
Product Line Variability with Elastic Components and Test-Driven Development

George Kakarontzas
Dept. of Informatics
Aristotle University

Thessaloniki, Greece, and
Dept. of Comp. Science and Telecom.

T.E.I. of Larissa
Larissa, Greece.

gkakaron@teilar.gr

Ioannis Stamelos
Dept. of Informatics
Aristotle University

Thessaloniki, Greece.
stamelos@csd.auth.gr

Panagiotis Katsaros
Dept. of Informatics
Aristotle University

Thessaloniki, Greece.
katsaros@csd.auth.gr

Abstract

In this work we present a systematic approach for the
creation of new variant software components via customiza-
tion of existing core assets of a software product line. We
consider both functional and quality variants and address
the issue of a controlled creation of variants which consid-
ers the reference architecture and its co-evolution with a
number of other artifacts including components and func-
tional and quality test suites. Furthermore we discuss the
relationship between the popular agile practice of Test-
Driven Development (TDD) and how it can be used to assist
the evolution of software components of a software product
line.

1 Introduction

A product line approach to software development [1] ex-
ploits the commonalities among several products to intro-
duce a systematic reuse approach in which several impor-
tant artifacts are considered core assets from which several
different products are built. Core assets include software
components, the product line architecture, test suites, doc-
umentation manuals, specifications etc. During product de-
velopment the core assets are specialized to specific prod-
uct assets by varying them to fit the specifications of the
new product [2]. In general there are two methods to intro-
duce variability in product line components: configuration
and customization. Configuration assumes that all possible
component variants have been considered and that source
code and other appropriate configuration mechanisms have
been built in the component to allow its “switching” to new
product variants. This is the preferred way for novice users
since it requires zero software development for new product

assets however it has several disadvantages including (pos-
sibly harming) “dead” code and also very expensive upfront
development efforts to consider all possible variants and
introduce configuration mechanisms to realize them in the
core asset base. The other alternative is customization: Cus-
tomization is the development of new product assets from
existing core assets to create new variants for the new prod-
ucts. Although the creation of new product assets (which
may be included in the core assets base) requires some effort
this effort, if guided by basic software engineering princi-
ples of modularity such as high cohesion and low coupling,
is not necessarily large and it avoids the previously men-
tioned pitfalls of configuration.

The product line’s features and variabilities are captured
in a feature model [3] which provides the features of the
product line including mandatory and optional features of
products. These features are implemented by the compo-
nents of the reference architecture of the product line. If we
decide to evolve the product line to include a new feature
or new variants of features, then new components must be
built or existing components must be customized to intro-
duce the required variation. The reference architecture will
also vary accordingly.

Challenges to this evolution are how we proceed in a way
that guarantees the minimum effort for the customization
and how we ensure that the quality and functionality of the
whole product is not undermined during this evolution step.
Test-Driven Development on the other hand is an agile prac-
tice that essentially reverses the development cycle for an
application from design-code-test to test-code-design [4] .
The developer first writes a test which will be the oracle of
success for the to-be developed code. Initially the test does
not pass since the code under test has not been developed
yet. The developer then writes the simplest possible code
to make the test pass. After the test has passed the devel-

CIMCA 2008, IAWTIC 2008, and ISE 2008

978-0-7695-3514-2/08 $25.00 © 2008 IEEE
DOI 10.1109/CIMCA.2008.84

146

oper refactors the code to eliminate “bad smells” (e.g. code
duplication).

In the rest of this paper in Sec. 2 we describe the concept
of elastic components and suggest its usage for the evolu-
tion of the software components of a product line. Next in
Sec. 3 we describe how Test-Driven Development (TDD)
can be used constructively to support the implementation of
elastic components. In Sec. 4 we present some related work
and finally in Sec. 5 we give future research directions and
conclude.

2 Elastic components

To address the aforementioned challenges to component
evolution the concept of elastic components has been pro-
posed in [5]. Elastic components are not just a single com-
ponent but a hierarchy of components with a common root
which is a component of the reference architecture. The
children of this hierarchy are variants of the root compo-
nent which is called pure. The characteristic of the vari-
ants is that they have some functional or quality additions
as compared to the pure component. For example a vari-
ant might provide some new functionality or an extra fault
tolerance feature. Components are considered as compos-
ites of objects with one object playing the role of the façade
to the internals of the components which are not accessible
from other components. The component provides its ser-
vices through provided interfaces and might require addi-
tional services through its required interfaces. The compo-
nent is also accompanied with metadata describing essential
information for its successful deployment such as the ver-
sion number and its requirements.

The initial construction of a software component is no
different than the construction of a simple cohesive object.
We start by defining scenarios that we want to achieve us-
ing this component. These scenarios serve as the specifica-
tion and verification mechanism under which a component
is specified initially and verified after its implementation.
The component methods form a provided interface which
is used by the scenarios to verify the component’s opera-
tion. Internally the component contains in the first phase
just a cohesive object providing the implementation of the
provided interface. The component may use for its imple-
mentation the services of other external components which
are the required interfaces of the component. Having this
first cohesive component, which is called pure component,
we can then extend it by adding more scenarios which are
new functional features or quality enhancements. To im-
plement these additional features we introduce new objects
inside the component which collaborate with the initial co-
hesive object to achieve the new functionality. During this
evolution we look for disharmonies in the component’s in-
ternal classes which will undermine the component’s future

evolution such as low cohesion and high coupling and use
metrics to highlight possible anomalies (e.g. God classes
with excessive number of responsibilities and Data classes
with no or few responsibilities) [6]. The result is a new
variant of the original pure component as long as the new
component still succeeds in verifying all the previously de-
fined scenarios. The new variant component is less cohe-
sive than the original component but more useful since it
provides more features or quality enhancements. It is cru-
cial however to notice that usefulness is fitness for a partic-
ular use and therefore the variant component is more use-
ful to a client that requires the additional features or qual-
ity enhancements as those are specified with the additional
scenarios. For another client the new features may be com-
pletely inappropriate. If we were keeping only the new vari-
ant of the original component in our hierarchy then a new
client requiring some other type of features would have to
cancel some or all of the newly introduced features of the
variant component. This is known as negative variability
[7]. To avoid this we keep the old components in a reposi-
tory and the designer can always pick the best place in the
hierarchy from which to start the creation of a new compo-
nent. This place would be the component in the hierarchy
that provides the maximum number of scenarios required
also by the new component without requiring the cance-
lation of any of the scenarios of the old component. The
evolution for the creation of the new component in our ap-
proach is supported by three factors:

1. The objects inside each component are highly cohesive
and low coupled enabling the evolution with ease

2. The user selects the component that satisfies already
the maximum features that he requires without requir-
ing the cancelation of any features, and

3. The approach is supported by a repository that enables
the discovery and selection of the most appropriate
component for extension

The process described for the creation of variants is de-
picted in Fig. 1. Notice that although Fig. 1 introduces just
one additional class for the variants this is not necessary nor
essential. More classes or no additional classes can be intro-
duced and any variability paradigm can be employed such
as templates, inheritance and interception. Also we depict
only first level variants, but more variants can be created by
extending existing variants if all the scenarios of a variant
are still required. During the process of component evolu-
tion in the elastic component hierarchy it is possible that
scenarios of the pure component will be violated. This is an
indication of a different concept altogether: a new compo-
nent that although conceptually similar to the elastic com-
ponent that we tried to extend is not sufficiently similar to

147

Figure 1. The creation of variants

be considered part of the hierarchy since it violates the ba-
sic assumptions for the functionality and quality of the pure
component. In these cases a new pure component will be
created with a new elastic component hierarchy. During the
evolution of the elastic components other core assets evolve
as well: (1) The reference architecture is updated to reflect
the new component variants, (2) The newly developed test
suites and other specifications are all saved in the elastic
component repository for future evolution efforts as well as
for searching and retrieval to support component reuse, (3)
The feature diagram is updated to include the new features
provided by the new variants, (4) Documentation explaining
the rationale for the introduced variants as well as details for
the implementation decisions for them is developed.

3 Constructing Elastic components with
Test-Driven Development (TDD)

Our approach to constructing elastic components uses
tests and TDD to explicitly scope a component’s functional-
ity. The developer defines a set of tests T as the set of tests
that define this component’s role in this and the future sys-
tems that it will be used as-is. The developer does not make
any attempt to extend this set of functions to include func-
tionality beyond this basic functionality that the developer
considers essential. This is consistent with the YAGNI (You
Aren’t Gonna Need It) practice of agile development. After
passing this set of tests and refactoring the code the compo-
nent is thought as a complete new version of a newly created
component hierarchy. This component is called pure in the
sense that no attempt was made to fit it in the context of any
particular system. It forms the base of a component hier-
archy that has this component at its root. If the component
needs transformation and evolution both for the current and
future projects then there are two possible ways to evolve:

1. The first one is an evolution that violates the current
set of tests. This violation is considered from our ap-
proach as violation of the basic contract for this com-

ponent and therefore it spins-off the new component
to its own new hierarchy in the repository. The com-
ponent that violates one or more of the tests of T is
therefore the base for a new elastic component hierar-
chy.

2. The second kind of evolution is one that respects the
set of tests T and therefore for all purposes is consid-
ered the same component. However the developer may
add new tests in this set. This addition of tests indi-
cates new features that this component has. These new
tests are required to be categorized by the developer to
one or more categories according to the type of change
(e.g. new functionality, better performance etc.) This
categorization is done using the categories of the ISO
quality model [8] which includes the following general
quality categories: functionality, reliability, usability,
efficiency, maintainability and portability.

To put it a little bit more formally assume that we have a
pure component x with a test suite Tx. Then an evolution of
this pure component will result in a new component y with
a test suite Ty .

• The component y is called a variant of the component
x if Tx ⊆ Ty.

• For the pure component x the set Hx contains all the
components that are part of the hierarchy of x.

• For each component y ∈ Hx, Qy is the ordered se-
quence of all the quality properties according to ISO-
9621 that this component improves. For example if
Qy = [q1, q2] this means that the component y has im-
proved two quality properties over its base component
x, q1 (e.g. performance) and q2 (e.g. modifiability).

• The difference Ty −Tx ≥ 0 in the size of test suites of
the component y from its base component x, is called
IHC (Internal Hierarchy Difference).

• If after the evolution of x to y, Tx � Ty then the com-
ponent y will be considered a new pure component in
its own elastic component hierarchy.

• For two pure components x and y the size of the set of
all tests belonging in both test suits of x and y, is the
similarity S(x, y) of the two components. For exam-
ple if Tx = {t1, t2, t3} and Ty = {t1, t4, t5} then the
similarity of the two components is 1, since they have
one test in common.

In Fig. 2 (a) we see schematically an elastic component hi-
erarchy and in (b) three different elastic component hierar-
chies. A critical question regarding software product lines
is how to evolve them in order to accommodate new emerg-
ing requirements. In the context of this work we assume

148

Figure 2. Elastic component hierarchies
based on tests

that the application engineering team given a certain new
feature for a product instantiates and modifies the software
architecture of the product line in order to accommodate the
new feature. The modifications of the software architecture
will result in consequent required modifications for the ex-
isting software components. The components are then mod-
ified using TDD as we explained earlier, with modifications
of existing core assets. This is the application engineering
workflow of the product line engineering process. An im-
portant issue is wether the modified components should be
incorporated in the core asset base and how. This is usually
depicted as a feedback loop from the product line engineer-
ing workflow to the domain engineering workflow. To make
this decision one should consider if the new core assets are
potentially reusable to a number of products or if they are
just unique for the newly developed product. Given the po-
tential usefulness of the components in more products than
the newly developed product, the newly developed compo-
nents should be incorporated to the core asset base for future
reuse. With our approach the component source code and
the additional tests will be stored in the component reposi-
tory which will also record the relationship to the existing
components at a logical level: i.e. the fact that the new com-
ponent is a variant of an existing component, which cus-
tomizes its base component to accommodate a new func-
tional or quality feature. The repository will also include
the quality categories improved (under the ISO-9126 cat-
egorization). Furthermore the additional tests will be the
proof that the component does indeed achieve the required
goal. The compatibility of the component to the existing
software architecture is judged with the previously existing
test cases. If the component does not violate the existing
test cases of its base component (i.e. it is a variant of an ex-
isting component) then the component can be used in all the
configurations that the previously existing component could
be used, in addition to the new configuration resulting from
the application engineering phase for the new product. The

modifications of the software architecture for the new prod-
uct will result in a number of components being varied and
all these components should be included in the core asset
base along with their tests and they accompanying meta-
data. The feedback of the application engineering process
to the domain engineering process as described, is depicted
in Fig. 3. The important observation with the proposed ap-

Figure 3. Application engineering feedback to
the domain engineering process

proach is that Test-Driven Development which is an agile
practice, does not interfere with the flexible upfront design
required by product-line engineering. TDD is used instead
in the context of application engineering to evolve the com-
ponents of the product line in order to customize them for
the newly introduced requirements. The produced artifacts
are then evaluated for their significance in the product line
context by the domain engineering team and are included in
the core assets only if this is deemed useful. Therefore the
two approaches of product line engineering and test-driven
development are no longer in tension, but rather comple-
ment each other harmoniously.

To give a short illustrative example consider that we have
a compute engine product line which is capable of executing
jobs on several processors simultaneously. Each job is em-
barrassingly parallel which means that comprises a number
of tasks that can be executed in parallel without the need to
communicate to each other. In the initial product line archi-
tecture the compute engine was designed so that it runs on
a cluster server that is highly reliable since all its processors
are attached to the same local cluster. Imagine now that we
wish our compute engine to make opportunistic use of idle

149

cycles in our local area network or the Internet. The idea
is that users who are willing to help us with a demanding
computation can visit a URL and download a Java applet.
The applet then connects back to our compute engine which
assigns tasks to the users’ computers, that are executed and
then the results are returned back to the compute engine.
Since now the environment is much less reliable we want to
extend our initial reference architecture so that some form
of fault tolerance is achieved. There are several extensions
that need to be made in the overall architecture:

• The hosts accepting tasks from the compute engine
(i.e. the Host component) should now be extended to
include a Java applet version, since we do not wish our
users to install any specific software in their machines,
but merely to download an applet and provide a spe-
cific security policy.

• The hosts should now also include the capability to pe-
riodically checkpoint the Tasks of the application and
send these checkpoints back to the compute engine.
This is necessary since given the opportunistic envi-
ronment we want to be able to restart the tasks in a
different machine if for example the connection to the
execution host is lost.

• The compute engine should now be able to send ping
messages to the hosts to discover their health status and
get back responses or timeout. If the host do not re-
spond within a specific timeout threshold the compute
engine will assume that the host connection is lost.

• The compute engine should be capable of migrating
the task to another host from the checkpoint last ac-
quired if one available when the connection to a remote
host executing a task is deemed as lost.

In this scenario the components that will evolve as a re-
sult of the new feature are the Host and the ComputeEngine
components. The development of the new components
however will not start from scratch. The developers of
the new components will reuse the existing Host and Com-
puteEngine components and modify them using TDD. The
existing test cases for the two components will be reused
as well as the internal architectures of the components and
they will be expanded as needed for the new feature. In this
particular case both components will pass the existing tests
since the existing requirements do not contradict the newly-
introduced requirements. The test suites of both compo-
nents will be expanded:

• We need to test that the host component periodically
sends the tasks’ checkpoints back to the compute en-
gine and that it responds to ping messages from the
compute engine in a timely manner.

• We also need to test that the ComputeEngine compo-
nent accepts the checkpoints send by the Host compo-
nent, it pings the Host component to discover its health
status, and migrates the Tasks if and when needed.

Notice that the newly introduced components do not vi-
olate the existing tests and are considered variants of the
existing components, because the existing components test
suites do not include any performance tests, but only func-
tional tests. If the existing components had specific perfor-
mance requirements and the respective tests then these ex-
isting tests would probably be violated. In that case the new
components would fail to pass the old tests. This is correct
since we were interested in the performance of our compute
engine in the first version and now we are more interested
in the fault tolerance aspect willing to entail a performance
penalty for this. The important thing to notice however is
that even in this case the two different versions of the com-
ponents will not be entirely unrelated since their similarity
(i.e. the number of tests in common) will be positive, but
the new components will not be backward compatible with
the old versions.

After the construction of the new variants of the com-
ponents the decision to include them in the core asset will
be taken to the product line engineering team which will
consider their possible reuse in future products. The team
for example may decide that a good idea would be to open
the possibility of some reward system for the owners of
the host machines and introduce auctioning for tasks in
the Host components. Auctioning will then be a new fea-
ture which also requires the checkpointing and migration
of tasks. The best components to adapt in this case are the
variants which already include this functionality instead of
the original base components.

4 Related Work

A few approaches have considered reuse in general and
product line approaches to reuse in particular, in relation to
agile methods.

In [9], the authors describe Extreme Harvesting a method
for discovering reusable components on the web using test
matching. Tests are developed as usual in the development
of a new product using extreme programming. However
before the development of the code that passes the test, the
developer uses an eclipse plugin that attempts to discover
components on the web using code search engines such as
Koders and Merobase, that pass the test. If such a compo-
nent exists, the developer can then reuse it. Two approaches
are described: definitive harvesting which attempts to match
all of the test cases at once and is more suitable for well-
understood domains and speculative harvesting which pro-
ceeds in more conservative steps, for situations where the

150

developer is willing to adapt his or her system to discovered
components. Our approach similarly to Extreme Harvesting
tries to reuse software components in the context of a prod-
uct line approach. However we are not attempting to find a
component that exactly matches the test cases of the com-
ponent, but rather reuse the component to produce a new
variant.

In [10] the authors consider the relation between ag-
ile methods and software product line engineering. Simi-
lar to us the authors believe that the two approaches should
be combined and that agile practices can assist during the
application engineering phase: “the two approaches must
be combined. PLE as a proactive, strategic reuse approach
forms the basis to develop new products...Agile methods are
then used in application engineering to perform the cus-
tomization or calibration of a product for a specific cus-
tomer”. The authors consider how agile practices (e.g. the
planning game) can be customized and used in the context
of the application engineering workflow of a product line
process. Our approach concentrates instead in the most im-
portant agile practice of Test-Driven Development and the
way that this practice can assist to the evolution of a product
line.

In [11] the author considers the strong characteristics of
both agile methods and plan-driven methods, and suggests
that both have a “home ground of project characteristics
within which perform very well”. The author also suggests
that “a combined approach is feasible and preferable”. In
this work we have presented such a combined approach,
adapting however the agile practice of TDD and not consid-
ering the mixing of other agile practices with product line
engineering approaches.

5 Conclusions and future research directions

In this work we proposed a new method for component
variability and reuse of product lines which is driven by test
suites. The method addresses the issue of the variability
introduction in a product line using customization of exist-
ing core assets. Some variation mechanisms for software
product lines are listed in [2] including inheritance, compo-
nent substitution, plug-ins, templates, parameters, genera-
tors, aspects, runtime conditionals and configurators. Tech-
nically our approach is a component substitution approach
in which new components are created reusing existing com-
ponents and test cases. However the substitute component
may be created internally using many of the other men-
tioned variation mechanisms. Test suites assist the correct-
ness of the placement of the new variant component in the
core asset base which is organized for the components in a
hierarchical fashion to enable their effective reuse, search-
ing and retrieval. Tests also assist in the verification that
the product is correct after its evolution since test suites are

available to repeat the quality assurance process in the new
product. In the future we plan to concentrate in the devel-
opment of the elastic component repository and use specific
metrics such as the Similarity between components and the
Internal Hierarchy Difference to speed the searching pro-
cess in repositories with large numbers of components. We
also plan on applying our approach to a number of large
case studies to refine it further.

References

[1] Paul Clements and Linda Northrop: “Software Prod-
uct Lines: Practices and Patterns”, Addison-Wesley,
2002

[2] Felix Bachman and Paul Clements: “Variabil-
ity in Software Product Lines”, Technical Report
CMU/SEI-2005-TR-012, Software Engineering Insti-
tute, September 2005

[3] Kyo C. Kang et al.: “Feature-Oriented Domain Anal-
ysis (FODA) Feasibility Study”, Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
November 1990

[4] Lasse Koskela: “Test Driven: Practical TDD and Ac-
ceptance TDD for Java Developers”, Manning, 2008

[5] George Kakarontzas et al., “Elastic Components: Ad-
dressing Variance of Quality Properties in Compo-
nents”, Euromicro 2007 - CBSE Track, Lübeck, Ger-
many, pp. 31-38, IEEE, 2007

[6] Michele Lanza and Radu Marinescu: “Object-
Oriented Metrics in Practice”, Springer, 2006

[7] James O. Coplien: “Multi-Paradigm Design for C++”,
Addison-Wesley, 1998

[8] ISO, “Software Engineering - Product Quality - Part
1: Quality Model”, ISO, ISO/IEC Standard 2001.

[9] Oliver Hummel and Colin Atkinson: “Supporting Ag-
ile Reuse Through Extreme Harvesting”, 8th Inter-
national Conference on Agile Processes in Software
Engineering and Extreme Programming (XP 2007),
LNCS 4536/2007, pp. 28-37, Springer, 2007

[10] Ralf Carbon et al.: “Integrating Product Line Engi-
neering and Agile Methods: Flexible Design Up-front
vs. Incremental Design”, in Proceedings of the 1st
International Workshop on Agile Product Line Engi-
neering, 2006

[11] Barry Boehm: “Get Ready for Agile Methods, with
Care”, IEEE Computer, vol. 35, no. 1, pp. 64-69,
IEEE, Jan. 2002

151

