
connectives may render impossible to completely avoid ambiguity in syntax
and semantics. For enhanced expressiveness it may be even necessary to
assign multiple meanings to a connective word, which will have to be distin-
guished by the word’s position within the sentence. In any case, the syntax
of pattern languages will have to be designed with extensibility in mind.

The e↵ort needed to apply any of the reviewed processes/tools in an in-
dustrial project and their scalability potential raise important challenges.
Most of them have been applied to proof-of-concept case studies based on
subsets of real requirements e.g. from space systems, but none has been ap-
plied to the complete set of requirements of a real industrial project. For such
a project scale, the challenges to be addressed include: (i) to document the
relationship between the ontology-based requirement specifications and the
requirement baselines, as well as the ontologies lifecycle within a project and
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across projects, (ii) to improve usability through increasing the technology
readiness level of the tools, especially when some properties cannot be verified
and it is necessary to identify the relevant sub-model for the correction.

7. Conclusions and future research prospects

We surveyed the recent advances in formalisation and early validation of
system requirements. A series of related industrial research projects has de-
livered valuable experience on pattern languages for various types of require-
ments and on the derivation of formal properties. Requirement specification
can be based on domain ontologies, which are used to identify missing in-
formation and eliminate inconsistencies and cases of underspecification. The
properties derivation depends on a formal model of the system, which may be
incrementally built through a component-based design process. We reviewed
two related design paradigms and we discussed the problem of formalising
requirements within their context. Finally, we reviewed tools that were re-
cently introduced, in order to address the mentioned problems.

The presentation of these developments allowed us to comment on their
strengths and weaknesses. It was also evident that important limitations still
have to be addressed, as well as open challenges associated with applying such
an approach in industrial-scale projects. Apart from these prospects, open
problems for future work exist on: (i) raising the the level of automation
for the formalisation and validation of requirements. and (ii) extending the
applicability to more types of extra-fuctional requirements/properties.
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