
Optimal object state transfer - recovery policies for fault tolerant distributed
systems

Panagiotis Katsaros Constantine Lazos
Department of Informatics, Aristotle University of Thessaloniki

54124 Thessaloniki, GREECE
{katsaros, clazos}@csd.auth.gr

Abstract

Recent developments in the field of object-based
fault tolerance and the advent of the first OMG FT-
CORBA compliant middleware raise new requirements
for the design process of distributed fault-tolerant
systems. In this work, we introduce a simulation-based
design approach based on the optimum effectiveness of
the compared fault tolerance schemes. Each scheme is
defined as a set of fault tolerance properties for the
objects that compose the system. Its optimum
effectiveness is determined by the tightest effective
checkpoint intervals, for the passively replicated
objects. Our approach allows mixing miscellaneous
fault tolerance policies, as opposed to the published
analytic models, which are best suited in the
evaluation of single-server process replication
schemes. Special emphasis has been given to the
accuracy of the generated estimates using an
appropriate simulation output analysis procedure. We
provide showcase results and compare two
characteristic warm passive replication schemes: one
with periodic and another one with load-dependent
object state checkpoints. Finally, a trade-off analysis is
applied, for determining appropriate checkpoint
properties, in respect to a specified design goal.

1. Introduction

Object-based fault tolerance has been recently
standardized ([15]) in a plain specification (OMG FT-
CORBA), which aims to provide robust support for
software systems that require a high level of reliability.
Typical cases of such systems are large or small critical
systems, such as medical equipment control units,
embedded applications, communication and financial
systems and supply chain and other applications.

The OMG FT-CORBA standard allows the
definition of appropriate fault tolerance properties, for
each replicated object (object group). The following
strategies are supported:

• request retry,
• redirection to an alternative server,
• passive (primary/backup) replication and
• active replication.

The first middleware infrastructures that provide
standard-compliant transparent fault tolerance adopt
either:

• the interception approach, where the messages
issued by an object request broker (ORB) are
intercepted and mapped to a group
communication system, or

• the service approach, which provides group
communication as a CORBA service, beside
the ORB.

Eternal ([13]) is a well-known and successful
instance of the first case. On the other hand, the second
approach has been successfully adopted in [3] and [2].
An older but not fully CORBA compliant approach is
the one adopted in Electra ([11]), where an existing
group communication system is integrated within an
ORB.

Although much research has been devoted to the
provision of fault tolerance support in an application
transparent manner, there is still lack of an approach
for determining appropriate checkpoint properties, in
respect to the specified design goals ([19]). One
valuable report of experiences, strategies and
challenges in building fault-tolerant CORBA systems is
the one published in [4].

The work described here provides a simulation-
based design approach, for comparing fault tolerance
schemes composed of miscellaneous policies - from
now on called composite schemes. The term
miscellaneous refers to any specific policy applied to a
replicated object, which may be either active, warm

passive or cold passive replication, with different fault
tolerance properties. The developed simulator allows to
realistically model the objects interaction effects,
regarding:

• the simultaneous resource possession, caused
by the synchronous, often nested object
invocations, which block the callers, until they
get a reply,

• the hardware resource contention, as a result of
the chosen replica placement,

• the load caused by the checkpoint state
transfers between replicas of the same object
and

• the load caused by a replica restart (repair) or
re-invocation of the logged requests, according
to the OMG FT-CORBA specification ([15]).

The proposed evaluation approach rests on a basis,
which we call “the tightest effective checkpoint
intervals”. More frequent checkpoints are considered to
be effective, when they result in a reduction of the
response times of the fault-affected requests. If there is
no chance of further improvement for all possible
interval reductions in a vector of n checkpoint intervals
- where n the number of passively replicated objects -,
this vector specifies the tightest effective checkpoint
intervals. Thus, for a composite fault tolerance scheme,
the tightest effective intervals determine the minimum
response times that the scheme may achieve for the
fault-affected service requests. We say that this vector
characterizes the scheme’s optimum effectiveness.
These checkpoint intervals constitute the single
criterion that makes feasible the comparison with other
schemes composed of possibly different replication
policies and checkpoint placement mechanisms.

The validity of the suggested approach is
demonstrated by comparing two characteristic well-
known passive replication schemes: one with periodic
(PSC) and another one with load-dependent object
state checkpoints (LDSC). We provide results for
different workloads and object state sizes. Finally, a
trade-off heuristic is used for determining appropriate
checkpoint intervals, in respect to a specified design
goal.

Related modeling approaches have been published
prior to the advent of the OMG FT-CORBA standard
and they are mainly focused on the use of analytic
models, for the performance and reliability evaluation
of various passive replication schemes. Such models
are best suited in the evaluation of single-server
process replication schemes and do not support the
possibility to mix miscellaneous policies in a single
composite fault tolerance scheme. Worth to mention
are the results published in [5]. Regarding the

published simulation-based approaches, we have found
only the one reported in [16], for general-purpose and
not specifically for object-based distributed systems.

In section 2 we describe the object fault types, for
which the proposed evaluation approach is applied and
the assumed fault detection mechanism. Section 3
summarizes the functionality of the developed
simulation software. Section 4 introduces the employed
case system model and the compared fault tolerance
schemes. Section 5 provides estimates of the resulted
fault tolerance overhead and section 6 presents a fault
tolerance trade-off analysis, for determining
appropriate checkpoint properties, in respect to the
specified design goals. Finally, the paper concludes
with a discussion, on the impact of our work and its
future development prospects.

2. Object fault models and fault detection

Our work aims at modeling object faults that do not
recur after recovery, as they are documented in the
related OMG FT-CORBA specification ([15]). Some
of them may be hardware dependent (e.g. insufficient
memory) and others may be attributed to media
failures, power outages, human lapses, catastrophic
events, the use of local timers, the use of
multithreading etc. Multithreading objects are not
supported by the current version of the developed
simulation software.

The faults conform to the fail-stop model ([18]),
which means that objects fail by crashing, without
emission of spurious messages. We do not make any
assumptions about the network topology or the
protocols making up the interprocess communication
service, except that communication is accomplished
through loss less FIFO channels. Network partitioning
faults that separate the hosts of the system into two or
more sets are not addressed. Finally, we ignore the
possibility of commission faults that take place, when
an object or host generates incorrect results.

The simulator features an extensible object-oriented
design that allows easy incorporation of alternative
object fault - repair distributions and implementation of
realistic load dependent fault models, like those used in
[6]. Moreover, it allows taking into account fault
propagation scenarios, as in cases of collocated object
replicas.

The modeled fault detection mechanism assumes the
existence of a transparent and fault tolerant fault
monitoring service. Each object is periodically
checked, according to the specified time interval, which
represents the sum of the fault monitoring interval plus
the time allowed for subsequent response from the

object, to determine whether it is faulty. In the current
version, hardware and network resource contention for
the fault monitoring activity is not taken into account.
However, it has been found ([5]) that it causes an
approximate 5% increment, in the processor utilization
(of a Pentium-II based 200+ MHz machine), for about
500 milliseconds.

3. Object fault tolerance mechanisms and

simulation output analysis

To render an object fault-tolerant, several replicas
of the object are created and managed as a single object
group. The client objects invoke methods on the server
object group and the members of the server group
execute the methods and return their responses to the
clients, just like a conventional object. Because of the
object group abstraction, the client objects are not
aware that the server objects are replicated (replication
transparency) and are not aware of faults in the server
replicas or of recovery from faults (failure
transparency).

Each object group has an associated set of fault
tolerance properties. Such properties include the
replication style (active, cold passive or warm passive
replication), the initial number of replicas, the
minimum allowed number of replicas, the fault
monitoring interval and the checkpoint interval.

The principle of strong replica consistency requires
that the states of the members of an object group
remain consistent (identical) as methods are invoked on
the object and as faults occur. Thus, for each object,
strong replica consistency retains an appropriate
context that depends on the group’s replication style.

Active replication requires that all the members of
an object group execute each invocation independently,
but in the same order. The individual replicas maintain
exactly the same state and in case of a fault in one
member, the application can continue with the results
provided by another member, without having to wait
for fault detection and recovery. Strong replica
consistency for active replication means that, at the end
of each method invocation on the object, all the group
members have the same state. Each group member
responds to all incoming requests, but duplicate
requests/replies are detected and suppressed, thus
delivering only a single request/reply to the destination
object. When in a degraded mode of operation the
number of live replicas falls bellow the specified
minimum number of replicas, each failed replica is
being recovered. This involves the accomplishment of
an object state transfer from a live replica (if there is
any). If, in the course of this state transfer, the

interacting replicas receive additional invocations, all
of them are enqueued locally and subsequently applied
to the destination replicas.

Although active replication causes high replica
utilization, it is useful when the cost of transferring an
object’s state is larger than the cost of executing a
method invocation or when the time available for
recovery after a fault is tightly constrained.

Cold or warm passive replication requires that
during fault-free operation, only one member (the
primary) of the object group executes the methods
invoked on the group. The state of the primary and the
sequence of the invoked methods are recorded in a log,
according to the specified checkpoint properties.
Strong replica consistency implies that, at the end of
each state transfer, all of the members of the object
group have or have access to the same state. In the
presence of a fault, a backup member is promoted to be
the new primary. The state of the new primary is
restored to the state of the old one, by reloading its
state from the log and subsequently reapplying the
request messages that have been recorded in the log.
This implies that a client can re-invoke a request on a
server and receive a reply to that request, without risk
that the operation will be performed more than once.
Replica restart on a different processing node is not
supported in the current version of the developed
simulation software.

In cold passive replication, the backup replicas have
not been activated. When the current primary fails, a
new one is elected and then activated. In warm passive
replication, the backups have been already activated
and their state is continuously synchronized with the
primary replica’s state, according to the specified
checkpoint properties. Passive replication is useful
when the cost of executing a request is greater than the
cost of transferring the object’s state and the time for
recovery after a fault is not constrained.

State transfer durations depend on the object state
sizes, the bandwidth and, in the case of warm passive
replication, on the processing speed of the slowest
backup replica. A state transfer may be initiated only
when it is not violating the object group’s replica
consistency. Thus, it is postponed when the primary is
in-between an invocation service or it happens to be
blocked, waiting for a response. In the course of a state
transfer, new invocations may be received, but they
cannot be processed, before the end of it.

Special emphasis has been given to the accuracy of
the generated estimates, by the use of an appropriate
simulation output analysis procedure. This procedure
([14]) exploits a representation of the required steady-
state measures in terms of quantities, which are based

on the sample paths between two successive system
entries into some set of states, say A. In a continuously
operating service, where requests are assigned to a
number of - from now on called - service objects, a
target set of states for the mean response time in such
an object, includes any state that the object’s primary
fails and its request queue is found to be empty. A-
cycles are not independent and identically distributed
and for this reason we use the batch means estimation.
Successive A-cycle based quantities are grouped into
non-overlapping batches and their means are treated as
independent and identically distributed observations.
The validity of the described approximation increases
with the batch size. The number of A-cycles and the
batch size is determined dynamically, by the Law and
Carson sequential procedure ([10]), on the basis of the
relative precision to be achieved. The reported results
were obtained as 95% confidence intervals with half
width interval no more than 3% of the estimated value.

4. A case system study

The proposed evaluation approach attempts the
comparison of composite fault tolerance schemes, on
the basis of their optimum effectiveness, as it is given

by the tightest effective checkpoint intervals for the
passively replicated objects. For a composite fault
tolerance scheme, its effectiveness is measured by the
mean of the fault-affected requests response times. The
vector of the tightest effective checkpoint intervals is
found empirically, by the performance of trial
simulation runs. We have found that, in a system with
synchronous nested method invocations, the service
objects’ checkpoint properties have a more significant
impact on the mean of the fault-affected requests
response times. Thus, the tightest effective checkpoint
intervals may be found by a layer-to-layer decision
procedure, in a relatively small number of runs, which
depends on the number of interacting objects. Such a
heuristic procedure is thoroughly described in section
6.

For the chosen replica placement, the overall
evaluation approach includes

• the selection of the less costly fault tolerance
scheme, in respect to the varied system load
and object state sizes and

• the performance of a suitable trade-off analysis,
for the choice of appropriate checkpoint
properties and the prediction of the resulting
quality of service expectations.

primary
state:

NORMAL

backup
state:

NORMAL

1

4
primary

state:

NORMAL

backup
state:

FAILED

5
primary
state:

FAILED

backup
state:

NORMAL

2
primary

state:

STATE
TRANSFER

backup
state:

STATE
TRANSFER

primary
state:

NORMAL

backup
state:

RECOVE
RING

11

9
backup
state:

FAILED

primary
state:

FAILED

7
primary

state:

FAILED

backup
state:

RECOVE
RING

10
primary

state:

RECOVERI
NG

backup
state:

RECOVERI
NG

6
backup
state:

STATE
TRANSFER

primary
state:

FAILED

3
backup
state:

FAILED

primary
state:

STATE
TRANSFER

8
backup
state:

FAILED

primary
state:

RECOVE
RING

Figure 1. State transitions of a warm passively replicated object with one backup replica

In each individual object, let us consider the
application of the warm passive replication policy
shown in Figure 1.

The object group states (1, 2, 3 etc.) shown in the
diagram are determined by the state of the primary
(NORMAL, FAILED, STATE TRANSFER or
RECOVERING) and the state of the single backup
replica. In states 2, 3, 5, 6, 7, 8, 9 and 10 the primary is
not available for servicing dispatched requests, but this
cannot be observed in states 5, 6, 7 and 9 up to the
detection of the occurred fault. An object replica moves
to STATE TRANSFER as a result of a checkpoint
occurrence. Moreover, the transition from state 11 to
state 2 expresses the occurrence of a state transfer from
the primary to the newly restarted backup, to make
feasible a potential replacement of the primary in case
of fault. When a failed primary is detected (5→10), the
corresponding backup replaces it and a replica restart is
then scheduled to occur (RECOVERING). A recovering
primary executes the logged requests and a recovering
backup is either being restarted or waiting for a state
transfer to become operational. Each replica restart
restores it to the last saved object state.

The message sequence shown in Figure 2 specifies
the object interactions taking place in a case system, as
a consequence of a method invocation to a service
object (:SrvRequestAccepting).

We consider two classes of requests (object
methods) with different interaction patterns. Each
object is replicated as specified by the policy shown in
Figure 1.

The compared fault tolerance schemes are
distinguished according to the chosen checkpoint
placement mechanism as follows:

• load-dependent checkpoint intervals (LDSC)
for all objects in the first scheme and

• periodic checkpoint intervals (PSC) in the
second one.

The LDSC-based scheme assumes a specified
number of serviced requests between checkpoints, as
opposed to the PSC-based scheme, which results in a
fixed time interval between them.

We assume that each object replica is placed in a
separate process node, with no additional hardware
resource contention. Also, we consider the existence of
two (2) distinct service objects (oj0 and oj5), placed
in process nodes of the same speed. Incoming method
invocations are distributed to the available service
objects in a round-robin (RR) fashion. Table 1 details
the described system’s parameters and Table 2
summarizes the applied parametric fault model. We did
not consider load dependent fault rates.

:SrvRequestAccepting obj1:classA obj2:classB obj4:classDobj3:classC
srv_request

[Class1Request]

[Class2Request]

[Class1Request]

Figure 2. Message sequence for the case system study

Table 1. System model parameters

service objects: obj0:SrvRequestAccepting, obj5:SrvRequestAccepting

load balancing method: round-robin (RR)

class 1 request arrivals: exponential (sec)

class 2 request arrivals: exponential (sec)

7.5

7.5

7.0

7.0

6.5

6.5

6.0

6.0

5.5

5.5

5.0

5.0

4.5

4.5

4.0

4.0

3.5

3.5

3.0

3.0

 obj0:SrvRequestAccepting

obj5:SrvRequestAccepting obj1:classA obj2:classB obj3:classC obj4:classD

object state size (KB): 1.2 0.9 1.1 0.8 0.6

object replicas:
rep00
obj0

rep01
obj0

rep10
obj1

rep11
obj1

rep20
obj2

rep21
obj2

rep30
obj3

rep31
obj3

rep40
obj4

rep41
obj4

rep51
obj5

rep52
obj5

class 1 service (exponent.) 0.2 0.2 0.52 0.57 0.6 0.6 0.83 0.83 0.32 0.32 0.2 0.2

class 2 service (exponent.) 0.2 0.2 - - 0.28 0.28 0.83 0.83 - - 0.2 0.2

reinvoked requests (exp.) - - - - - - - - 0.1 0.1 - -
state transfer speed-sec/KB
(exponential)

0.6 0.6 0.8 0.8 0.6 0.6 0.6 0.6 0.8 0.8 0.6 0.6

Table 2. Object fault model

fault rarity parameter (r): 21600 sec

object replicas:
rep00
obj0

rep01
obj0

rep10
obj1

rep11
obj1

rep20
obj2

rep21
obj2

rep30
obj3

rep31
obj3

rep40
obj4

rep41
obj4

rep51
obj5

rep52
obj5

object faults (exponential) 2*r 2*r 2*r 2*r r r r r 2*r 2*r 2*r 2*r

restart times (exponential) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0
fault monitoring interval
(sec)

15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0

5. Optimal fault tolerance schemes

The tightest effective LDSC intervals (numbers of
serviced invocations between checkpoints) for the
heavily loaded system test case (exponential
interarrival times with rate 3.0 sec) were found to be
given by the vector (11, 22, 19, 24, 29, 11), with the
first number representing the obj0 checkpoint
interval, the second one the obj1 checkpoint interval
etc. Regarding the PSC-based fault tolerance scheme,
the corresponding tightest effective checkpoint
intervals (time periods in seconds), for the same
interarrival times, are given by the vector (17.0, 30.0,
20.0, 26.0, 35.0, 17.0).

For the forenamed checkpoint intervals, Figure 3
summarizes the response times of the requests that
were not affected by the occurred object faults, in
respect to the tested system load cases (service objects
utilization for the request arrival rates of Table 1). The
obtained results are shown as a percentage of the
corresponding response time, in the case of no fault
tolerance. They quantify the fault tolerance cost of the

compared schemes, in their optimum effectiveness
configuration, for the heavily loaded system test case.

As expected, the PSC-based fault tolerance scheme
was found to achieve its optimum effectiveness at the
cost of scheduling a higher number of state transfers,
compared to the tested LDSC-based scheme. This
reduces the observed system availability and results in
increased response times because of the higher state
transfer costs. In heavily loaded system cases (e.g.
service objects utilization 0.787) the performance of
the PSC-based scheme may be not acceptable.

The checkpoint intervals used to compare the
studied fault tolerance schemes were also found to
determine their optimum effectiveness, when the
service objects state size is increased from 1.2 KB to
2.4 KB. Figure 3 reveals that the PSC-based scheme is
more sensitive to this state size increment, due to the
higher number of state transfers.

Figures 4 and 5, confirm this trend for different
service object state sizes and their corresponding
tightest effective checkpoint intervals.

 Object state transfer overhead (class 1 requests)
 (fault tolerance scheme of Fig. 1)

0

10

20

30

40

50

0,
28

2

0,
30

4

0,
32

9

0,
36

1

0,
39

7

0,
44

0,
49

5

0,
56

6

0,
65

9

0,
78

7

service objects utilization

%
 o

ve
rh

ea
d

LDSC: service object state size = 1.2 KB
 checkpoint intervals (11,22,19,24,29,11)

PSC: service object state size = 1.2 KB
 checkpoint intervals (17,30,20,26,35,17)

LDSC: service object state size = 2.4 KB
 checkpoint intervals (11,22,19,24,29,11)

PSC: service object state size = 2.4 KB
 checkpoint intervals (17,30,20,26,35,17)

 Object state transfer overhead (class 2 requests)
(fault tolerance scheme of Fig. 1)

0

10

20

30

40

50

0,
28

2

0,
30

4

0,
32

9

0,
36

1

0,
39

7

0,
44

0,
49

5

0,
56

6

0,
65

9

0,
78

7

service objects utilization

%
 o

ve
rh

ea
d

LDSC: service object state size = 1.2 KB
 checkpoint intervals (11,22,19,24,29,11)

PSC: service object state size = 1.2 KB
 checkpoint intervals (17,30,20,26,35,17)

LDSC: service object state size = 2.4 KB
 checkpoint intervals (11,22,19,24,29,11)

PSC: service object state size = 2.4 KB
 checkpoint intervals (17,30,20,26,35,17)

Figure 3. Fault tolerance overhead for the tested system load cases (class 1 and class 2 requests)

 State transfer overhead for the tightest effective checkpoint intervals

(service objects utilization level: 78,7%)

0
20
40
60
80

100

1.2 1.8 2.4 3.0 3.6 4.2
service object state size (KB)

%
 o

ve
rh

ea
d LDSC - class 1

PSC - class 1
LDSC - class 2
PSC - class 2

Figure 4. State transfer overhead for the tested object state sizes

Service availability for the tightest effective checkpoint intervals
(service objects utilization level: 78,7%)

88
90
92
94
96
98

100

1.2 1.8 2.4 3.0 3.6 4.2

service object state size (KB)

%
 a

va
il

ab
ili

ty

LDSC
PSC

Figure 5. Service availability for the tested object state sizes

6. Fault tolerance trade-off analysis

Having selected the fault tolerance scheme to be
applied, the adjustment of the object checkpoint
properties has to be guided by a set of design goals and
the performance of a suitable trade-off analysis. Such
an analysis trades the gains derived from a checkpoint
interval reduction, against the overhead imposed to the
requests that were not affected by the occurred faults.

We propose a layer-to-layer analysis, since in a
system with synchronous nested invocations the service
objects’ checkpoints were found to have a more
significant impact on the mean of the fault-affected
response times. For a potential checkpoint interval
reduction, we consider the following three results:

• plain gain, i.e. improved mean for the fault-
affected requests, as well as, for the requests,
which were not affected by object faults,

• improved mean for the first category of
requests, at the cost of a measurable worsening
for the second one that includes the vast
majority or

• a clear worsening of both means.
For a base scheme, the interval reduction to be

performed is decided upon the potential gains, for all
possible reductions and for two test cases per object.
Plain gains are quantified by the sum of the differences

in the means. Worsening cases are not taken into
account. In all other cases, quantification is performed
on the basis of the criterion proposed in [9]:

olcomc

fmcflc

meanmean

meanmean
ratio offtrade

−

−

=−

with
meanflc = mean of the fault-affected requests, for

the base scheme
meanfmc = mean of the fault-affected requests, for

the scheme with the reduced checkpoint
interval

meanomc = mean of the requests not affected by
faults, for the scheme with the reduced
checkpoint interval

meanolc = mean of the requests not affected by
faults, for the base scheme

On existence of plain gains, the reduction with the
maximum gain is preferred. In all other cases, we
choose the reduction with the maximum trade-off ratio
and we ignore ratios less than 1 (negligible gains with
unacceptably high costs).

In each step, the reductions tested for an object are
adjusted as follows: in a performed plain gain reduction
or no reduction, for that object, we test the same values
and in any other case, we use the value of the last
performed reduction and its half value.

Table 3. Trade-off analysis for the studied LDSC-based scheme

initial checkpoint intervals vector: 70-70-70-70-70-70

checkpoint
intervals vector

requests not
affected by
object faults

requests
affected by
object faults

checkpoint
interval

reduction

interval
reduction

(ir)

trade-off ratio
for interval
reduction ir

trade-off ratio for
interval reduction

[ir/2]

new intervals
vector

70-70-70-70-70-70 7,167 61,883 obj 0 & 5 20 gain 10,37 * 50-70-70-70-70-50

50-70-70-70-70-50 7,041 51,642 obj 0 & 5 20 756,783 * 30-70-70-70-70-30

30-70-70-70-70-30 7,060 37,029 obj 0 & 5 20 15,179 46,619 20-70-70-70-70-20

20-70-70-70-70-20 7,156 32,571 obj 0 & 5 10 7,297 8,690 15-70-70-70-70-15

15-70-70-70-70-15 7,332 31,042 obj 0 & 5 5 6,104 1010,432 13-70-70-70-70-13

13-70-70-70-70-13 7,332 30,459 obj 0 & 5 2 0,00011 *

 * worse result for the mean of the fault-affected requests as well as the mean of the fault-unaffected requests

second layer trade-off analysis: (a) interval reduction
 (b) trade-off ratio or gain for interval reduction ir
 (c) trade-off ratio or gain for interval reduction [ir/2]
 obj1 obj2 obj3

checkpoint
intervals vector

requests not
affected by
object faults

requests
affected by
object faults

ir
(a)

(b) (c)
ir

(a)
(b) (c)

ir
(a)

(b) (c)
new intervals

vector

13-70-70-70-70-13 7,332 30,459 20 19,232 * 20 * * 20 129,201 gain 0,32 13-70-70-60-70-13
13-70-70-60-70-13 7,315 30,153 20 17,063 gain 1,06 20 129,32 1,888 20 104,374 41,260 13-60-70-60-70-13
13-60-70-60-70-13 7,313 29,089 20 * * 20 5,544 174,311 20 6,943 * 13-60-60-60-70-13
13-60-60-60-70-13 7,316 28,613 20 * * 10 * * 20 gain 1,51 * 13-60-60-40-70-13
13-60-60-40-70-13 7,297 27,125 20 gain 0,18 * 10 gain 0,30 * 20 8,62 * 13-60-50-40-70-13
13-60-50-40-70-13 7,29 26,84

If no further improvement is possible, the same

procedure is applied for the next layer. Back and forth
movements from layer to layer allow for a step-by-step
approach of a prescribed design goal, if possible.

Let us assume that for the showcase system, in its
highly loaded test case, our design goal is to achieve
fault-affected requests with mean value less than 27
sec. Table 3 summarizes the results obtained, for the
studied LDSC-based scheme. The reported means were
produced together with 95% confidence intervals of
relative half-width less than 3% of the estimated value.

The results shown for the initial checkpoint intervals
(70-70-70-70-70-70) reveal plain gains for a
checkpoint intervals reduction of 20 requests, in the
two service objects. The trade-off analysis is then
continued with successive interval reductions, as a
result of indicated improvements in the fault-affected
requests response times. In each step, two potential
reductions, ir and [ir/2] are considered, with ir the
value of the last performed reduction.

The second layer trade-off analysis starts with a
checkpoint interval reduction of 10 requests in obj3
and ends with a checkpoint intervals vector (13-60-50-
40-70-13) and a mean of 26.84 sec - the design goal
was 27 sec -, for the fault-affected requests. When
compared to the corresponding performance measure,
for the initial checkpoint intervals (61.883 sec), the
achieved improvement is 56.7%. On the other hand, the
mean response time for the requests, which were not
affected by object faults, is increased from 7.167 sec to
only 7.29 sec (1.7%), as a result of the applied
checkpoint intervals reductions.

7. Conclusion

In this work, we described a simulation-based
design methodology, for comparing miscellaneous fault
tolerance schemes based on their optimum
effectiveness. More frequent checkpoints are
considered to be effective, when they result in a
reduction for the fault-affected requests response times.
For a composite fault tolerance scheme, its optimum
effectiveness is determined by the tightest effective
checkpoint intervals, for the passively replicated
objects.

The developed simulation tool implements the
functionality specified in the recently published OMG
FT-CORBA standard ([15]). Finally, the proposed
trade-off analysis was found to provide a useful means
for determining appropriate checkpoint properties, in
respect to the specified design goals.

In related work, we have found two published
simulation-based approaches ([6], [16] and [17]). Both
of them were devised before the advent of the OMG
FT-CORBA standard and are best suited for general-
purpose and not specifically for object-based
distributed systems. Also, the published analytic
models may be used in the evaluation of single server
process replication schemes and do not allow mixing
miscellaneous policies.

Future research issues include:
• an applied metamodeling analysis ([8]) to

assess the sensitivity of the obtained results in
faults with load dependent varying rates and to
analyze the performance impacts, when
changing the fault monitoring interval, on an
object per object basis,

• efficiency improvements, such as the
implementation of a RESTART ([20] and [7])
simulation approach and

• integration of our simulator in an appropriate
UML-based performance modeling framework
([12] and [1]).

Acknowledgment

The authors would like to thank Z. Kalbarczyk and the
anonymous referees for their helpful comments.

8. References

[1] S. Balsamo and M. Marzolla, “Simulation modeling of
UML software architectures”, Proceedings of the European
Simulation Multiconference, Society for Computer
Simulation, Nottingham, UK, 2003, pp. 562-567.

[2] P. E. Chung, Y. Huang, S. Yajnik, D. Liang and J. Shih,
“DOORS: Providing fault tolerance for CORBA
applications”, International IFIP Conference on Distributed
Systems Platforms and Open Distributed Processing
(Middleware'98), poster session, 1998.

[3] P. Felber, R. Guerraoui, A. Schiper, “Replication of
CORBA Objects”, Distributed Systems, Lecture Notes in
Computer Science 1752, Springer Verlag, 2000, pp. 254-276.

[4] R. Guerraoui, P. Eugster, P. Felber, B. Garbinato and K.
Mazouni, “Experiences with object group systems”,
Software: Practice & Experience, 30, 12, 2000, pp. 1375-
1404.

[5] S. Garg, Y. Huang, C. M. R. Kintala, K. S. Trivedi and S.
Yajnik, “Performance and reliability evaluation of passive
replication schemes in application level fault tolerance”,
Proceedings of the 29th Annual International Symposium on

Fault-Tolerant Computing, IEEE, Madison, Wisconsin,
USA, 1999, pp. 322-329.

[6] K. K. Goswami, R. K. Iyer and L. Young, “DEPEND: A
simulation-based environment for system level dependability
analysis”, IEEE Transactions on Computers, 46, 1, 1997, pp.
60-74.

[7] P. E. Heegaard, “Speed-up techniques for simulation”,
Telektronikk, 91, 2, 1995.

[8] P. Katsaros, E. Angelis and C. Lazos, “Applied
multiresponse metamodeling for queuing network simulation
experiments: problems and perspectives”, Proceedings of the
EUROSIM 2001 Congress, EUROSIM, Delfts, The
Netherlands, 2001.

[9] C. M. Krishna, K. G. Shin and Yann-Hang Lee,
“Optimization criteria for checkpoint placement”,
Communications of the ACM, 27, 10, 1984, pp. 1008-1012.

[10] A. M. Law and J. C. Carson, “A sequential procedure
for determining the length of a steady state simulation”,
Operations Research, Vol. 27, 1979, pp. 1011-1025.

[11] S. Maffeis, Run-Time Support for Object-Oriented
Distributed Programming, PhD thesis, University of Zurich,
1995.

[12] M. Marzolla, Simulation-based performance modeling
of UML software architectures, Dottorato di Ricerca in
Informatica, II Ciclo Nuova Serie, Dipartimento di
Informatica, Università Ca' Foscari di Venezia, 2003.

[13] P. Narasimhan, L. E. Moser and P. M. Melliar-Smith,
“Strong replica consistency for fault-tolerant CORBA
applications”, Journal of Computer Systems Science and
Engineering, CRL Publishing, 2002.

[14] V. F. Nicola, P. Shahabuddin and M. Nakayama,
“Techniques for the fast simulation of models of highly
dependable systems”, IEEE Transactions on Reliability, 50,
3, 2001, pp. 246-264.

[15] Object Management Group, Fault tolerant CORBA,
OMG Technical Committee Document, 2001-09-29,
September 2001.

[16] B. Ramamurthy, S. J. Upadhyaya and R. K. Iyer, “An
object-oriented test-bed for the evaluation of check-pointing
and recovery systems”, Proceedings of the 27th International
Symposium on Fault-Tolerant Computing, IEEE, Seattle,
WA, USA, 1997, pp. 194-203.

[17] W. H. Sanders, W. D. Obal II, M. A. Qureshi and F. K.
Widjanarko, “The UltraSAN Modeling Environment”,
Performance Evaluation, 24, 1, 1995, pp. 89-115.

[18] R. D. Schlichting and F. B. Schneider, “Fail-Stop
processors: An approach to designing fault-tolerant
computing systems”, ACM Transactions on Computer
Systems, 1, 3, 1983.

[19] D. Szentiványi and S. Nadjm-Tehrani, “Building and
evaluating a fault-tolerant CORBA infrastructure”,
Proceedings of the Workshop on Dependable Middleware-
Based Systems (WDMS'02), International Conference on
Dependable Systems and Networks (DSN 2002),
Washington, DC, USA, June 23-26, 2002.

[20] M. Villen-Altamirano and J. Villen-Altamirano,
“RESTART: a straightforward method for fast simulation of
rare events”, Proceedings of the 1994 Winter Simulation
Conference, 1994, pp. 282-289.

