
Rigorous analysis of service composability by embedding WS-BPEL into the BIP
component framework

Emmanouela Stachtiari, Anakreon Mentis, Panagiotis Katsaros
Department of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece

{emmastac,anakreon,katsaros}@csd.auth.gr

Abstract—Behavioral correctness of service compositions
refers to the absence of service interaction flaws, so that
essential service properties like deadlock freedom are preserved
and correctness properties related to safety and liveness are
assured. Model checking is a widespread technique and it
is based on extracting an abstract model representation of
the program defining a service orchestration or choreography.
During model extraction, the original structure of the service
composition cannot be preserved and backwards traceability of
the verification findings is not possible. We propose a rigorous
analysis within the BIP component framework. Being rigorous
means that the analyst is able to reason on which properties
hold and why. The BIP language offers a sound execution
semantics for a minimal set of primitives and constructs for
modeling and composing layered components. We formally
define the WS-BPEL 2.0 execution semantics and we provide a
structure-preserving translation (embedding) of WS-BPEL to
BIP. Structure preservation is feasible, due to the formally
grounded expressiveness properties of BIP. As a proof of
concept, we apply the developed embedding to a sample BPEL
program and present the analysis results for a safety property.
By exploiting the BIP model structure we interpret the analysis
findings in terms of the service interactions stated in the BPEL
source code. A significant benefit of BIP is that it applies
compositional reasoning on the model structure to guarantee
essential correctness properties and avoid, as much as possible,
the scalability limitations of conventional model checking.

Keywords-service composition; WS-BPEL; formal analysis

I. INTRODUCTION

One of the key promises of Service Oriented Computing
(SOC) is the delivery of services as composable software
units amenable to integration in a multitude of applications
and composite services. However, building composite ap-
plications is still a challenge if we consider the various
functional and non-functional correctness properties that
services should offer and the compatibility issues that arise.

Most efforts to address this problem focus on the compat-
ibility of service descriptions and their semantic interoper-
ability [2]. Although compatibility of services at this level is
necessary, it is not sufficient for combining them in a correct
composition. Adequate technical approaches are needed to
reveal behavioral incompatibilities, i.e. flaws in service inter-
actions that cause unexpected service behavior. Correctness
depends on several concerns, including the choice between

synchronous and asynchronous interaction, atomicity, con-
currency and so on. Languages for service orchestrations
and service choreographies provide high-level primitives and
constructs to efficiently define complex service interactions.
However, they lack support for guaranteeing behavioral
correctness, which is related to safety and liveness goals
for the composite service.

Numerous works try to address this problem with ver-
ification by model checking [4]. These approaches work
on an abstract model representation extracted from the
service composition program. The lack of standardized and
formally-defined execution semantics for the used composi-
tion languages can lead to debatable analysis results, as a
consequence of implicit and possibly divergent assumptions
during the model extraction (numerous differences between
various WS-BPEL implementations are reported in [12]).
Moreover, the structure of the service composition in the
program source is lost and backwards traceability of the
verification findings is not possible. This happens because
formalisms based on automata, petri-nets or process algebras
lack a sufficiently expressive set of composition primitives,
appropriate for a model representation that preserves the
service composition structure.

We propose a rigorous approach for the analysis and
design of service compositions based on the BIP (Behavior,
Interaction, Priority) component modeling framework [3]. In
the core of the BIP framework lies a powerful executable
modeling language with formally defined operational seman-
tics and mathematically proven expressiveness properties
[6]. In BIP, systems are modeled by superposing three
distinct layers. The lower layer (behavior) consists of a set of
atomic components representing transition systems. Interac-
tions between components are specified by connectors in the
middle layer. Each connector is defined as a relation between
ports equipped with synchronization types. The highest layer
(priorities) is used to enforce scheduling policies applied to
interactions.

Our approach elaborates on recent trends in the field
of language technology [11], [10] to introduce a structure-
preserving translation, for embedding WS-BPEL 2.0 service
compositions into BIP. The embedding is defined as a struc-

tural representation of the BPEL primitives and constructs, in
terms of the BIP language elements. The translation involves
an explicit definition of the BPEL execution semantics in
the BIP semantic model. For this purpose, we are based
on the WS-BPEL standard [1] and other related works [8],
[16], [14]. In effect, two shortcomings of conventional model
checking are addressed: structure preservation and explicit
composition execution semantics. As a proof of concept for
the effectiveness of the proposed technique, we present a
sample BPEL program with an expected safety property and
we provide the analysis results obtained with the BIP tools.

The rest of the paper is organized as follows. Section II
summarizes the WS-BPEL abstract syntax and execution
semantics. Section III introduces the BIP language and
analysis framework that provides novel verification tech-
niques, which avoid the problem of state space explosion.
In section IV, we present the structural representation of
BPEL processes in BIP. Section V highlights our structure-
preserving embedding of WS-BPEL into BIP and section VI
reports the analysis results for a BPEL application. Sec-
tion VII considers related work and section VIII exposes
the lessons learned. The paper concludes with summarizing
remarks and future research directions.

II. BPEL ABSTRACT SYNTAX AND EXECUTION
SEMANTICS

BPEL processes are stateful, loosely coupled interactions
of web services that exchange information via messages.
The only restriction imposed on these interactions is that the
structure of the exchanged information (e.g message field
names and types) must adhere to a provided specification
that conforms to the WSDL schema [7]. Figure 1 outlines
the syntax of BPEL. A process is defined by the topmost
scope, which contains variable declarations (var) for storing
the process state. Other declarations include partner links
(plink) for defining service connections, correlation sets
(corrset) for selecting the message receiver activity and
message exchange rules (msge) for disambiguation of replies
to pending requests.

Incoming events are processed by event handlers (evhndlr)
declared in a scope. The channel characteristics of the
received message, such as the partner link (IDpl) used for
transmission, the operation (IDop) responsible for message
processing and the correlation set (IDcs) acknowledged
by the event handler, determine which of the available
handlers receives the message. Due to the asynchronous
communication model of web services, there is no guarantee
that a message is received on time. Timeout conditions
(Edate, Eduration) for waiting a message are defined with
onAlarm rules and an associated activity is started when the
timer fires.

In a dialog between web services, it is often the case that
a participant in a conversation either expects to receive a
specific message (receive) or needs to reply to a previously

〈process〉 ::= 〈scope〉
〈scope〉 ::= ID ’isolated’? 〈decl〉* 〈evhndlr〉* 〈fcts〉 〈act〉
〈decl〉 ::= 〈var〉 | 〈plink〉 | 〈corrset〉 | 〈msge〉
〈evhndlr〉 ::= (’onEvent’ 〈channel〉 IDvar

| ’onAlarm’ timeExpr) 〈scope〉
〈channel〉 ::= IDpl IDop IDcs

〈timeExpr〉 ::= (Edate | Eduration) Eduration?
〈fcts〉 ::= (IDfault? 〈act〉)+ 〈act〉 〈act〉
〈link〉 ::= (IDlink+ Ebool)? (IDlink Ebool)*
〈links〉 ::= ID+
〈from〉 ::= literal | IDpl uri | 〈from to〉
〈to〉 ::= IDpl | 〈from to〉
〈from to〉 ::= IDvar part? | xpath
〈act〉 ::= 〈bact〉 〈link〉?
〈bact〉 ::= ((’receive’ | ’reply’) 〈channel〉 IDvar)

| ’invoke’ 〈channel〉 IDvar IDvar?
| ’assign’ (〈from〉 〈to〉)+
| ’wait’ (Edate | Eduration)
| ’compensateScope’ IDscope+
| 〈scope〉 | ’empty’ | ’exit’ | ’compensate’
| ’throw’ IDfault | ’rethrow’
| (’sequence’ | ’flow’ 〈links〉?) 〈act〉+
| (’while’ | ’repeatUntil’) Edate 〈act〉
| ’forEach’ Eint Eint Eint? 〈scope〉
| ’pick’ (’onMessage’ 〈channel〉 〈act〉)+ (’on-

Alarm’ 〈timeExpr〉 〈act〉)*
| ’if’ Ebool 〈act〉 (’elseif’ Ebool 〈act〉)* (’else’

〈act〉)?

Figure 1: Abstract syntax of BPEL

received one (reply). To initiate a conversation, a process
uses the invoke activity, which defines the message to be
sent and optionally the expected reply.

Normal execution of web services is on occasions in-
terrupted by faults. Handlers (fcts) for anticipated faults
are declared inside a scope and attempt to compensate
or otherwise respond to an abnormal situation. Faults are
propagated towards the root of the scope hierarchy until
an appropriate handler is found. Unhandled faults cause the
process to terminate.

Control flow structures common in many programming
languages, such as assignment (assign), sequential execu-
tion of commands (sequence), conditional execution (if,
pick), repetition (forEach, while, repeatUntil) and excep-
tions (throw, rethrow, compensate, compensateScope) are
expressed in BPEL by corresponding activities (act). Other
activities include process termination (exit), temporary pause
of execution (wait) and empty that does not performs any
computation.

Services are executed in parallel by either the forEach
or the flow activity. Identical copies of an activity’s scope
execute in parallel and optionally with concurrency guaran-
tees, when the attribute parallel of the forEach activity is
set to true. Links in a flow activity, serve the purpose of
explicit synchronization between the concurrent activities in

(ii) Flat Connectors

a b c

a b c

a b c

abc

a+abc

a+b+ab+ac
+bc+abc

Rendezvous

Broadcast

(i) Port use

synchron

trigger

(iii) Hierarchical Connectors

b ca
Rendezvous

abc

b ca
Atomic broadcast

a+abc

b ca
Causality chain

a+ab+abc

exprt

(iv) Exported port

ba

exprt is a ∪ b

Figure 2: Flat and hierarchical BIP connectors

the flow. The execution of an activity with dependency on a
link is suspended until the activity it depends on assigns a
value to the link.

Activities have access to variables declared in their en-
closing scopes. Concurrency guarantees for access on the
declared variables and partner links are provided for scopes
with isolated attribute set to yes.

III. THE BIP LANGUAGE

BIP allows hierarchical construction of compound compo-
nents from atomic ones by using connectors and priorities.
Atomic components are transition systems that consist of a
set of local variables and a set of transitions. Transitions are
defined as a relation over the control states that is labeled
by ports. Ports may be exported for the communication of
local data and the synchronization with other components.
Transitions are associated with guards. For a transition to
be executed, its guard should evaluate to true and some
interaction involving its port must be enabled.

Connectors define possibly guarded interactions on the
ports of the connected components. An interaction specifies
ports with associated transitions that must or may be enabled
together, i.e. transitions are executed synchronously. Two
possible uses of the connected ports (Figure 2i) express
strong or weak participation in interactions: synchron (must)
or trigger (may). In connectors that consist of synchrons
(rendezvous in Figure 2ii) all ports must be enabled. In
connectors with one or more triggers, at least one of them
should be enabled (e.g. broadcasts in Figure 2ii).

Connectors can export their ports for building hierarchies
of connectors (Figure 2iii). Furthermore, a port may be used
to export any subset of a union of ports (Figure 2iv). Such
a port is enabled if some port in the union is enabled 1.
Connectors can use data variables, in order to compute
transfer functions associated with interactions and to update
the ports’ data. Computations take place iteratively either
upwards (up) or downwards (down) through the connectors’

1Exporting a union of ports is a new feature introduced in BIP2.0.

hierarchy levels, but computed values are not stored between
the execution of two interactions (connectors are stateless).

Compound components are defined by assembling con-
stituent components (atomic or composite) using connectors.
Priorities are defined as rules for choosing in a pairwise
manner between simultaneously enabled interactions within
a BIP component.

A BIP source file includes type definitions for ports
and connectors and the description of the system’s model
component. Port types characterize the number and type
of data carried by the ports and connector types define
templates that are parameterized by a list of ports.

BIP has been formally proved [6] that it can encompass
directly any coordination mechanism, which means that
the coordination mechanisms of the service composition
languages can be embedded in BIP by preserving their
structure and without any combinatorial explosion in the
translation. Finally, state of the art compositional verification
techniques [5] are provided that scale linearly with respect
to the number of model components, as opposed to the ex-
ponential cost of conventional model checking approaches.

IV. STRUCTURAL REPRESENTATION OF BPEL
PROCESSES IN BIP

BPEL activities are transformed into BIP components.
Atomic components are used for non–decomposable ac-
tivities (all basic BPEL activities except assign) whereas
activities with complex structure (e.g sequence and flow) are
modeled by compound components. Moreover, we employ
atomic components to model access to shared variables and
links used for explicit activity synchronization.

Events that occur in all activity types are shown in
Figure 3. Parent activities propagate start, disable, term
and interrupt events to their children, while child activities
inform their parent about their current state through the
done, disabled, termed and fault ports. These ports constitute
the minimum interface of an activity component. Activity
specific behavior is defined by activity specific transitions
and ports that replace the arc [execute] connecting the
ready and done states. Figure 4 illustrates an assign activity

s0 s1

s2

s3

s4

start

disable

interrupt

[execute]fault
term
interrupt

done

termed

disabled

Figure 3: Behavior of non-
decomposable activities

s0 s1

s5

s2

s3

s4

start

disable

interrupt
readVar

term
interrupt

writeVar

faultUninVar [uninVar]
term

interrupt

done

termed

disabled

s0 s1

s5

s2

s3

s4

start

disable

interrupt
readVar

term
interrupt

writeVar

faultUninVar [uninVar]
term

interrupt

done

termed

disabled

readVarfaultUninVartermwriteVarwriteVartermfaultUninVarreadVar

startstart

start

assign↑ (var1,var2)faultUninVar readCopy2
(uninVar,↓
var2)

readCopy1
(uninVar,↓
var1)

COPY2
var2
uninVar

COPY1
var1

uninVar

ASSIGN

Figure 4: BIP component for an assign activity

startfaulthMA
termdisable

start faulth EH*
term disable

TH

termdisable

FH*

disable

CH

disable term

done

startfault

faulthstart

disable

SC

reversed

reversefaultComp

term

Figure 5: Schematic representation of connectors in a scope component.

component that encloses two copy components that copy
messages with one part. The copy components concurrently
read the from part through the readVar port and synchronize
on the assignment of the to part through the writeVar port.
The readCopy1 and readCopy2 ports carry the incoming data
and the variable uninVar which signals if some data was not
initialized. The assign port carries the outgoing data of the
assign component. A fault is thrown by a copy component
if the value of uninVar is true, an event that terminates the
execution of the assign component. The connectors of the
rest of the minimum interface ports are omitted in Figure 4.

A. Scope

A pictorial representation of the scope component (SC)
is shown in Figure 5. We use different line styles to
unambiguously indicate connected ports. A scope is modeled
by a compound component that contains (i) the activity of
the scope (MA) (ii) a component modeling event handlers
(EH), that reacts to received messages and timer events (iii) a
termination handler (TH) which is invoked when a fault in
some other activity is raised causing the termination of the
scope (iv) a component modeling fault handlers (FH) which

executes an activity in response to a fault raised in the scope
and (v) a compensation handler contained in the (CH) which
is invoked when a fault in some other activity is raised, if
the scope is completed . In addition, a scope contains a data
access manager (DAM) component which models access to
variables, partner links and correlation sets declared in the
scope. The constructs for TH, FH and CH are expressed
in the fcts rule of BPEL’s abstract grammar. For isolated
scopes, the DAM component models concurrent read and
write access to the variables and the partner links it manages.

Normal execution begins with an invocation of the start
port that subsequently invokes the start port of the MA and
EH components. If a fault occurs in the BPEL process,
which has been propagated to an enclosing scope, either
all constituent components are disabled (disable port) or the
term port of the scope is invoked. Upon the invocation of the
term port, either (i) the term port of MA or EH is invoked
triggering the disable port of the FH and CH components
,since exception handling is no longer needed (ii) the term
port of the TH component is invoked to terminate the
execution of its contained activity, or (iii) the term port of
the CH component is invoked. The start port of the TH

component is triggered when all constituent components of
the scope have enabled the done or termed port signaling
they have ended.

The done port signals that the MA and EH components
have completed their activity without faults or an occurred
fault has been handled by the FH component without throw-
ing another fault. The reverse port of the scope is enabled
if no faults have occurred and the done port is enabled. It
is requested by the FH, CH or TH of the enclosing scope
and it invokes the start port of the CH component. Faults
raised during compensation handling are propagated through
the faultComp port to the component which requested the
compensation.

Faults with associated fault handlers invoke the faulth
port. All components except the one which raised the fault
are either disabled or terminated. Finally, the fault handler
is started. Faults without an associated fault handler invoke
the fault port which propagates the error to the enclosing
scope. In either case, the scope is considered finished.

The exit BPEL activity abruptly terminates a BPEL pro-
cess. When such an activity in the scope is executed, the
exit port is invoked and the interrupt port of the constituent
components are also invoked, effectively terminating all
components in the scope. Abrupt termination is propagated
through the exit port to the enclosing component, eventually
reaching the root of the component hierarchy.

B. Event handlers
Scopes may contain handlers for many message types.

A different component type is declared for each available
message type. In BPEL, an event handler is instantiated for
each received message. However, the number of received
messages is known only at run-time. For state exploration
purposes it suffices to assume the minimum number of
handlers materializing all possible interactions. We model
the handler of each message type as a compound component
enclosing two instances of the same component type that are
executed in parallel.

C. Parallel execution
Flow activities coordinate the parallel execution of en-

closed activities. The BIP flow activity component contain
components corresponding to the encompassed activities and
an atomic component coordinating access to the link values
used for synchronization. An activity that conditions the
execution of other activities (i.e. link source) has an attached
atomic component that assigns a value to the associated
link, when the activity is completed. On the other hand, an
activity that is conditioned upon at least one other activity’s
execution (i.e. link target) has an attached atomic component
that initiates the activity after the link value is set.

D. Variables
In our analysis all execution paths are explored, hence the

concrete values of BPEL variables can not affect program

correctness. To identify attempts of accessing an uninitial-
ized BPEL variable, a corresponding BIP variable registers
whether the former is initialized.

E. Message exchange activities and correlation sets

Constraints for enabling a message exchange activity are
imposed by partner links, message exchange rules and corre-
lation sets. In BIP, these constraints are modeled by boolean
variables stored in the DAM component. Moreover, the BIP
representation of correlation sets determines violations of
correlation rules.

V. CODE GENERATION EMBEDDING FOR BPEL

We opt for a code generation embedding approach [10],
such that BPEL is integrated into BIP by a translator
that parses BPEL documents and the referenced WSDL
descriptions, effectively converting them into a BIP model.

Translation is achieved by a depth first traversal of the
process XML tree as shown in the algorithm of Figure 6.
A post-order visit of the children nodes produces BIP code
fragments, temporary stored in local variables. XML node
properties (e.g node name, attribute names and values)
determine the appropriate template applied for translating
the node into BIP code. Templates contain static text and
placeholders. Placeholders are replaced by node attribute
values and code fragments produced by the translation of
the descendant nodes. The implementation of the BIP model
for the BPEL process is produced by recursive composition
of the code fragments.

The execution semantics of a BPEL program is obtained
by composing the structural representations in BIP of the
individual BPEL constructs. The semantics of each con-
struct is independent of the semantics of the referenced
constructs. For example, the semantics of the flow statement
is independent of the semantics of the contained activities.
Compositionality of semantics in BIP is possible due to the
separation of behavior from the interactions.

1 text = function TRANSFORM(node)
2 vars = [] # stores BIP code fragments
3 for each child ∈ node.children
4 vars.append(TRANSFORM(child))

5 return APPLY TEMPLATE(node, vars)
6 end function

Figure 6: Transformation of XML subtrees of a BPEL
process to BIP code fragments

Figure 7 shows the template of a BIP code fragment that
models the semantics of the copy statement. It accepts two
input parameters: (i) a counter which is incremented every
time a template is applied and (ii) the multitude of message
parts affected by the copy statement. Template lines that
refer to placeholders with values derived from a collection,
are repeated for every value in the collection when the
template is evaluated. For example, line 2 of the template is

1 atomic type copy noIgnMissing fromToVar<i>(int id)
2 data int var<k>= id # for k = 1 .. parts
3 data bool uninVar
4 export port e0b0 <sp> # for sp ∈ ports of the minim. interface
5 export port e0b0 faultUninVar
6 export port readVar(
7 var<k>, # for k = 1 .. parts
8)
9 export port writeVar(

10 var<k>, # for k = 1 .. parts
11)
12 place INIT, READY, COPY, DONE, TERMED, DISABLED
13 initial to INIT
14 # .. a sample of state transitions
15 on readVar from READY to COPY
16 on faultUninVar from COPY to TERMED provided uninVar==true
17 on writeVar from COPY to DONE
18 end

Figure 7: Template for translating a copy statement with
ignoreMissingFromData set to false

appended four times when the copy operation affects four
message parts.

The template producing code for an assign activity com-
ponent is presented in Figure 8. It accepts three input
parameters: (i) a counter which is incremented every time
a template is applied (ii) a list of component types instan-
tiated for each encompassed copy statement and (iii) a list
containing the multitude of message parts affected by each
copy statement. The connector types for transferring data to
the copy component, named as RV<parts[cp]>in the assign
template, are produced by the template shown in Figure 9.
The template is parametrized by the number of message
parts accessed by the copy component.

1 compound type assign<i>
2 component <copy[cp]> C<cp> # for cp = 1 .. size(copy)
3 # ... sample connectors ...
4 connector RDV<size(copy)> start1(
5 C<cp>.start, # for cp = 1 .. size(copy)
6)
7 connector RV<parts[cp]> readCopy<cp>1(C<cp>.readVar)
8 # for cp = 1 .. size(copy)
9 connector WV<total> assign1(

10 # total is the sum of the “parts” list
11 C<cp>.writeVar, # for cp = 1 .. size(copy)
12)
13 connector RDV<size(copy)> faultUninVar1(
14 C1.faultUninVar,
15 C<cp>.term, # for cp = 2 .. size(copy)
16)
17 # ... sample of exported ports ...
18 export port readCopy<cp> is readCopy<cp>1.xpr
19 # for cp = 1 .. size(copy)
20 export port assign is assign1.xpr
21 end

Figure 8: Template of assign component

VI. APPLICATION

The application described in the BPEL specification con-
tains many of the BPEL structures and concepts and has

1 connector type RV<parts>(e<parts>b p)
2 define [p]
3 data int tmp<i> # for i = 1 .. parts
4 data bool tmp<parts + 1>
5 on p down {
6 p.msg<i>= tmp<i>; # for i = 1 .. parts + 1
7 }
8 export port e<parts>b xpr(
9 tmp<i>, # for i = 1 .. parts

10 tmp<parts>)
11 end

Figure 9: Template for a connector used for transferring data
in the copy component

a simple and comprehensible business logic. We use this
application in order to demonstrate the benefits of preserving
the structure of the BPEL interactions during the analysis of
the generated BIP model. We aim at the verification of model
properties and in case of a correctness property violation,
we should be able to trace back the location in the original
source, where the error is manifested.

The process handles purchase orders issued by clients
and spawns three concurrent execution branches that in-
volve: production of the ordered items, shipper selection
and invoice preparation. The shipment date is required for
scheduling the item production while the transportation cost
is needed for the invoice preparation. Data interdependen-
cies are explicitly expressed by links that synchronize the
execution of the three branches. The process is completed
when the invoice is sent to the client. In Figure 10i we show
the individual activities that compose the service and their
interactions. Solid lines denote control dependencies, dashed
lines show data dependencies between activities and dotted
lines show the flow of exception handling.

Let us consider the following safety property: “If the
invoice has been issued, the process must not complete
before sending the invoice to the client“. We construct
an observer automaton [15], which monitors the execution
of the process model and reports an error upon property
violation. Figure 10ii shows the process model and the
observer automaton. The invoice is issued upon completion
of the SndShippingPrice invoke activity, which triggers the
issueInvoice port of the observer and sets its current state to
wait. The observer advances to the err state if the process
is completed without having sent the invoice to the client.

The BIP state exploration tool reported a counterexample
which violates the considered property. Due to the preserved
process structure the obtained trace is mapped to the follow-
ing activity execution sequence: PurchaseOrder, InitPrice-
Calc, PrepareShipping, ReqShipping, SndShippingPrice and
finally the ReqProdSchedule activity which raised an unini-
tializedPartnerRole fault. Because the process does not have
an appropriate fault handler it is abruptly terminated, without
having sent the invoice to the client.

Receive
PurchaseOrder

Assign
PrepareShipping

Invoke
ReqShipping

Invoke
SndSchedule

Invoke
InitPriceCalc

Invoke
SndShippingPrice

Receive
RcvSchedule

Invoke
ReqProdSchedule

Invoke
SndShipSchedule

Reply
SndPurchaseOrder

Reply
CannotComplete

CannotComplete
Exception Handler

(i) Process flow

init wait

err

issueInvoice

sendInvoice

endProcess

issueInvoice

sendInvoice

endProcess

sndShippingPrice

sndPurchaseOrder

processDone

Process Observer

(ii) Interactions between the BIP model and the
observer component

Figure 10: PurchaseOrder BPEL application and analysis of a safety property

VII. RELATED WORK

We have introduced a structure-preserving embedding of
WS-BPEL into BIP based on a structural representation
of BPEL orchestrations. In order to place our proposal in
the wide spectrum of formal methods for the analysis of
service compositions, we adopt the comparison framework
of [4]. In that article, the authors review the pros and cons
of 35 published related works classified in three categories
of semantic models, namely automata or labeled transition
systems, Petri-nets and process algebras. Evaluation is based
on the provided support for the analysis of three service
composition characteristics: (i) language features guarantee-
ing the continuity of service delivery termed as connectivity
support, (ii) correctness and (iii) Quality of Service (QoS).

The authors conclude that few of the considered formal
methods address the connectivity characteristic in a satis-
factory way and they specifically emphasize that exception
handling and compensations are supported by a limited num-
ber of proposals. Only six of these works explicitly propose
a model checking approach for analyzing correctness with
respect to safety and liveness properties. Our approach can
be compared with these related works as follows: (i) BIP
offers more advanced correctness analysis techniques [5]
that avoid the scalability limitations of conventional model
checking and (ii) our language embedding for WS-BPEL
2.0 and the transformation of [9] for BPEL4WS 1.1 are the
only works, which attempt to preserve the structure of the
service composition program. Regarding QoS, BIP has been
also used in the analysis of timing behavior and it comes
with a tool [3] that supports performance evaluation.

For considering the effectiveness of BIP in comparison
with related process algebraic approaches we recall [13],
where the authors realized a semantic gap between WS-
BPEL 2.0 and the π–calculus. They recognize that the
notion of global state over BPEL computations, the message
passing and the combination of sequencing with concurrency
create interleaving and name binding behavior that cannot
be faithfully represented in π–calculus. As a consequence of
these findings, they extend π–calculus with a transactional

construct, in order to provide formal semantics for the BPEL
activities. In [9], a two–way mapping is introduced between
BPEL4WS and the LOTOS process algebra. The authors
claim that LOTOS has the expressive power to structurally
represent BPEL processes, due to its compositionality se-
mantics. However, LOTOS lacks a primitive analogous to
the broadcast connector of BIP.

In order to explain the difference between the process
algebra setting and the BIP approach, we refer to [6]. In
process algebras we can use a series of operators with which
processes evolve. In BIP components are characterized by
their behavior (labeled transitions) and composition of be-
haviors takes place by means of interaction models and
priority models, which essentially perform only memoryless
coordination of behavior (the behavior is not modified when
components execute some transition). With respect to a
notion of expressiveness that characterizes the ability of
some framework to coordinate components, process algebras
have been shown to be less expressive than BIP.

Finally, it is worth comparing BIP with high-level model-
ing languages for component-based systems. One language
that has been used for modeling compositional construction
of web services is Reo [17]. Reo formal semantics has
been defined with constrained automata, which however
cannot preserve service composition structure, due to lack
of powerful coordination operators, such as those in BIP.
Another difference is that connectors in Reo are statefull,
allowing for coordination behavior that does not preserve
essential information about atomic behavior in components.

VIII. LESSONS LEARNED

By modeling service coordination in BIP separately from
the activities behavior, it was feasible to develop a model
representation and translation with several attractive fea-
tures:

• compositionality and reusability of model building
blocks

• use of a limited number of connectors that sets the
resulting model comprehensible

• direct mapping of the analysis traces into the BPEL
process code due to the preservation of the service
composition structure

• compositional translation of BPEL programs without
retaining globally scoped data; this renders the transla-
tion amenable to parallel execution.

IX. CONCLUSION

We introduced a structural representation of WS-BPEL
2.0 compositions in the BIP component framework. This
contribution involved the formal definition of the BPEL
execution semantics, in terms of the BIP primitives and con-
structs. BPEL programs are transformed into BIP models by
a language embedding, which preserves the service compo-
sition structure. As opposed to other formal representations
and model checking approaches that work on a flattened
model representation, with the presented embedding we can
interpret the verification findings by referring to the original
composition program. Moreover, BIP supports innovative
formal analyses by reasoning on the model structure thus
avoiding as much as possible the scalability limitations of
model checking techniques.

As future work, we will further develop our language em-
bedding to support bidirectional transformation. Correctness
of our embedding will be addressed by advanced techniques
for testing observational equivalence with various BPEL
engines. However, BIP models for composite services will
be eventually orchestrated by the BIP execution engine.
Since BIP can subsume various composition mechanisms
while preserving their structure, it should be possible to
combine embeddings for different composition languages.
By using BIP as a multilanguage host framework we could
also include analysis for service choreographies. However,
this involves the formal treatment of problems related to the
compositionality of language semantics.

ACKNOWLEDGMENT

This work was performed in the framework of the
TRACER(09SYN-72-942) project, which is funded by the
Cooperation Programme of the Cooperation Programme of
the Hellenic Secretariat for Research & Technology.

REFERENCES

[1] A. Alves and A. Arkin, “Web services business process
execution language version 2.0,” OASIS Committee Draft,
May 2006.

[2] Z. Azmeh, M. Driss, F. Hamoui, M. Huchard, N. Moha,
and C. Tibermacine, “Selection of composable web services
driven by user requirements,” in ICWS, 2011, pp. 395–402.

[3] A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H.
Nguyen, and J. Sifakis, “Rigorous component-based system
design using the BIP framework,” IEEE Software, vol. 28, pp.
41–48, 2011.

[4] M. H. Beek, A. Bucchiarone, and S. Gnesi, “Formal methods
for service composition,” Annals of Mathematics, Computing
and Teleinformatics, vol. 1, no. 5, pp. 1–14, 2007.

[5] S. Bensalem, A. Griesmayer, A. Legay, T.-H. Nguyen,
J. Sifakis, and R. Yan, “D-finder 2: Towards efficient cor-
rectness of incremental design,” in NASA Formal Methods,
ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2011, vol. 6617, pp. 453–458.

[6] S. Bliudze and J. Sifakis, “A notion of glue expressiveness for
component-based systems,” in CONCUR 2008 - Concurrency
Theory, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2008, vol. 5201, pp. 508–522.

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana,
“Web services description language (WSDL) 1.1,” Mar. 2001.

[8] D. Fahland, Complete Abstract Operational Semantics for
the Web Service Business Process Execution Language, ser.
Informatik-Berichte / Institut fur Informatik, Humboldt Uni-
versitat zu Berlin. Berlin: Inst. fur Informatik, 2005, no.
190.

[9] A. Ferrara, “Web services: a process algebra approach,” in
ICSOC ’04: Proceedings of the 2nd International Conference
on Service Oriented Computing. New York, NY, USA: ACM
Press, 2004, pp. 242–251.

[10] C. Hofer, K. Ostermann, T. Rendel, and A. Moors, “Poly-
morphic embedding of DSLs,” in Proceedings of the 7th
international conference on Generative programming and
component engineering, ser. GPCE ’08, 2008, pp. 137–148.

[11] P. Hudak, “Modular domain specific languages and tools,” in
in Proceedings of Fifth International Conference on Software
Reuse. IEEE Computer Society Press, 1998, pp. 134–142.

[12] A. Lapadula, R. Pugliese, and F. Tiezzi, “Using formal meth-
ods to develop WS-BPEL applications,” Science of Computer
Programming, vol. 77, no. 3, pp. 189–21, 2012.

[13] R. Lucchi and M. Mazzara, “A pi-calculus based semantics
for WS-BPEL,” Journal of Logic and Algebraic Program-
ming, vol. 70, no. 1, pp. 96–118, 2007.

[14] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel,
M. Dumas, and A. H. M. ter Hofstede, “Formal semantics
and analysis of control flow in WS-BPEL,” Sci. Comput.
Program., vol. 67, no. 2-3, pp. 162–198, 2007.

[15] M. Phalippou, “Executable testers,” in Protocol Test Systems,
VI, Proceedings of the IFIP TC6/WG6.1 Sixth International
Workshop on Protocol Test systems, Pau, France, 1993, pp.
35–50.

[16] C. Stahl, “A petri net semantics for BPEL,” Humboldt-
Universität zu Berlin, Informatik-Berichte 188, Jul. 2005.

[17] S. Tasharofi, M. Vakilian, R. Z. Moghaddam, and M. Sirjani,
“Modeling web service interactions using the coordination
language reo.” in WS-FM. Springer, 2007, pp. 108–123.

