
Formal Verification of Network Interlocking Control by
Distributed Signal Boxes

Stylianos Basagiannis1 and Panagiotis Katsaros2

1 United Technologies Research Center, Cork, Ireland
BasagiS@utrc.utc.com

2 School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
katsaros@csd.auth.gr

Abstract. Interlocking control prevents certain operations from occurring, un-
less preceded by specific events. It is used in traffic network control systems (e.g.
railway interlocking control), piping and tunneling control systems and in other
applications like for example communication network control. Interlocking sys-
tems have to comply with certain safety properties and this fact elevates formal
modeling as the most important concern in their design. This paper introduces an
interlocking control algorithm based on the use of what we call Distributed Signal
Boxes (DSBs). Distributed control eliminates the intrinsic complexity of central-
ized interlocking control solutions, which are mainly developed in the field of
railway traffic control. Our algorithm uses types of network control units, which
do not store state information. Control units are combined according to a limited
number of patterns that in all cases yield safe network topologies. Verification of
safety takes place by model checking a network that includes all possible inter-
connections between neighbor nodes. Obtained results can be used to generalize
correctness by compositional reasoning for networks of arbitrary complexity that
are formed according to the verified interconnection cases.

1 Introduction

In the past, interlocking control was mainly developed and studied in the context of
railway signaling, where its task is to prevent trains from colliding and derailing, while
at the same time allowing their movements. Our view is that interlocking control is
a mean for synchronizing exclusive access to distributed network resources (network
segments) and its application extends beyond this of railway signaling. Interlocking
control is also used in piping and tunneling control systems and may be involved in
other applications like for example network management systems [2].

In this work, we introduce a distributed control algorithm with network control units
that do not store information related to the algorithm’s state. This option eliminates the
intrinsic complexity of other solutions that are mainly centralized and the complexity of
the few distributed approaches with control units that maintain state. More precisely, as
shown in [19], algorithmic verification of interlocking safety properties is an extremely
complex task, due to the state space explosion involved. Typically, the internal state of
the analyzed system has 2n possible configurations, where n is the number of com-
ponents such as interlocking points, signals, etc. with which the system is built. Our
contribution is summarized in the following:



– The Distributed Signal Boxes (DSBs) algorithm is verified within the SPIN model
checker [14]. Interlocking safety is verified in a network formed by combining all
possible interconnections between neighbor nodes. The control units of our algo-
rithm can be composed only in the ways tested in this small network.

– Interlocking logic of the control units is decoupled from the network topology and
this eliminates the need to locally store information related to the algorithm’s state.
Although network routing is not within the scope of our algorithm, we assume non-
deterministic routing as an abstract modeling approach for verifying all routing
possibilities in a network node [16]. Interlocking safety is provided as a network
service, irrespective of the operation control commands.

For more complex networks, one can use the compositional verification technique
for synchronous message passing [18] that decomposes the verification problem into
correctness properties for smaller networks. Thus, we avoid the risk of interlocking
schemes that cannot be fully analyzed, due to their large state space.

A preliminary version of the algorithm was presented in [3], where it was applied
to a simple railway-interlocking problem, which did not include all the cases of node
interconnections that are covered in present article. Section 2 presents the considered
network interconnection cases and their corresponding DSBs connectivity. Section 3
introduces the algorithm and the obtained SPIN model-checking results. Finally, in Sec-
tion 4 we review the related works and we compare them with the proposed approach.
We conclude with comments on the potential impact of the presented work.

2 Network interlocking nodes and distributed signal boxes

The messages for the control of a single node that connects multiple network segments
depend on the node’s interconnection with neighbor nodes. In this section, we establish
the terminology used to describe a general interlocking problem and we introduce the
different cases of nodes’ interconnection and the corresponding DSBs topologies.

Definition 1. Nodes define the ends of interconnected network segments, which are
distributed network resources. They cannot communicate with each other. A node –
depending on the number of interconnected segments – controls access to at least one
resource, i.e. access to the resource(s) is only possible through the controlling node.

Figure 1 illustrates a simple network consisting of interconnected nodes X , A, B,
C, D and Y . Node A controls access to resource R(AB), but direct communication
with node B is not possible.

Definition 2. Each node is connected with a DSB and communicates with it through
a synchronous signal channel. The DSBs corresponding to a pair of connected nodes
communicate with each other. Since nodes cannot directly contact, they manage the
controlled resources only by messages to their corresponding DSBs.

In Figure 1, nodeA andDSBoxA are connected by the signal channel NodeAtoDS-
BoxA. As a consequence of Def. 2, DSBoxA exchanges messages with DSBoxB.



Fig. 1. One-to-one node interconnection and the DSBs topology

Definition 3. When a moving entity requests access to a network resource, it can be
granted only by the controlling node of this resource. All entities that request access
move in a given direction.

Definition 4. Interlocking control synchronizes requests generated by entities, for ex-
clusive access to the controlled resource(s).

Nodes are represented by control processes that accept as input an entity arrival,
exchange messages with their corresponding DSBs and subsequently release the mov-
ing entity, when possible, thus grantng access to the requested resource. Entity arrivals
trigger a message dispatch to the node’s DSB and upon receipt of the reply the entity
is released. Thus, control processes do not need to store information for the algorithm’s
state, since this state is communicated to the network instantly. Within the SPIN model-
checker, we assume synchronous communication, which is modeled by rendezvous
communication channels [15]. This specification assumption keeps our model compu-
tationally tractable, since we avoid asynchronous communication that would increase
interleaving between the modeled processes. Applicable implementation alternatives
include all modern time-triggered communication options, with safety critical features
(e.g. the TTP/C and the FlexRay protocols) that are often used in distributed embed-
ded systems. However, we do not address issues related to implementation details like
for example how to guarantee atomic message dispatch, since we are only interested to
verify the correctness of our algorithm.

We have identified three types of resource interconnection namely, the one-to-one
link, the one-to-many split link and the many-to-one join link. One-to-many and many-
to-one links require synchronization between the DSBs of the nodes in the many side.
Figure 1 introduced an example with one-to-one resource interconnections, where for
some entity that occupies resource R(XA) node A grants access to resource R(AB),



if it is not occupied by another entity. The figure shows the implied DSBs topology
and represents a part of Athen’s underground metro network, which was used in [3] for
introducing a first version of our algorithm.

Fig. 2. (a) Many-to-one join node interconnection and (b) one-to-many split node interconnection

Figure 2a presents the many-to-one join node interconnection, where a number
of network resources, say R(A1B), R(A2B), ..., R(AjB) is connected through some
nodeB to a single resource shown asR(Bx). Access to the controlled network resource
R(Bx) is performed by the synchronous exchange of control messages transmitted be-
tween: (i) nodes A1, A2, . . . , Aj and their corresponding DSBs, (ii) neighbor DSBs
(e.g. the DSBs of nodes A1 and B), (iii) node B and its corresponding DSB and (iv)
for synchronizing the DSBs of nodes A1, A2, . . . , Aj in the many side.

Figure 2b shows the one-to-many split node interconnection, where some network
resource, sayR(xA) is connected to i network resources denoted byR(AB1), R(AB2),
. . . , R(ABi). We already pointed out that for verifying all routing possibilities for a
passing entity, we include all possible entity routing decisions, i.e. a non-deterministic
selection of the requested controlled resource (symmetrically, in Figure 2a we assume
non-deterministic selection between the entities waiting in the many side). Access to the
requested resource is regulated by the synchronous exchange of control messages trans-
mitted between: (i) nodes B1, B2, . . . , Bi and their corresponding DSBs, (ii) neighbor
DSBs (e.g. the DSBs of nodes A and B1), (iii) node A and its corresponding DSB
and (iv) for synchronizing the DSBs of nodes B1, B2, . . . , Bi.

For a two-to-two resource interconnection by a single node, a suitable solution can
be developed by decomposing the problem into two distinct two-to-one interconnec-
tion cases and by intermixing the algorithm’s logic accordingly. This means that a syn-
chronization message non-deterministically selects, which destination resource from



the two-to-one interconnection cases will be occupied. A many-to-many resource in-
terconnection is implemented as a complex with a many-to-one join link attached to a
one-to-many split link.

3 Network interlocking nodes and distributed signal boxes

Figure 3 shows the DSBs topology for a typical one-to-one resource interconnection,
as well as the exchanged messages guaranteeing exclusive access to the controlled re-
sources. Our algorithm encompasses:

Fig. 3. DSBs and message communications for an one-to-one resource interconnection

– the control processes for the shown interlocking nodes (N),
– the resources (R), with each of them being controlled by some node (N),
– the DSBs control processes, where each DSB corresponds to some node (N),
– the moving entities (E) that request access to the available resources (R) and
– the messages between nodes and DSBs, and those exchanged between DSBs.

Resource allocation is established by using two message types, namely bit1 and
bit2. These messages do not carry any information; they block or release processes, but
none is dedicated to a specific role throughout the whole algorithm logic.

Fig. 4. The Node control process of the DSBs algorithm

The algorithm is introduced in PROMELA, the input language of SPIN. In Figure 3,
let us assume that an entity E occupies Rm−1 and requests access to Rm, which is con-
trolled byNm (line 7 of proctypeNode in Figure 4 is enabled forNm).Nm then sends



bit1 to its corresponding DSB (line 8) through the signal channel inNodetoDSB that
synchronizes the two processes. We distinguish two different possibilities:

– ResourceRm is available, which means that theDSB of nodeNm has already sent
message bit2 to its corresponding node (line 18 of proctypeDSBox in Figure 5
for the node Nm). Message bit2 is received by node Nm that subsequently pro-
vides access to resource Rm (lines 9, 10 of proctypeNode for Nm). The DSB of
node Nm is then blocked waiting for message bit1 in the communication channel
outSignaltoDSB that synchronizes it with the DSB of node Nm+1 (line 19 of
proctypeDSBox for the node Nm).

– Resource Rm is currently occupied by another entity. In this case, there is no mes-
sage bit2 in the inNodetoDSB signal channel for node Nm and this blocks the
requesting entity from accessingRm (line 9 of proctypeNode forNm). TheDSB
of Nm also waits for message bit1 (line 19 of proctypeDSBox for Nm). The ex-
pected message will be received when the DSB of node Nm+1 controlling the re-
quested resourceRm+1 will send bit1 (line 21 of proctypeDSBox forNm+1) thus
indicating that Rm+1 can be used by the entity that currently occupies Rm. Upon
receipt of bit1 by the DSB of Nm (line 19 of proctypeDSBox) the message bit1
in the signal channel inNodetoDSB is consumed (line 20 of proctypeDSBox)
and subsequently a bit1 message is dispatched to the DSB of node Nm−1 (line 21
of proctypeDSBox forNm). Then, theDSB of nodeNm sends bit2 to the signal
channel inNodetoDSB that synchronizes it with its corresponding node (line 18
of proctypeDSBox forNm) and this message releases the requested resourceRm

(lines 9, 10 of proctypeNode for Nm).

Fig. 5. The DSBox control process of the DSBs algorithm

Figure 6 shows the message communications for a network with a two-to-one join
node connected to a node one-to-two. The control processes for these two nodes differ
from the control process of a simple node (Figure 3) in the use of one more synchronous
message exchange for every pair of adjacent resources in the many side. This additional
message is necessary, in order to synchronize concurrent requests for access to the same
resource coming from the many side of the nodes.

The PROMELA code in Figure 7 introduces the control process for the shown
two-to-one join node that connects the network resources specified by the inRes1 and
inRes2 parameters to the network resource specified by the outRes parameter. For a
single pair of adjacent resources in the many side, we need only one synchronization
channel named here synchronizerA and one additional message that we call bit3i.



Besides the use of the synchronizer, the algorithm’s logic is essentially the same with
the logic shown in Figure 4, apart from the fact that we use now two signal channels
named inNode1toDSB and inNode2toDSB that synchronize the two-to-one join
node with its corresponding DSB. Finally, the process logic for the two-to-one join
node addresses the requirement for non-deterministic selection between concurrent re-
quests of controlled resources. Figure 8 provides the process logic for the symmetric
case of the one-to-two node shown in Figure 6.

Fig. 6. DSBs and message exchanges for a two-to-one join node connected to a one-to-two node

Fig. 7. Algorithm’s logic for two-to-one
resource interconnection

Fig. 8. Algorithm’s logic for one-to-two
resource interconnection



The complete PROMELA code for the small network of Figure 9 includes all types
of possible interconnections and at the same time gives us the opportunity to verify
safety and to study existing possibilities for deadlock, livelock or other violations of
progress. Resource Rsrc34 is connected to resource Rsrc41. Node(1) represents a
one-to-two split link to the resources Rsrc12 and Rsrc13 and Node(3) is a two-to-one
join link to the resource Rsrc34.

Fig. 9. A network of resources and the associated DSBs topology

3.1 Safety verification

The basic safety property for the DSBs interlocking control is expressed by the monitor
assertion of Figure 10, which is used to check that ”in all reachable states, at most one
entity occupies any resource”. We utilize the predefined boolean function

nfull(q) = (len(q) < QSZ)

for testing that a network resource represented by channel q is occupied by a number of
entities (len(q)) less than the number QSZ that represents violation of safety.

In order to detect violation of exclusive access to any resource, we set QSZ = 2.
If it is possible to reach a state where for some resource, say Rsrc, holds len(Rsrc) =
QSZ, then the model checking output reports an error (assertion violation).

For the network shown in Figure 9, the initial conditions guaranteeing constant
protection involve the notion of what we call network section. A network section is
defined based on some basic graph-theoretic terms: the undirected graph representing
the resource network at hand is connected, if every pair of distinct nodes in the graph
can be connected through some path. A node cut set (also known as vertex cut) of a
connected network is a set of nodes, whose removal renders the network disconnected.



Definition 5. A network section is defined over a node cut set with one-to-many and/or
many-to-one nodes. It is represented by a biconnected subnetwork, whose nodes are
given as the superset of the node cut set, i.e. a subnetwork that is not broken into dis-
connected networks by deleting any single node and its incident resources.

Definition 6. A closed chain of occupied resources is given as a cycle of occupied
resources where all entities request some resource that is already occupied by another
entity in the same cycle. Such a chain may be extended into multiple network sections.
Every single network section is characterized by the minimum required number of
entities for a closed chain of occupied resources in the overall resource network.

Fig. 10. Safety assertion for the DSBs interlocking control of the network of Figure 9

Predicate 1 Under the following initial conditions, we verified thatDSBs interlocking
control guarantees non-blocking execution and safety in all reachable states:

– At least one entity occupies a resource that is not in a separated network section.
– For all possible cycles, there is at least one network section, where the initial num-

ber of entities is less than the minimum required number of entities for a closed
chain of occupied resources.

If for example the network of Figure 9 is initialized with two entities occupying
both Rsrc34 and Rsrc41 and another entity occupying some resource in the network
section that is highlighted in Figure 11, then the second condition of Predicate 1 implies
that the DSBs algorithm cannot guarantee non-blocking execution. This configuration
opens a possibility for a closed chain of occupied resources.

However, in networks where moving entities represent traffic (e.g. in railway) the
initial conditions of Predicate 1 represent a marginal restriction. Usually, the number
of moving entities within the individual network sections is very small compared to the
minimum required number of entities for a closed chain of occupied resources.

In our case, non-blocking execution and safety with three entities is guaranteed only
when at most one of the resources Rsrc34, Rsrc41 is initially occupied. In total, we
model checked 4 valid initial configurations with three entities in the resource network
of Figure 9 and 7 valid initial configurations with two entities. When having four entities
in the network, the initial conditions of Predicate 1 are not fulfilled.

Figure 12 provides representative model checking results for one of the valid initial
configurations with three entities. The model checking output reports no assertion vio-
lation or invalid end states - deadlock - (errors: 0) in all reachable states (1697 stored
states, when applying partial order reduction for state space pruning).



Fig. 11. Initial configuration that implies a closed chain of occupied resources

DSBs interlocking control is a compositional control algorithm. Control processes
for the interconnected nodes can be composed as shown in the discussed resource net-
work, such that the resulting communication by synchronous message passing provides
the safety guarantees of interest. Model checking of large-scale networks with other
topologies and node combinations fails to scale up well, since the state space that has
to be explored can grow exponentially in the number of the implied control processes.

Compositional reasoning shifts the burden of verification from the network level to
the subnetwork level, so that a global safety property for the network is established by
composing together independently verified subnetwork properties like the one proved in
the examined network. The closest compositional reasoning approach in the related bib-
liography is the assumption–commitment (A-C) method that was first proposed by [17]
and that was subsequently developed in [18] into a sound and semantically complete
proof method. This method integrates the use of inductive assertions and the proof
method of [1] for verifying synchronous distributed message passing systems.

An A-C correctness formula has the form:

< A,C >: {φ}P{ψ}
where P denotes a (PROMELA) program and A, φ, ψ,C represent predicates. We re-
quire that A and C predicates involve values that do not depend on the values of any
program variables. A valid A− C formula has the following meaning:

If φ holds in the initial state, in which P starts its execution, then
– C holds initially, and C holds after every communication provided A holds after

all preceding communications, and
– if P terminates and A holds after all communications then ψ holds in final state.

3.2 Model checking resource occupancy and availability

Under the conditions of Predicate 1 for the network of Figure 9 and for infinitely many
requests for any network resource, we verified that there is always some entity that
temporarily acquires and subsequently releases this resource.



Fig. 12. Model checking DSBs interlocking control safety for the network of Figure 9

The aforementioned progress property guarantees availability of the network’s re-
sources for infinitely many uses and excludes the possibility for an entity to hold the
occupied resource forever. For model checking this property we developed an appropri-
ate formulation in the Linear Propositional Temporal Logic (LTL) of the SPIN model
checker. The LTL operators used are the following:

<> x eventually
[]x = ¬ <> ¬x always
→ logical implication

The recurrence formula [](<> p) asserts that in an infinite sequence of states the
proposition p occurs infinitely many times [15]. For any network resource Rsrcij we
consider the propositions

#defineR f(len(Rsrcij) == 0)

#defineR o(len(Rsrcij) == 1)

corresponding to states of free or occupied resources. The checked correctness property
is then expressed as

[](<> R f)− > (<> R o)− > (<> R f)

where→ is left associative with higher precedence than []. Thus, the formula is inter-
preted as [](((<> R f)− > (<> R o))− > (<> R f)) and expresses the property:

”In an infinite sequence of system states a temporarily occupied resource becomes
free infinitely often”.

For the network of Figure 9 the discussed LTL formula was model checked in the 4
valid initial configurations with 3 entities, as well as in the 7 valid initial configurations
with 2 entities. In these cases, SPIN generated the never claim (automaton in Figure 13)
of the above formula and verified that the property holds in all possible executions.



In SPIN, never claims specify either finite or infinite system behavior that should
never occur. When a never claim is generated from an LTL formula, all its transitions are
condition statements, formalizing atomic propositions on the global system state. SPIN
checks infinite executions for the specified behavior. Execution of the claim starts at
labeled statement T0 init, where the conditions trigger transitions to the accept states,
when the resource is occupied. Violation is detected as an acceptance cycle, i.e. if the
resource remains occupied forever. If the resource is not occupied forever we do not
have an acceptance cycle. Figure 14 reports representative results for one of the valid
initial configurations with three entities, where we observe that SPIN performed a state
space search for acceptance cycles. The shown output reports no errors (errors: 0).

Fig. 13. Never claim of LTL formula to model check that no entity occupies some resource forever

Fig. 14. Model checking resource occupancy and availability for the network of Figure 9



4 Related Work

Research on interlocking control has been mainly advanced in the area of railway inter-
locking systems. Since the introduction of mechanical interlockings in late 1800s the
control has been progressively centralized with fewer control centers, individually re-
sponsible for larger portions of networks. This trend continued with the advent of com-
puter controlled signaling to the railway networks. In related works, the most widely
studied railway signaling system is the Solid State Interlocking (SSI) [6]. Many railway
operators have adopted such geographic-data-driven solid-state control units in their in-
terlockings. In [9], the author proposes an approach to formalize the principles and the
concepts of interlocking systems in VDM.

The work reported in [20] introduces a model for the interlocking of the network
used by a local Australian railway operator. Interlocking control is encoded in control
tables and the described analysis aims to find erroneous or incomplete entries in these
tables. Modeling and safety checking is performed with the NuSMV model checker,
but in earlier works the same group used a Communicating Sequential Processes (CSP)
approach and the Failure Divergence Refinement (FDR) model checker.

The work in [13] reports the safety checking of the Line Block interlocking system
that also adopts a centralized approach. The control strategy runs on a Central Control
Unit that communicates with Peripheral Control Units (PCUs). PCUs are expected to
drive particular interlocking system components and detect external events.

In [10], the authors focus on a computer interlocking system, for the control of
railway stations. The system’s architecture is based on redundancy and is composed
of a central nucleus connected to peripheral posts for the control of physical devices.
A formal model of the system’s safety logic was developed in Verus [4], a tool that
combines symbolic model checking and quantitative timing analysis. In [8], the authors
present a model of the same system and validate safety in the presence of Byzantine
system components or of some hardware temporary faults. The safety logic of the same
system was also modeled in [5], where the authors used the SPIN model checker to
analyze all system’s functions that may be requested by an external operator.

We already noted the fundamental differences of our algorithm compared to the
mentioned approaches. First, in DSBs interlocking control, safety is decoupled from
entity routing and is an integrated network service that works independently from op-
eration control and geographic data for the network topology. Second, we adopt a
communication-based network control approach that makes our solution similar to the
following distributed interlocking control proposals found in the related bibliography.

In [11], the authors note that today’s centralized interlocking systems are far too
expensive for small or possibly private networks. They propose to distribute the tasks
of train control, train protection and interlocking over a network of cooperating compo-
nents, using the standard communication facilities offered by mobile telephone providers.
Their approach uses the so-called switch boxes, which locally control the point where
they are allocated. Train engines are carriers of train control computers, which collect
the local state information from switch boxes along the track to derive the decision
whether the train may enter the next track segment. However, mobile communication
requires security and reliability provisions that in a large-scale network increase the
cost, when compared to solutions that transmit signals over wires.



EURIS [7] is a modular specification method used to formulate distributed inter-
locking logics for railway yards. The EURIS architecture consists of a collection of
generic blocks representing control units that communicate by means of data structures
called telegrams. EURIS uses the notion of routes, i.e. sets of network segments for
which a train is granted exclusive access to all of them atomically. The building blocks
maintain a state and can also exchange telegrams with the logistic layer that incorpo-
rates the logic behind operation control. Safety guarantees can be analyzed only through
the available interactive simulation facilities. Compared to EURIS, our approach inten-
tionally avoids application-domain-dependent concepts and system requirements, since
we aim in the development of a generic interlocking algorithm. In our case, control de-
cisions are taken on the basis of exchanged messages between the control units that, as
opposed to the EURIS building blocks, do not store state related to the algorithm’s logic.
Moreover, our solution is fully verified with respect to the required safety guarantees.

5 Conclusions and Future Work

In the last years, with the ever-increasing computing power of small and inexpensive
computing devices, distributed interlocking control is a promising alternative towards
reducing the complexity involved in the systems’ design, and towards reducing the costs
for installation and maintenance of the needed equipment. Most current interlocking
control approaches are centralized and they are defined on the basis of geographic data
and commands of the networks operation control. Usually, interlocking safety of cen-
tralized solutions cannot be fully verified, due to the state space explosion involved.

In response to these concerns, we introduced a distributed interlocking control al-
gorithm, where control logic for guaranteeing safety is decoupled from the network
topology data and the used control units do not store information related to the algo-
rithm’s state. The basic control function is based on what we call Distributed Signal
Boxes that are attached to the networks interlocking nodes. The algorithm works on
the basis of point-to-point communication between control processes. We described the
message communications between nodes and DSBs and the message communications
between neighbor DSBs, for a series of node interconnection cases. The initial condi-
tions of the verified properties guarantee safety and progress for the considered network
that included all described network interconnection cases.

Future research includes adaptation of appropriate architectural solutions (e.g. [12])
for control processing redundancy and communication redundancy towards implement-
ing fail-safe DSBs control architectures. An important concern is to demonstrate the
applicability of the compositional verification technique of [18] for synchronous dis-
tributed message passing systems. This will enable the verification of large-scale net-
works by decomposing the verification problem into the model checking of properties
for smaller networks, which will be independently verified.

References

1. Apt, K.R., Francez, N., de Roever, W.P.: A proof system for communicating sequential pro-
cesses. ACM Trans. Program. Lang. Syst. 2(3), 359–385 (Jul 1980)



2. Arozarena, P., Frints, M., Abad, D., Gonzlez Ords, J., Fallon, L., Zach, M., Nguyen Thi Van,
H., Serrat Fernndez, J.: Madeira: A peer-to-peer approach to network management. In: Proc.
of the Wireless World Research Forum (2006)

3. Basagiannis, S., Katsaros, P., Pombortsis, A.: Interlocking control by distributed signal
boxes: Design and verification with the spin model checker. In: Parallel and Distributed Pro-
cessing and Applications. pp. 317–328 (2006)

4. Campos, S., Clarke, E., Minea, M.: The verus tool: A quantitative approach to the formal
verification of real-time systems. In: Computer Aided Verification. pp. 452–455 (1997)

5. Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso, P.: Formal
verification of a railway interlocking system using model checking. Formal Aspects of Com-
puting 10(4), 361–380 (Apr 1998)

6. Cribbens, A.: Microprocessors in railway signalling: the solid-state interlocking. Micropro-
cessors and Microsystems 11(5), 264 – 272 (1987)

7. van Dijk, F., Fokkink, W., Kolk, G., van de Ven, P., van Vlijmen, B.: Euris, a specification
method for distributed interlockings. In: Computer Safety, Reliability and Security (1998)

8. Gnesi, S., Latella, D., Lenzini, G., Abbaneo, C., Amendola, A., Marmo, P.: A formal spec-
ification and validation of a critical system in presence of byzantine errors. In: Tools and
Algorithms for the Construction and Analysis of Systems. pp. 535–549 (2000)

9. Hansen, K.M.: Formalizing railway interlocking systems. In: Proc. of FME Rail Workshop
#2. FME:Formal Methods Europe (1998)

10. Hartonas-Garmhausen, V., Campos, S., Cimatti, A., Clarke, E., Giunchiglia, F.: Verification
of a safety-critical railway interlocking system with real-time constraints. Science of Com-
puter Programming 36(1), 53 – 64 (2000)

11. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed railway
control system. IEEE Trans. on Software Engineering 26(8), 687–701 (2000)

12. Hecht, M., Agron, J., Hecht, H., Kim, K.H.: A distributed fault tolerant architecture for
nuclear reactor and other critical process control applications. In: [1991] Digest of Papers.
The 21st Int. Symposium of Fault-Tolerant Computing. pp. 462–498 (June 1991)

13. Hlavaty, T., Preucil, L., Stepan, P., Klapka, S.: Formal methods in development and testing of
safety-critical systems : Railway interlocking system. In: Conference on Intelligent Methods
for Quality Improvement in Industrial Practice. pp. 14–25 (2002)

14. Holzmann, G.J.: The model checker spin. IEEE Trans. on Software Engineering 23(5) (1997)
15. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley

Professional, 1st edn. (2011)
16. Jain, A., Nelson, K., Bryant, R.E.: Verifying nondeterministic implementations of determin-

istic systems. In: Formal Methods in Computer-Aided Design. pp. 109–125 (1996)
17. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. on Software Engi-

neering SE-7(4), 417–426 (July 1981)
18. Roever, W.P., S. de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers,

J.: Concurrency Verification: Introduction to Compositional and Noncompositional Methods.
Cambridge University Press, New York, NY, USA (2001)

19. Simpson, A.: Model checking for interlocking safety. In: Proc. of FME Rail Workshop #2.
FME:Formal Methods Europe (1998)

20. Winter, K., Robinson, N.J.: Modelling large railway interlockings and model checking small
ones. In: Proc. of 26th Australasian Computer Science Conference - Vol. 16. pp. 309–316.
ACSC ’03 (2003)


