Scalable IoT architecture for balancing performance
and security in mobile crowdsensing systems™

Theodoros Nestoridis
School of Informatics
Aristotle University of Thessaloniki
54124 Thessaloniki, Greece
nestorid @csd.auth.gr

Fotios Gioulekas
School of Informatics

Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

gioulekas @csd.auth.gr

Abstract—Crowdsourcing aims to deliver services and content
by aggregating contributions from a large user population. For
mobile networks and IoT systems, crowdsourcing is used to
gather and process sensor data from mobile devices (crowdsens-
ing), in order to deliver real-time, context-aware services and pos-
sibly support user collaboration in extended geographic areas. In
applications like geonsensitive navigation, location-based activity
sharing and recommendations, the challenge of adequate service
quality and user experience may be at stake, as the services are
provided securely to an ever-growing user population. This hap-
pens due to the inherent trade-off between security and real-time
performance that ultimately sets in doubt any scalability prospect
beyond a certain user-interaction load. This work introduces a
publish-subscribe architecture for mobile crowdsensing systems,
which can be transparently scaled up to higher usage load, while
retaining adequate performance and security by load balancing
into multiple MQTT brokers. The security support combines a
lightweight TLS implementation with an integrated mechanism
for two-level access control: user-device interactions and message
topics. We provide proof-of-concept measurements that show
how our solution scales to increasing interaction loads through
load-balancing the processing cost that includes the overhead of
the security mechanisms applied. The system architecture was
implemented in a vehicular crowdsensing navigation network
that allows to exchange navigation information at real-time, for
improved routing of vehicles to their destination.

Index Terms—Internet of Things, crowdsourcing, mobile net-
work, security, load-balancing

I. INTRODUCTION

The system architecture defines the fundamental organization
of a system in terms of its software and hardware components,
their relationship with each other, and with the environment,
as well as the principles guiding its design and evolution. The
interactions among the different components impact the overall
system performance, the scalability prospects and eventually

*This research has been co-funded by the European Union and Greek na-
tional funds through the Operational Program Competitiveness, Entrepreneur-
ship and Innovation, under the call RESEARCH - CREATE - INNOVATE II
(project code:T2EDK-02617).

Chrysa Oikonomou
School of Informatics
Aristotle University of Thessaloniki
54124 Thessaloniki, Greece
oikochry @csd.auth.gr

Anastasios Temperekidis
School of Informatics
Aristotle University of Thessaloniki
54124 Thessaloniki, Greece
anastemp @csd.auth.gr

Panagiotis Katsaros
School of Informatics
Aristotle University of Thessaloniki
54124 Thessaloniki, Greece
katsaros @csd.auth.gr

determine the potential to meet the requirements for a given
application. When we specifically focus on IoT systems, it is
widely accepted that there is no standardized IoT reference
model and architecture that can be applied in a majority of
IoT systems [1]. For mobile networks and IoT systems, the
common characteristics that affect design decisions usually
concern with the inherent tradeoff between performance and
security, when a system scales to higher-load usage scenarios.
In these cases, we expect the system to retain the same
quality of service in terms of performance, while having
to face increased computation/communication load due to
the cryptographic protocols and authorization requirements
that assure adequate security. Moreover, we also expect the
system to exhibit high availability (i.e. tolerating faults) and
to transparently scale through automated load balancing [2].

Crowdsensing systems depend strongly on how to address
the aforementioned challenges, due to the primary concern
of success, which is their capacity to support large-scale
sensing with mobile devices and humans in the loop [3]. The
ultimate purpose of a crowdsensing system is the provision of
intelligent services through aggregating and processing user-
provided sensor data in the cloud. Today, there are numerous
crowdsensing applications based on various mobile devices
(smartphones, portable navigation and wearables) and various
forms of human participation, including mobile social net-
working. In the context of this paper, we focus on a vehicular
crowdsensing navigation system, as a use case scenario to
motivate and evaluate our proposal for a scalable crowdsensing
system architecture.

This is not the first research work focusing on the architec-
ture of crowdsesning systems. In [4], the authors emphasize on
distinguishing the centralized cloud-based architectures from
the so-called edge computing architectures, which aim to
provide massive-scale crowdsensing IoT services that would
not be feasible before the advent of 5G networks. The
edge computing architecture introduces an additional layer of

computation between mobile devices and cloud services that
is responsible for data filtering, aggregation, processing and
storage. In effect, such a design enables third parties to run
their services and applications at the edge of mobile networks.
Such an architecture is presented in [5], where a publish-
subscribe middleware for mobile crowdsesnsing is introduced
that enables management of mobile sensor resources within the
cloud and supports filtering and aggregation of sensor data on
mobile devices prior to its transmission to the cloud. Based
on experimental evaluation, the authors show that their system
exhibits scalable processing performance, both on mobile
devices and within the cloud. In [6], the authors present a
platform for on-demand energy-aware sensing and server-side
storage of different types of data. Finally, in [7] the authors
propose a mobile crowdsensing approach based on mobile data
stream mining, which reduces the amount of data sent and
the energy consumption of mobile devices, while providing
an acceptable level of sensing accuracy (i.e. comparable with
other models of intermittent/continuous sensing).

However, none of the mentioned related works has focused
on the scalability issues of crowdsensing systems, due to the
tradeoff between performance and security and the vital re-
quirements of transparent load-balancing and high availability.
Security mainly refers to the problems of user/device access
control and authorisation of interaction rights [8], which are
inevitably application-dependent and we therefore treat them
at the system architecture level. Maintaining authorisation
information in thousands of mobile devices is simply not
feasible [9], and therefore we assume the existence of an au-
thorisation service together with a series of additional security
properties for the interactions with the authorisation server:
mutual authentication, confidentiality and integrity of the cre-
dentials for the mobile devices [10]. Moreover, a lighweight
security protocol should guarantee the mutual authentication,
confidentiality and integrity of publish-subscribe interactions
in the crowdsensing system. We therefore introduce a de-
centralised security architecture and evaluate its scalability
prospects in the context of applying high availability and
transparent load-balancing for crowdsensing systems.

The rest of the article is structured as follows. The next
section discusses the related work. Section III introduces the
proposed publish-subscribe system architecture to specifically
address the design challenges in crowdsensing systems. Sec-
tion IV presents the security architecture. Section V discusses
how the proposed system architecture was implemented in
the context of our traffic/navigation crowdsensing scenario.
Finally, Section VI evaluates the use case system performance
for increasing user-interaction loads and the paper concludes
with a summary on its contributions and a discussion on future
research prospects.

II. RELATED WORK

In [11]-[13] and [14] the authors review different types of mo-
bile crowdsourcing applications and discuss the key challenges
related to the problem of task allocation, i.e. how to allocate
a set of outsourced tasks to a set of mobile users. Mobile

crowdsourcing is clearly a different field of applications from
the crowdsensing systems, on which we focus in this article.

In [15], the authors review and explore the wide range of
crowdsensing applications based on smartphones for capturing
and sharing the sensed data between many nodes. Moreover,
the challenges related to the data collection methodologies and
task management are also discussed.

Regarding the security aspect, [16] refers to related prob-
lems faced in mobile social networks, while [17] is focused
on a particular architecture used for fog-assisted vehicular
crowdsensing. In [18] and [19], the authors introduce novel
solutions for access control and authentication specifically for
IoT architectures, but none of the mentioned articles addresses
the scalability problem, which is essential for applying the
security measures, while retaining adequate real-time perfor-
mance in higher-load usage scenarios.

ITI. PUBLISH-SUBSCRIBE ARCHITECTURE FOR
CROWDSENSING

The MQTT (Message Queuing Telemetry Transport) protocol
is designed for telemetry data exchange in real-time, using the
publish-subscribe messaging pattern that is shown in Figure
1. This pattern has no solid client roles. Clients can take the
role of either a publisher or a subscriber, i.e. they can either
share some information or request (subscribe) to receive all
information concerning a specific topic. The Broker is the
equivalent of the server in the traditional messaging termi-
nology. It is responsible to handle the client subscriptions and
then distributing the published information to them. Topics,
in the publish-subscribe interaction model, are strings that
Brokers use in order to filter messages and send them to
the corresponding subscribers. They consist of levels, starting
with more general terms and then referring to more specific
ones. Topic hierarchies are designed based on the interaction
requirements between users and devices of an IoT application
and its specific security constraints.

iot_gateway Client 1
Topic A - PUB > » Topic A - SUB
Topic B - SUB € » Topic B - SUB
Topic C - SUB €

Broker
Client 2 Client 3
Topic A-SUB € » Topic A - SUB
Topic B - PUB > < Topic C - PUB
Topic C - SUB [«
Fig. 1: Publish-subscribe messaging pattern

MQTT is widely used in IoT systems, due to its scal-
ability prospects and its capability to provide differentiated

quality of service (QoS) levels according to the application’s
interaction requirements. All Broker services are triggered
through system events and can be parallelized transparently.
Moreover, Brokers can take advantage of cache memory to
store and distribute messages to the clients. The overall system
architecture and the complete topic hierarchy is transparent to
the clients and therefore it does not affect their communication
complexity, while at the same it hides vital architectural details
of the system’s security.

The Broker services can be scaled by using multiple Brokers
for load balancing [20], which requires the adoption of appro-
priate techniques/algorithms in the system architecture [21].
Depending on the particular requirements of a crowdsensing
system, the load balancing algorithm may or may not distribute
multiple TCP connection instances from the same IP addresses
to a single Broker. Also, the system’s performance may be
affected by whether the load-balancing algorithm reads/uses
or ignores the message payload, which may be required by
the applied security constraints.

In terms of security, Brokers provide basic configuration
options to control the access rights of clients to the topics
based on Access Control Lists (ACLs). Publish-subscribe
message communications can be authenticated and encrypted
using the TLS (Transport Layer Security) protocol, in order
to protect their confidentiality/integrity. However, special care
should be paid towards using a comparatively light-weight
TLS implementation (e.g. based on Elliptic Curve Cryptogra-
phy (ECC) [22] instead of the classical RSA), in order to avoid
any scalability limitations due to the extra overhead implied
by the underlying encryption algorithm. The described security
options effectively result in a centralized security architecture
with important scalability limitations, as they are explained
in [10].

An IoT Gateway (Figure 1) enables the integration of third-
party systems into the overall system architecture. To allow
connection with an external system, the IoT Gateway is a
subscriber to the updates of a broker. At the same time, the
gateway forwards messages to the topic subscribers either
directly or via external systems. Finally, the gateway also acts
as a protocol converter, i.e. it converts data from a protocol-
specific format to/from another format.

IV. SECURITY ARCHITECTURE FOR CROWDSENSING

We describe henceforward the mechanisms used to address the
crowdsensing security requirements mentioned in Section I,
within the context of a publish-subscribe system architecture.

In a publish-subscribe IoT system, sensing and actuation
should be controlled by device authentication and authorisation
credentials. A device-centric solution cannot scale to address
the needs of a crowdsensing scenario with thousands of mobile
devices [9]. Our security architecture adopts a decentralized
access control model, where authentication and authorisation
services are provided to the Broker(s) by an Authorisation
database server and all communications with this server take
place through secure channels. Figure 2 describes the steps for
a device to establish a connection to the Broker:

1) The device sends its authentication credentials to the
Broker.

2) The Broker transmits the credentials to the Authorisation
Database.

3) The Authorisation Database responds whether the device
is authenticated or not.

4) The Broker sends a confirmation to the device that it
has been authenticated for using the Broker’s services.

5) The device now can send publish/subscribe messages to
the Broker.

Authorization response

Database e
Authentication

Request pub/sub

Client

Fig. 2: Authentication Mechanism

In this way, only the authenticated clients can access the
Broker, while there is no need for configuring the Broker for
each authenticated client, as would be the case in a centralised
security architecture. Data sharing through publish/subscribe
messages is restricted by ACLs for authenticated clients to
the Broker-maintained topics. Thus, only authorised clients
can read (subscribe) from and write (publish) to a topic and
with respect to this we distinguish two main types of client
interactions: the crowdsensing devices and the back-end cloud
subsystem (with the mediation of an IoT gateway), which
is used to process the crowdsourced data. In order to grant
read/write access rights to all interacting clients, we rely on a
role-based access control (RBAC) approach.

Figure 3 depicts the procedure according to which the
Broker checks a topic’s ACL for validating a client’s rights
to the topic.

Every single IoT gateway maintains information for the
topic hierarchies, where new updates are written/published,
as well as read/subscribed to/by the clients (including the
gateway). This information is used to initialize the ACLs for
these topics. In essence, the IoT gateway and the external
Authorisation database provide all information needed to grant
rights that control how to subscribe/publish to the topics,
according to our RBAC scheme.

In the context of our decentralised security architecture, the
requirements introduced in Section I are further refined [10]
as follows. We guarantee confidentiality and integrity of client
credentials through secure communication for the steps 1-5
of Figures 2 and 3, as well as mutual authentication with the
Broker and the Authorisation Database based on a light-weight

Authorisation
Database

pub/sub topic

Fig. 3: Access Control List Mechanism

cryptographic mechanism. Finally, all publish/subscribe mes-
sages are also protected against possible confidentiality and
integrity threats.

To ensure confidentiality and data integrity of client-to-
Broker messages, we propose using the Transport Layer
Security (TLS) cryptographic protocol with 1-way TLS con-
nections, i.e. connections accepted by the Broker from any
client based on public key cryptography. The load-balancing
mechanism should be configured to work in the TLS pass-
through mode, where the traffic is not decrypted, but it is
simply routed through a TCP tunnel between the client and
the Broker so as to let them negotiate and handle the TLS
session. Public key cryptography is implemented by utilizing
digital signatures based on the Elliptic Curve Digital Signature
Algorithm (ECDSA) that uses ECC. A key length of 384 bits
is more adequate for low-end devices, since we found that it
requires relatively small key sizes and operand lengths.

The external Authorisation Database is implemented us-
ing the auth plugin option of the Mosquitto broker [23].
This allows using an external system for authentication and
access control, towards applying custom username/password
mechanisms and access control policies. Communication with
the Authorisation Database takes place through a 2-way TLS
connection, which allows to mutually authenticate the two
parties given that a certificate has been previously issued for
both of them.

V. CROWDSENSING USE CASE

The architecture described in previous sections was imple-
mented in a traffic/navigation crowdsensing system that aims
to the collection, analysis and distribution of traffic data,
in order to enhance GPS navigation with real-time updates
and optimal vehicle routing. The Navigation mobile app im-
plements common GPS navigation functions, while enabling
users to share crowdsensing data (e.g. speed, direction) that are
used to infer information at real-time, for the driving context in
their current location. This data is processed combined with
additional information from other sources, e.g. the weather
conditions in a given area, in order to compute optimal routes
to the destination of the crowdsensing vehicles.

The system architecture is based on the MQTT protocol for
the communication between the Navigation app clients and the
backend cloud system. Specifically, we used an open source
implementation of the MQTT broker services, the well-known
Eclipse Mosquitto broker [23]. Furthermore, we also used
the HAProxy open source software service [24] that offers
a multitude of load-balancing algorithms for distributing a
message load among a series of servers (Mosquitto brokers).
Our aim was to achieve higher levels of availability and trans-
parent load-balancing of increasing numbers of simultaneous
Navigation app connections assumed to generate publish-
subscribe messages in various levels of frequencies. Fault
tolerance was implemented using the Keepalived [25] open
source service, which performs continuous health checking
between the primary and a backup HAProxy service, thus
ensuring that the whole system survives single service failures.
Upon completing the recovery of a previously failed HAProxy,
the same instance takes on again the primary role for servicing
incoming MQTT messages. The whole system architecture
is shown in Figure 4, where the Authorisation Database is
also depicted, which is part of the security architecture, as
well as part of the backend data processing engine (Apache
Flink for distributed processing of data streams). We omit the
details of the rest of the backend system, which do not directly
affect the security and scalability issues of our crowdsensing
architecture. Finally, an emailing notification mechanism (the
POSTFIX service [26]) was also configured, to alert the system
administrator for critical events that potentially require him/her
to handle.

The HAProxy service receives messages and then filters and
forwards them to a broker, while balancing the message load
according to the applied algorithm. Our system architecture
was configured to work using the so-called source algorithm,
which is based on a hash function that generates hash codes
from the clients IP addresses. Our load-balancing approach
was motivated by the need to include support for unicast
communication through MQTT. Thus, for each Navigation app
client the broker handling its connection will be identified
through the hash code, i.e., every Navigation app client is
always connected to the system using a single broker and
just in case of a broker failure or system reconfiguration, the
connection is handled by another broker. In case of a system
reconfiguration (e.g. when adding extra broker), the load
balancing algorithm updates automatically the weights used by
the hash function, such that the load is transparently distributed
to all available brokers, without any code modification.

Health-checks based on the KeepAlived service take place
periodically (every 2 seconds) with negligible communication
costs that cannot affect the overall system’s performance. Upon
a detected failure of the primary HAProxy, KeepAlived notifies
the back-up HAProxy, which is pre-configured exactly as
its twin HAProxy service and ready to take on the primary
role. In overall, an HAProxy instance may be in one of the
following distinct modes: primary, backup and faulty. Through
the POSTFIX service, the system administrator is notified for
each mode change.

‘ *subscrlbe

publlsh publlsh

[HAProxy Primary}(—'iﬁggz

| Load balancing policy (source) |

Keepalived service

HAProxy Backup}

vy
\)
Mosquitto Mosquitto | | Mosquitto |_
broker 1 broker 2 broker Backup
—— AN /
A A A
\ 4 Y \ 4
R N N
Gateway Gateway Gateway
\ J \\ J
A \ ¢
Y A

/ Back-end infrastructure \

BN RS

Authorisation
Database

L e

Fig. 4: Traffic/navigation crowdsensing communication sub-
system architecture

In the cluster of available MQTT brokers, we employ
at least one backup instance (cf. Figure 4), which may be
activated upon a detected error to any of the active brokers.
The primary HAProxy is responsible for the broker status
check and the decision to activate the backup broker(s) when
needed.

At the security architecture level, our system was based on
the Let’s Encrypt Certificate Authority [27], which is a free
and open authority that supports our security requirements,
i.e. it provides certificates using the ECDSA algorithm with
the secp384rl elliptic curve and a 384-bit key length. The
Authorisation Database was connected to the Mosquitto broker
using the open-source mosquitto-auth plugin [28], which sup-
ports username/password based authentication and authorisa-

tion for the access-controlled topics based on an external SQL
database. We chose a synchronous multimaster replication
architecture (e.g. PostgreSQL Database), thus enabling the
provision of authentication and authorisation services over
multiple sites. Finally, the gateway functionality in our system
architecture was based on the Thingsboard IoT gateway [29],
an open source implementation that we extended with ad-
ditional functionality for the topics synchronization and the
initialization of the ACL.

In order to further explain the topics hierarchy, we first need
to elaborate on the functional details of our crowdsensing sys-
tem. For personalized delivery of location-based data updates
at real-time and in regular intervals, we would need support
for server-side identification of the road segments, on which
the Navigation app clients move. However, such a solution
would cause redundant data traffic by potentially large groups
of clients concentrated in busy urban areas.

Fig. 5: Map segmentation into tiles

Instead of this, we adopted an alternative approach that is
also used by many other navigation systems, such as Bing
Maps [30] and OpenStreetMaps [31], which is based on a
map segmentation into tiles. For a given zoom level Z, the
map is partitioned horizontally and vertically into 2% zones,
as is shown in Figure 5. Then, an index is assigned to each
zone, from 0 to 2 — 1 and the map is partitioned into distinct
tiles, each of which can be uniquely identified by its index
coordinates (%, j).

We distinguish two topic hierarchies used to route messages
with respect to the communication direction. Moreover, ac-
cording to the structure of the topic hierarchies, each Naviga-
tion app client can easily subscribe to one or more neighboring
tiles simply by specifying the respective indexes (Figure 6).
The categories of messages are the following:

o Navigation app to back-end messages. The app clients
send a JSON message including the user’s location, the
tile’s information and crowdsensing data (vehicle’s speed,
road segment, direction etc.), as well as road events such
as traffic incidents.

Backend
infrastructure

pub event

events
azard

tile's
topics

weather
events
hazards

notified
notified
[
Y notified pub event
X notified
Tile x,y
Tile i,j

Map

Fig. 6: Tile-based topics hierarchy

o Back-end to Navigation app messages. The back-end
broadcasts events that have happened in a given tile
or traffic-load estimations, by publishing the respective
data to dedicated topics. All users that are currently
moving to this specific tile - therefore subscribed to the
corresponding topic - are then notified.

Further security protection is provided against Navigation
app users trying to abuse the two topic hierarchies, through
the pattern option, which adds a 256-bit (32-byte) hash value
to the topic string that is given as the result of the SHA256
cryptographic hash function.

Our crowdsensing system supports multitenancy, i.e. the
system can simultaneaously serve multiple tenants and each
tenant represents a different group of users (Navigation app
clients for taxi companies, public transport operators etc) with
specific priviliges to publish and subscribe to the available top-
ics. Authorisation management is based on RBAC combined
with the access control for the topics hierarchy, thus grouping
the management of large numbers of Navigation client access
rights into well-defined groups.

VI. SCALABILITY AND PERFORMANCE EVALUATION

Our crowdsensing system architecture was evaluated with
respect to its performance and scalability potential in a labo-
ratory environment where the HAProxy and Broker services
were installed in a workstation with the following hardware
specification:

TABLE I: Machine specs

RAM OS
16 GB | 64-bit Ubuntu

Processor Cores
Intel Core 17-3770K, 3.50GHz 8

Two sets of experiments took place, with each of them
having been implemented using a script for generating MQTT

1 Broker : Simulataneous MQTT Connections

Connected Clients : 5000
0 5
0
0

n
S

Latency [s]

o

@
S

10 15

Connected Clients : 10000
5 10 15

Connected Clients : 15000

Latency [s]

o

Latency [s]
5]
3

o

5 10 15
Connected Clients : 20000

-

5 10 15
Time [s]

~
S
S

Latency [s]

o
o

2 Broker : Simulataneous MQTT Connections

Connected Clients : 5000

10 15

Connected Clients : 10000
5 10 15

Connected Clients : 15000

5 10 15

Connected Clients : 20000

VAN

5 10 15
Time [s]

@

Latency [s]

=)

N
S

Latency [s]
)

@
<}

o
=]

Latency [s]

o

Latency [s]
o

. 7: Experiments with simultaneous MQTT connections.

3|
4a

app clients that connect to the infrastructure with appropriate
credentials; connected app clients continuously sent messages
of 60 Kbytes, with an average of 30 messages per minute
for each app client. The first set of experiments concerns
with the worst case scenario of simultaneous connection of
multiple app clients to the infrastructure, while the second
was implemented to simulate the connection of MQTT app

1 Broker : MQTT Connections with Poisson distribution (A=10)

Connected Clients : 10000

0 10 20 30
Connected Clients : 15000

: SN

0 10 20 30
Connected Clients : 20000

Latency [s]
N
]

)

@
3
3

Latency [s]

)

Time [s]

2 Broker : MQTT Connections with Poisson distribution (A=10)

Connected Clients : 10000
u_‘m . TS WP A | NV
0

10 20 30
Connected Clients : 15000

0 10 20 30

)
G

Latency [s]

I
°

o
=

Latency [s]
o
R

Connected Clients : 20000

@04

3

502 l

3 |- TTOURITIURI ™ O T
0

10 20 30
Time [s]

Fig. 8: Experiments with MQTT connections based on Poisson distribution (A=10).

clients within a certain period of time. The two experiments
took place for four different levels with respect to the number
of app clients that were increased by a step of 5000 app clients
from 5000 to 20000 MQTT app clients. The overall load
corresponds to a throughput of 140,000 - 560,000 K messages
per minute.

The metric used to validate the smooth operation of our
infrastructure for managing real-time data is the observed
latency in message communication. The latency is measured
from the moment an MQTT app client publishes a message
to a topic until the time a subscriber receives it. For a
realistic measurement approach, the subscribers network has
been implemented based on 3G network metrics [32], which
results in different performance, when compared to an ideal
cloud network.

The process of an MQTT app client connection is completed
when the credentials are successfully sent to the respective bro-
ker and it is confirmed that this client is identifiable according
to the response of the Authorization Database (authentication
part). By sending a publishing message, the MQTT app client
declares the topic he wants to send the message, while the
broker checks through the Authorization Database, if the
client has the rights to write or in case of subscriber to read
from the requested topic (authorization part). In any case, the
(non-)authorisation of the MQTT app client for each topic is
stored in the Broker cache for the next five minutes, so that
any mutual request will not be resent at the Authorization
Database.

The time constraint of the mosquitto cache memory for
the authorization part, results in many more requests being
made to the Authorization Database, than if there would be
only one at the beginning of the connection (basic option
of mosquitto broker). This means that in case of multiple
users, if these requests are synchronized at a certain period,
there will be an extra delay, since the requests are queued
and will have to wait for approval by the Authorization
Database. Our experiments examine this specific behavior,
while the infrastructure with the load-balancing techniques
tries to eliminate it at an acceptable level for our use case
scenarios.

The results for the first set of experiments (Figure 7) show

the latency of an MQTT app client that connects to the
infrastructure, when the number of clients in each case connect
simultaneously. The case of simultaneous MQTT app client
connection causes simultaneous requests to the Authorization
Database, which justifies the first shown peak values in each
case. Accordingly, each subsequent peak in latency takes place
when the cache time limit of the mosquitto broker expires,
with the Authorization Database being bombed with requests
causing a service delay for each MQTT app client. We observe
that the transition to our load-balancing solution results in a
significant reduction in the latencies, which means that the
delay is due to the mosquitto broker and the management of
requests to the Authorization Database.

The second set of experiments refers to the gradual con-
nection of MQTT app clients to the infrastructure following a
Poisson distribution with A=10 over a period of 24 minutes. As
shown in Figure 8, the latency remains at satisfactory levels up
to the value of 10,000 MQTT app clients (280 K messages/per
minute) per broker, while from then latencies are constantly
increased. When using our load-balancing solution, without
any other change in the infrastructure, the communication of
20,000 MQTT app clients (560 K messages/per minute) was
successfully achieved with the values of latency remaining at
acceptable levels.

In overall, the shown experiments indicate that (i) the
number of additional messages communicated by our system
architecture (including the Authorisation database) is neg-
ligible and (ii) the latency remains acceptable in multiple
brokers scenarios using our load-balancing solution (Figure 8),
while allowing us to retain the same performance and security
levels, for significantly higher numbers of connections. Finally,
due to our backup HAProxy and broker services and the
configured recovery procedures, we also offer a higher level
of availability, for the crowdsensing application.

VII. CONCLUSIONS

We presented a decentralised security architecture for
crowdsensing systems, as an alternative to a straightforward
device-centric architecture. The proposed solution is based
on an authorisation service (all communications with it take
place through secure channels) capable to support user/device

access control of multiple tenants, in the context of a publish-
subscribe system architecture that can scale with respect to
increasing numbers of crowdsensing devices, while retaining
the performance and security levels.

The main motivation behind our design was to devise an
approach in order to effectively manage the inherent tradeoff
between security and real-time performance, when a system
scales to higher-load usage scenarios. Our solution was im-
plemented in a vehicular crowdsensing navigation system that
allows to exchange navigation information at real-time, for
improved routing of vehicles to their destination. The shown
experimental results confirm that our load-balancing approach
allows to easily distribute the message load in high-load usage
scenarios, while offering a sufficient level of availability.

Our future work plans mainly focus on further developing
access control schemes that utilize the integrated role-based
mechanism with the publish-subscribe authorisation system
towards addressing security requirements of diverse crowd-
sensing application scenarios.

REFERENCES

[11 G. GardaSevi¢, M. Veleti¢, N. Maleti¢, D. Vasiljevi¢, 1. Radusinovic,
S. Tomovi¢, and M. Radonji¢, “The iot architectural framework, design
issues and application domains,” Wireless Personal Communications,
vol. 92, no. 1, pp. 127-148, Jan 2017.

[2] H. Guo, J. Ren, D. Zhang, Y. Zhang, and J. Hu, “A scalable and
manageable iot architecture based on transparent computing,” Journal
of Parallel and Distributed Computing, vol. 118, pp. 5 — 13, 2018.

[3] B. Guo, C. Chen, D. Zhang, Z. Yu, and A. Chin, “Mobile crowd sensing
and computing: when participatory sensing meets participatory social
media,” IEEE Communications Magazine, vol. 54, no. 2, pp. 131-137,
February 2016.

[4] M. Marjanovi¢, A. Antonié, and 1. P. Zarko, “Edge computing architec-
ture for mobile crowdsensing,” IEEE Access, vol. 6, pp. 10662—10 674,
2018.

[51 A. Antoni¢, M. Marjanovié¢, K. Pripuzi¢, and I. P. Zarko, “A mo-
bile crowd sensing ecosystem enabled by cupus: Cloud-based pub-
lish/subscribe middleware for the internet of things,” Future Generation
Computer Systems, vol. 56, pp. 607 — 622, 2016.

[6] R. Ben Messaoud, Z. Rejiba, and Y. Ghamri-Doudane, “An energy-

aware end-to-end crowdsensing platform: Sensarena,” in 2016 13th IEEE

Annual Consumer Communications Networking Conference (CCNC),

Jan 2016, pp. 284-285.

W. Sherchan, P. P. Jayaraman, S. Krishnaswamy, A. Zaslavsky, S. Loke,

and A. Sinha, “Using on-the-move mining for mobile crowdsensing,” in

2012 IEEE 13th International Conference on Mobile Data Management,

July 2012, pp. 115-124.

[8] S. Ravidas, A. Lekidis, F. Paci, and N. Zannone, “Access control

in internet-of-things: A survey,” Journal of Network and Computer

Applications, vol. 144, pp. 79 — 101, 2019.

W. Feng, Z. Yan, H. Zhang, K. Zeng, Y. Xiao, and Y. T. Hou, “A survey

on security, privacy, and trust in mobile crowdsourcing,” IEEE Internet

of Things Journal, vol. 5, no. 4, pp. 2971-2992, Aug 2018.

V. Beltran and A. F. Skarmeta, “Overview of device access control in

the iot and its challenges,” IEEE Communications Magazine, vol. 57,

no. 1, pp. 154-160, January 2019.

J. Ren, Y. Zhang, K. Zhang, and X. Shen, “Exploiting mobile crowd-

sourcing for pervasive cloud services: challenges and solutions,” IEEE

Communications Magazine, vol. 53, no. 3, pp. 98-105, March 2015.

L. Shu, Y. Chen, Z. Huo, N. Bergmann, and L. Wang, “When mobile

crowd sensing meets traditional industry,” IEEE Access, vol. 5, pp.

15300-15307, 2017.

Y. Wang, X. Jia, Q. Jin, and J. Ma, “Mobile crowdsourcing: framework,

challenges, and solutions,” Concurrency and Computation: Practice and

Experience, vol. 29, no. 3, p. e3789, 2017.

[7

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]
[26]
[27]
(28]
[29]
(30]
[31]

[32]

X. Kong, X. Liu, B. Jedari, M. Li, L. Wan, and F. Xia, “Mobile
crowdsourcing in smart cities: Technologies, applications, and future
challenges,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8095—
8113, Oct 2019.

K. Abualsaud, T. M. Elfouly, T. Khattab, E. Yaacoub, L. S. Ismail,
M. H. Ahmed, and M. Guizani, “A survey on mobile crowd-sensing
and its applications in the iot era,” IEEE Access, vol. 7, pp. 3855-3881,
2019.

K. Zhang, “Security and privacy for mobile social networks,” 2016.
[Online]. Available: http://hdl.handle.net/10012/10418

S. Basudan, “Secure and privacy-preserving fog-
assisted vehicular crowdsensing,” 2018. [Online]. Available:
http://hdl.handle.net/10155/962

N. Fotiou, T. Kotsonis, G. F. Marias, and G. C. Polyzos, “Access control
for the internet of things,” in 2016 International Workshop on Secure
Internet of Things (SIoT), Sep. 2016, pp. 29-38.

N. Fotiou and G. C. Polyzos, “Authentication and authorization for inter-
operable iot architectures,” in Emerging Technologies for Authorization
and Authentication, A. Saracino and P. Mori, Eds. Cham: Springer
International Publishing, 2018, pp. 3-16.

P. Jutadhamakorn, T. Pillavas, V. Visoottiviseth, R. Takano, J. Haga,
and D. Kobayashi, “A scalable and low-cost mqtt broker clustering sys-
tem,” in 2017 2nd International Conference on Information Technology
(INCIT), Nov 2017, pp. 1-5.

A. B. Prasetijo, E. D. Widianto, and E. T. Hidayatullah, “Performance
comparisons of web server load balancing algorithms on haproxy
and heartbeat,” in 2016 3rd International Conference on Information
Technology, Computer, and Electrical Engineering (ICITACEE), Oct
2016, pp. 393-396.

D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ecdsa),” International Journal of Information Se-
curity, vol. 1, no. 1, pp. 36-63, Aug 2001.

“Eclipse mosquitto.” [Online]. Available: https://mosquitto.org/

D. Corbett, S. Caus, and W. Tarreau, “The world’s fastest and
most widely used software load balancer” [Online]. Available:
https://www.haproxy.com/

“Keepalived for linux.” [Online]. Available: https://www.keepalived.org/
“The postfix home page.” [Online]. Available: http://www.postfix.org/
“Free ssl/tls certificates.” [Online]. Available: https://letsencrypt.org/
Jpmens, “Authentication plugin for mosquitto with multiple
back-ends “mosquitto-auth-plug”,” Mar 2019. [Online]. Available:
https://github.com/jpmens/mosquitto-auth-plug

“Thingsboard iot gateway.” [Online]. Available: https://thingsboard.
io/docs/iot-gateway/what-is-iot-gateway/

“Bing maps tile system.” [Online]. Available: https://docs.
microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system
“Quadtiles” [Online]. Available: https://wiki.openstreetmap.org/
wiki/QuadTiles

C. Serrano, B. Garriga, J. Velasco, J. Urbano, S. Tenorio, and M. Sierra,
“Latency in broad-band mobile networks,” in VI'C Spring 2009 - IEEE
69th Vehicular Technology Conference, 2009, pp. 1-7.

