
International Journal on Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Correct-by-construction Model-based Design of Reactive
Streaming Software for Multi-core Embedded Systems

Fotios Gioulekas · Peter Poplavko · Panagiotis Katsaros · Saddek

Bensalem · Pedro Palomo

Received: date / Accepted: date

Abstract We present a model-based design approach

towards correct-by-construction implementations of re-

active streaming software for multi-core systems. A sys-

tem’s implementation is derived from a high-level pro-

cess network model by applying semantics-preserving

model transformations. The so-called Fixed Priority Pro-

cess Networks (FPPNs) are programmed independently

from the execution platform and combine streaming and

reactive control behavior with task parallelism for uti-

lizing multi-core processing. We first define the FPPN

sequential execution semantics that specifies precedence

constraints between job executions of different tasks.

Applications are thus rendered such that, for any given

test stimuli, a deterministic output response is expected.

Furthermore, we define the FPPN real-time semantics

based on a timed-automata modeling framework. This

This work was partially supported by the European
Space Agency project MoSaTT-CMP under Contract No.
4000111814/14/NL/MH

F. Gioulekas
Department of Informatics, Aristotle University of Thessa-
loniki, Greece
E-mail: gioulekas@csd.auth.gr

P. Poplavko
MentorR○. A Siemens Business. Montbonnot, France
E-mail: petro.poplavko@siemens.com

P. Katsaros
Department of Informatics, Aristotle University of Thessa-
loniki, Greece
E-mail: katsaros@csd.auth.gr

S. Bensalem
Université Grenoble Alpes (UGA), VERIMAG, Grenoble,
France
E-mail: Saddek.Bensalem@univ-grenoble-alpes.fr

P. Palomo
Deimos-SpaceR○, Madrid, Spain
E-mail: pedro.palomo@deimos-space.com

is provably a functionally equivalent semantics speci-

fying the real-time execution of FPPNs and enabling

runtime managers for scheduling jobs on multi-cores. A

model transformation framework has been developed

for deriving executable implementations of FPPNs on

the BIP (Behavior - Interaction - Priority) runtime envi-

ronment, ported on multi-core platforms. Schedulability

is established by static analysis of the FPPN and it is

guaranteed by construction. Thus, the developers do

not need to program low-level real-time OS services (e.g.

for task management) and applications are amenable to

testing, as opposed to if their outputs would depend on

timing behavior. We have successfully ported a guidance-

navigation and control application of a satellite system,

onto a radiation hardened multi-core platform. Various

implementation scenarios for efficiently utilizing HW re-
sources are illustrated and the test results are discussed.

Keywords Process network · Model of computation ·
Model transformation · Timed-automata · Critical

systems · Multi-core processors

1 Introduction

The advent of multi-core processors, and their adoption

into modern embedded systems, has enhanced the pos-

sibilities to integrate more functions into a single CPU

chip while sustaining power-consumption in low-levels.

However, the design of timing-critical software still faces

important challenges [39], since in contrast to hardware

design languages which inherently support timing and

parallelism, imperative programming languages do not

integrate appropriate features for these two aspects. To

this end, the model-driven approach in software design

based on Models of Computation (MoC) for real-time

systems is an attractive alternative.

2 Fotios Gioulekas et al.

For streaming signal processing software, the syn-

chronous data-flow languages [33] provide support for

task-level concurrency, suitable for exploiting multi-core

parallelism [30]. The programs take the form of di-

rected graphs with nodes representing their functions

and arrows for the data flows between them. The pro-

grams’ timing behavior is rendered predictable through

statically scheduling their functions [32]. However, this

programming paradigm is not appropriate for timing-

critical applications that exhibit reactive behavior, such

as flight control software, which are expected to react to
stimuli from the environment within strict time bounds.

In programs written in reactive-control synchronous

languages (e.g., Esterel, Lustre) [25], computations are

structured in sequences of logical clock ticks, thus elim-

inating the non-determinism from the interleaving of

concurrent behaviors. Such programs are amenable to

formal verification and executable code generation, but

these languages do not support task parallelism and

scheduling with timing constraints on multiprocessors.

It is therefore evident that selecting a single MoC

for the model-based design of applications that combine

streaming and reactive control processing is challeng-

ing, which is aggravated by the fact that the popular

MoCs and the widely used real-time scheduling poli-
cies [8, 18] are hardly integrated. The problem is even

harder in multi-core systems, where scheduling policies

may be more heterogeneous following the need to ad-

dress various sources of resource interference [36, 39].

To this end, we presented in [22] the semantics of the

Fixed Priority Process Network (FPPN), a MoC where

task invocations depend on a combination of periodic

data availability (similar to streaming models) and spo-

radic control events. Moreover, in [38], we proposed

static scheduling methods for FPPNs that demonstrate

a predictable timing behavior on multi-cores. With the

FPPN MoC we aim to address the following concerns in

model-based design of reactive streaming software for

multi-cores:

∙ ensure that the application’s outputs depend only

on the event generation time stamps and the input

data sequences (functional determinism), i.e. they

do not depend on the timing behavior of the imple-

mentation;

∙ developers should not be obliged to program the

application using low-level real-time OS services

(e.g. for task management, inter-task communica-

tion, memory allocation etc.) and they only need to

reason in terms of high-level schedulability concepts

(e.g. tasks, priorities, deadlines, offsets etc.);

∙ derive a correct by construction implementation

through semantics-preserving model transformations

used to generate code for FPPNs on the multi-core

platform.

The latter concern is important for ensuring the schedu-

lability guarantees of the statically analyzable high-level

design. In [22], we presented a comprehensive FPPN

semantics definition. First, the FPPN sequential execu-

tion semantics was defined, which introduces precedence

constraints between job executions of different tasks. In

current article, we prove that this semantics ensures the

first mentioned concern, i.e. that of functional determin-

ism. At a lower level, we have introduced in [22] the

FPPN real-time semantics, which relaxes the sequential

order of execution and the zero-delay assumptions, thus

allowing for task parallelism. In the current article, we

show that the latter semantics is functionally equivalent

to the former and thus both semantics describe similar

functionally deterministic behaviors of the FPPN.

To ensure correctness-by-construction (last concern),

a model transformation framework has been imple-

mented that enables programming FPPNs at a high level

through integrating them into an architecture descrip-

tion interface. The present article provides a detailed

account of this framework and the supported software

design flow. Based on the FPPN MoC, our framework1

provides means for gradual refinement of real-time multi-

tasking software design. With respect to this, we show

how to explore various design scenarios - in terms of
task interactions and scheduling - for ensuring timeli-

ness, and how the derived system’s implementation is

executed on multi-core CPUs. The proposed method-

ology is evaluated and demonstrated by porting a real

satellite on-board application onto the European Space

Agency’s quad-core Next Generation Microprocessor
(NGMP) platform [2].

In summary, this article extends the FPPN semantics

definition in [22] with additional contributions towards a

model-based design framework for addressing the three

aforementioned concerns, as follows:

∙ We restate the FPPN sequential execution semantics

from [22], also called zero-delay semantics, and we

prove here that the state-variables of the FPPN

entities are not updated non-deterministically.

∙ We also restate the FPPN real-time semantics de-

fined using an executable formal specification lan-

guage called BIP (Behavior - Interaction - Prior-

ity) [4], for modeling networks of connected timed

automata components.

∙ The fundamental FPPN correctness properties are

formulated using Linear Temporal Logic (LTL) [6].

We show that both semantics fulfill these properties,

thus concluding that the functional determinism is

1 The framework is online at [3]

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 3

also satisfied by the real-time semantics and that the

two semantics definitions are functionally equivalent.

∙ We present our amendments to the TASTE toolset [35]

(first shown in [23]), which allow embedding func-

tional code into an FPPN model through a high-level

architecture description interface.

∙ We present the set of code-to-code and graph-to-

graph rewriting rules that define the FPPN to BIP

(FPPN2BIP) model transformation founded on the

functional equivalence between the two semantics

definitions. The FPPN2BIP model transformation
is instrumental for the overall model-based design

flow that is presented in this article.

∙ The FPPN scheduling tools [38,40] accept as input

a task graph, which dictates job executions and is

used to determine the mapping of FPPN entities to

processor cores. We adapt the task graph generation

algorithm from [38], for deriving the graph directly

from the TASTE FPPN model.

∙ We provide experimental results from various im-

plementation scenarios of a guidance - navigation

and control application on ESA’s quad-core NGMP

platform (one implementation scenario was shown

in [22]). Through these implementation scenarios we

show how one can intervene in various stages of our

design flow, for improving the resource utilization,

without violating the FPPN semantics.

The rest of the paper is organized as follows. Sec-

tion 2 reviews the related work in comparison with our

model-based framework. Section 3 gives an overview

of our design approach, while characterizing and mo-

tivating its key ingredients. Section 4 introduces the

necessary definitions in regard to the FPPN MoC. Sec-

tion 5 refers to the FPPN zero-delay semantics, while
Section 6 describes the FPPN real-time semantics. In

Section 7 we introduce the FPPN correctness proper-

ties and we show that the two semantics definitions are

functionally equivalent. Section 8 presents the TASTE

representation of FPPN models, our FPPN2BIP model

transformation and the overall model-based design flow.

Section 9 exposes our experimental results from port-

ing the guidance, navigation and control application on

ESA’s NGMP platform. Finally, Section 10 concludes

the paper and gives insights on future research direc-

tions.

2 Related work

In the related bibliography, there is a number of rele-

vant MoCs and model-based design flows, but no other

approach for reactive streaming software on multi-cores

combines characteristics that address all three main

concerns mentioned in Introduction.

In general, existing model-based design flows are

based on an architecture description, which enables

transformations for deriving models used to analyze

the system’s non-functional properties with appropriate

tools [29]. The AADL (Architecture Analysis and De-

sign Language) language is often used for the modeling

and analysis of real-time applications. In [43, 44], the

authors propose a formal semantics for AADL using

Timed Abstract State Machines, whereas in [34] the

authors introduce model transformations to the LNT

language, in an attempt to support formal system verifi-
cation. Schedulability depends on necessary assumptions

for the temporal and concurrency properties of com-

putations, which render a model statically analyzable.

Applications are therefore dependent on the execution

platform, which has to fulfill certain assumptions.

The TIMES tool [5] supports the design of timing-

critical software using timed automata and provides

code generation functionality, but it is not appropriate

for the design of task-parallel software through a high-

level MoC. In [41], the authors present a design approach

based on parallel timed automata, modeled in BIP, that

supports the generation of task-parallel code. However,

that work does not introduce model transformations,

which allow deriving a system’s implementation from a

high-level MoC. The use of a MoC allows decoupling the

model specification from the system’s implementation.

Kahn Process Networks [31] (KPNs) are perhaps

the most important related MoC. Their main features

are functional determinism and inherent support of par-

allel and distributed implementations. These features

render KPNs very popular for research on parallel and

distributed embedded systems based on multiprocessors.
On the other hand, KPNs do not support the notion of

time and reactive behavior, and in general case they are

not schedulable. The FPPN MoC differs from KPN in

several ways. To support reactive behavior and schedul-

ing we let the processes execute in steps (jobs). The

steps are activated by potentially aperiodic events whose

relative timing is important for the functional behavior,

as opposed to KPN where the relative timing of data

arrival in different channels does not change the func-

tion. Also, in a FPPN the access to the data-channels is

non-blocking, whereas in KPNs it is blocking. Neverthe-
less, similarly to KPNs, the FPPNs ensure functional

determinism, while following the same intuitive and pop-

ular parallel-programming paradigm of a set of parallel

processes communicating via channels.

In model-based environments like Ptolemy II [15] and

PeaCE [24], a design model is first built, which enables

a refinement and prototype evolving procedure through

incorporating diverse MoCs. Schedulability aspects are

often ignored in widely used MoCs. The data-flow MoCs

4 Fotios Gioulekas et al.

that stem from the KPNs have been extended to support

the timing constraints of signal processing applications

and to offer the respective scheduling algorithms. There

are also advanced embedded system design frameworks

like CompSoC [26] based on these MoCs, with an impres-

sive set of application benchmarks. These models inherit

from KPNs their functional determinism and the natural

support of distributed programming, but unfortunately

they also inherit the lack of support of reactive behavior.

In the Prelude toolset [14], the user specifies multi-rate

synchronous systems using a synchronous reactive MoC
(strictly single-rate periodic systems). However, due to

the MoC’s expressive power, it is hard to derive schedu-

lability analyses, unless restricting its semantics. The

reactive process networks (RPN) [19] is a MoC that does

not support scheduling with timing constraints; however,

RPNs provide the fundamental semantics definition for

consolidating the streaming and reactive control behav-

iors. In particular, they have introduced an important

principle of performing maximal execution run of a data-

flow network in response to a sporadic control event,

which ensures that these events have a predictable ef-

fect of the evolution of system state. In the semantics

of FPPN presented here, we reuse this principle which

helps us to ensure the functional determinism of our

MoC.

The Distributed Operation Layer – Critical (DOL-

C) [21] presents a MoC where streaming and reactive

behavior are combined and the design framework sup-

ports the deployment of scheduled real-time applications

for multi-cores. Our work in this article is partly an im-

portant complement to [21] and partly a significantly

different new work. Unlike DOL-C, here we present

a formal definition of a zero-delay semantics for the

FPPN, which ensures functional determinism by con-
struction. On the other hand, the functional behavior of

a poorly designed DOL-C model may depend on schedul-

ing and on the execution platform. This is prevented

in our framework, since the model transformations pre-

serve the functional behavior by construction. Finally,

unlike the DOL-C to BIP transformation, our design

framework is integrated with TASTE, a professional

open-source environment for software design based on

formal modelling and formal validation.

Similar to DOL-C, another timing-aware reactive

MoC that does not guarantee functional determinism

but provides real-time scheduling is the DMPL (DART

Modelling and Programming Language) [12]. This frame-

work uses advanced real-time scheduling algorithms and

has very extensive support for advanced distributed

applications. In contrast to DMPL, FPPN fits best for

concurrent but not for distributed systems, due to the as-

sumption of synchronous invocation of the tasks, which

is not straightforward to implement in distributed envi-

ronments. Nevertheless, FPPN fits well to implement an

individual distributed-system node, open for communi-

cation with other nodes. We note that we are not aware

of any framework for distributed systems that supports

reactive control behavior and functional determinism at

the same time.

The model-based environment AutoFOCUS [28] and

its derivatives AutoFOCUS2 [10], and AutoFOCUS3 [1,

27] support a seamless development process for the spec-

ification and the design of distributed and concurrent
reactive control systems based on rigorously defined for-

mal semantics. The AutoFOCUS tool is based on the

FOCUS framework [9, 11], which is a formal develop-

ment method for specifying a system, its interface and

behavior, while supporting component decomposition

and refinement at various abstraction layers. Similar to

TASTE that we use to implement FPPNs, AutoFOCUS

enables a structured and refinement-based approach to

formally specify concurrent systems, but its support to

real-time scheduling concepts is still under exploration.

In Table 1 we summarize the main features of the

mentioned MoCs. The ‘yes’ indication means that the

referred feature is either claimed by the authors or

seems straightforward to attribute to the given MoC.

The ‘no’ indication means the opposite, which does not

necessarily imply impossible to support.

Table 1: The MoC features claimed the literature

MoC Schedulable Reactive Distributed Func.
determ.

Data-flow yes no yes yes
(CompSoC)

KPN no no yes yes
RPN no yes no no

DOL-C yes yes yes no
DMPL yes yes yes no
FPPN yes yes no yes

From Table 1 we see that FPPN offers a unique com-
bination of important process-network features. Note

that though we claimed ‘no’ support of ‘functional deter-

minism’ in RPN, it seems possible to prove it if adopting

certain extensions, e.g., priorities of events, as mentioned

by the authors themselves.

3 The FPPN-based Design Flow

This section provides an overview of the design flow

based on the FPPN model, in order to place the overall

approach within the wider area of real-time concurrent

system design. While the technical details are postponed

until Section 8, after the definition of the FPPN seman-

tics, here we focus on: (1) what exactly is offered by

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 5

Functional

code

Architectural

model

Static

schedule

Plugging the FPPN

data channels

and priorities Task graph

FPPN BIP

model

System BIP

model

TASTE-to-BIP model

transformation

Schedule-to-BIP

transformation

Plugging

the online

scheduler

Zero-delay Semantics (TASTE Model)

a
 m

o
d

e
l

re
st

ri
ct

io
n

Real-Time Semantics

(BIP Model)

Real-Time Semantics

constrained by scheduling

(BIP Model)

Scheduling Constraints

unrestricted FPPN

implementation

schedulability-verified

FPPN implementation

FP

EG

processes

= tasks

network

of TA

Fig. 1: Design flow based on FPPN application specification

𝐹𝑃 - functional priority relation between tasks – precedence order

𝐸𝐺 - event generators – (a)periodic events invoke tasks synchronously

TA - time automata, in BIP (Behavior Interactions Priorities) language, executable on top of BIP RTE

the FPPN-based design flow, (2) what exactly are the

model’s distinct features and (3) what kind of guaran-

tees does it provide. Figure 1 illustrates our design flow

starting from the specification and ending in system

implementation.

First, the user provides the functional code of the

processes (also called tasks) in an imperative language

and connects them with each other within a high-level

platform-independent architecture model using the struc-

tural primitives of the FPPN MoC. At the specification
stage the user does not have to care about the task

delays, the number of processors and for how to fulfill

the task deadlines, but he focuses only on the correct

and reproducible functional behavior.

To ensure this, we define the so-called zero-delay

(ZD) semantics for FPPNs, which adopts for simplicity

the assumption that tasks are executed instantaneously

and sequentially. Such a semantics definition avoids all

unnecessary implementation-related details for task syn-

chronization and is easier to be formally specified The

input and output data of an FPPN network are received

and sent as samples labeled by timestamps based on

their physical timing. The ZD semantics guarantees the

functional determinism, i.e., that the contents of out-

put data samples is a well-defined function of the input

data samples and their timestamps. The value of guar-

anteeing functional determinism through this definition

is grounded to at least two arguments. First, for cor-

rectly implementing the control laws in reactive control

systems, the data calculated by a control law should

depend functionally on the data and timing of inputs; if

there is any jitter in timing or non-determinism in data,

then the quality of control may be impaired in unpre-

dictable way. Secondly, when testing and debugging a

functionally deterministic system, a bug can be always

reproduced by applying the same input sequence as the
one applied when the bug was manifested.

An important ingredient of an FPPN architecture

definition is the specification of the functional priority

relation ℱ𝒫, which is defined by an acyclic graph with

the tasks as nodes and represents a relative order of

task executions, whenever the tasks are invoked simul-

taneously. This relation has to be established between

tasks that exchange data between each other. The basic

idea for specifying ℱ𝒫 is to integrate a graph showing

the sequence order of data-communicating tasks as in-

termediate computation stages in a control flow. The

ZD semantics can be simulated by executing a classical

fixed priority schedule on a single processor using a

priority assignment consistent with ℱ𝒫 . The advantage

of this approach is its support for aperiodic (sporadic)

tasks. Fixed priority scheduling adapts the ordering of

tasks dynamically in a way that is functionally depen-

dent on the (dynamic) invocation time of such tasks.

Therefore, functional determinism can be ensured even

without imposing synchronization constraints between

6 Fotios Gioulekas et al.

the tasks [17]. However, though functional determin-

ism is not a problem for uni-processor systems this

property of fixed priority scheduling is lost when in-

stead of a single-core processor multiple cores are used.

This poses a challenge in designing multi-core real-time

systems [13]. Therefore, to address this challenge we sim-

ulate the single-core fixed priority in the ZD semantics

and then we ensure an equivalent behavior on multi-

ple cores by imposing the respective synchronization

constraints. This is achieved in the so-called real-time

(RT) semantics, which is discussed further below.

Another ingredient of an FPPN architecture defini-

tion (Figure 1) are the event generators 𝐸𝐺. There is

one event generator per task and they work altogether in

tandem with ℱ𝒫 to ensure the functional determinism.

Informally, an event generator for a given task specifies

a ‘law’ respected by the timestamps of subsequent in-

vocations. This law can be periodic, sporadic, or even

user-defined, since in our framework the user can de-
fine his own ‘timestamp appearance law’ using a timed

automaton model. The timestamps of an event genera-

tor are imposed not only on a given task, but also on

the subset of external input/output channels accessed

by the task. We assume synchronicity of 𝐸𝐺, i.e., for

each moment of time it is known which tasks have been
invoked synchronously (simultaneously). In ZD seman-

tics, the processes access their external channels and

exchange data at the moment of their invocation, while

following an execution order consistent with ℱ𝒫. This

ensures a well-defined function of outputs on the input

data and the events that arrive from the environment

through the event generators.

An FPPN model architecture is defined and tested

according to ZD semantics using the TASTE toolset,

as it is described in Section 8. Then, as shown in Fig-

ure 1, a transformation of the TASTE model takes

place, using our tools, into a model in an extension of

the BIP language [4] used for modeling tasks [21]. BIP

has a well-defined formal semantics as a timed transi-

tion system of the produced model given as a network

of communicating timed automata (TA) components.

After the translation in BIP, the application’s struc-

ture and model’s readability are retained, so that the

BIP representation is amenable to manual modification,

e.g., as we already mentioned it is possible to define

a custom event generator. Moreover, the BIP model

is incremental, since it is possible to plug additional

components to refine its behavior; we use this feature to

optionally plug a scheduler component, when a timing-

verified implementation is to be derived. Since any BIP

model can be compiled and executed in real time on

multi-cores, on top of the BIP RTE (run-time) engine,

this model is actually an implementation of the system

under design.

As shown in the right-hand side of Figure 1, a design

flow extension is provided, for generating a schedulability-

verified BIP implementation. The additional design steps

auto-generate an incremental extension of the BIP net-

work, called scheduler, and ‘plug’ it into the BIP model.

The purpose is to ensure schedulability of the FPPN
on a multi-core platform. As indicated in Figure 1, the

FPPN scheduling can take place, when certain, not se-

vere, restrictions (Section 8) are fulfilled to allow an

over-approximation of the FPPN workload by a model

with a higher workload. This model can be represented

by a static task graph with the dependencies between

tasks in the over-approximated model. The task graph

serves as a model to verify schedulability and generate a

static schedule using the algorithm in [36]. An important

aspect of multi-core scheduling is the treatment of the

various sources of interference in the shared multi-core

resources. The scheduling algorithm that we use treats

interference by assuming that it can be separated in

coarse blocks. Another scheduling framework similar to

ours [21] treats the more general case of fine-grained

interference (under certain assumptions). However, in-

terference is still an open problem beyond the scope of

the present paper.

The BIP implementation represents the RT seman-
tics of the FPPN, where the order of tasks is relaxed

within certain limits. Tasks can execute in parallel and

the execution of each task is not instantaneous, but it

takes a certain delay assumed to be limited by a worst-

case execution time. Whereas the overall behavior is not
the same with the one prescribed in ZD semantics, a

functionally equivalent behavior is ensured by adding

special TA components that enforce the proper task

order.

The overall approach provides two guarantees, a

functional one that is ensured by construction and a

timing one that is ensured by verification. The functional

guarantee consists of the functional determinism and

the functional equivalence between the ZD semantics,

i.e. the specification and the RT semantics, i.e. the

implementation. The timing guarantee is the verified

schedulability, subject to the limitations concerned with

the handling of multi-core interference.

4 The FPPN Model of Computation

An FPPN model is composed of Processes, Data Chan-

nels and Event Generators. The functional code of an

application is defined in processes, whereas channels,

event generators, and functional priorities are necessary

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 7

void SQR_Init (){

index = 0;

}

void SQR_Execute() {

XIF_Read(&x, &x_valid);

if (x_valid) {

y = x * x;

YIF_Write(&y);

}

}

index = index + 1;

}

Fig. 2: The functional code of the “SQR” process con-

sisting of subroutines respectively for (i) initialization

of internal state and (ii) main process execution.

middleware elements with the latter defining a rela-

tion between processes, in order to ensure deterministic

execution.

A Process represents a software subroutine that has

internal variables and input/output channels connected

to it through ports. Channels may connect pairs of

communicating processes with a data-flow direction

(from the writer to the reader) or may interact with
the environment (external channels). An example of

the functional code of a process (“SQR”) is shown in

Figure 2.The main functionality of this process is to

calculate the square of a valid input value. Its internal

state (𝑖𝑛𝑑𝑒𝑥 counter that records the current number of

process executions) is firstly initialized by the 𝑆𝑄𝑅 𝐼𝑛𝑖𝑡

subroutine. The SQR process (𝑆𝑄𝑅 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 subrou-

tine invocation) reads from the input channel the value

of 𝑥, checks if it is valid and computes its square (value

of 𝑦). The write operation on an output channel is
consequently performed. A call to the process subrou-

tine (𝑆𝑄𝑅 𝐸𝑥𝑒𝑐𝑢𝑡𝑒) is referred to as a job. Like the

real-time jobs, the subroutine should have a bounded

execution time subject to WCET (worst-case execution

time) analysis.

An FPPN is defined by two directed graphs. The

first is a (possibly cyclic) graph (𝑃,𝐶), whose nodes 𝑃

are processes and edges 𝐶 are channels for pairs of com-

municating processes. A channel is denoted by a 𝑐 ∈ 𝐶

or a pair (𝑝1, 𝑝2) with a writer and a reader. For 𝑝1 the

channel is said to be an output and for 𝑝2 an input. The

second graph (𝑃,ℱ𝒫) is the functional priority directed

acyclic graph (DAG) defining a functional priority re-

lation between processes. For any two communicating

processes we require,

(𝑝1, 𝑝2) ∈ 𝐶 =⇒ (𝑝1, 𝑝2) ∈ ℱ𝒫 ∨ (𝑝2, 𝑝1) ∈ ℱ𝒫
i.e., a functional priority either follows the direction of

data-flow or the opposite. Given a (𝑝1, 𝑝2) ∈ ℱ𝒫, 𝑝1 is

said to have a higher priority than 𝑝2. This relation is

necessary to ensure functional determinism: whenever

two processes have to access the channel concurrently,

the ℱ𝒫 relation defines the order in which the processes

access the channel.

The FPPN in Figure 3, represents an imaginary data
processing application. A sporadic command from the

environment arriving into the input channel invokes

process “X” (dashed oval, with timing constraints Dead-

line=810ms, WCET = 10ms), which is annotated by its

minimal inter-arrival time. The “SQR” process (Dead-

line = 390ms, WCET = 10ms) is periodically invoked

to calculate the square of the received value, whereas

the “Y” periodic process serves as sink for the squared
value (Deadline = 590ms, WCET = 20ms). Periodic

processes are annotated by their periods.

Two processes may be connected using one of two

possible types of non-blocking channels as those shown

in Figure 3. The FIFO (or mailbox) has a semantics of

a queue. The blackboard remembers the last written

value that can be read multiple times. Additionally, the

external input/output channels are shown. Each time
that “Y” is called, it receives the squared value from the

blackboard channel and sends it to the external output

channel.

The data-flow in the channels of this example follows

the opposite direction of the functional priority order,

which is depicted by the arrow above the channels (its

direction illustrates the direction from the higher to
lower priority process). A convenient method to define

the priority is, by analogy to scheduling priorities, to

assign a unique priority index to every process (denoted

as ‘FP=<index>’), such that the smaller the index the

higher the priority it denotes. This method is demon-

strated in Figure 3, where the minimal required ℱ𝒫
relation is defined by joining each pair of communicat-

ing processes by an arrow going from the higher-priority

process to the lower-priority one.

4.1 Formal notation and definitions of FPPN entities

Let us denote by Var the set of all variables. For a vari-

able 𝑥 or an ordered set (vector) 𝑋 of variables we denote

by D(𝑥) (resp. D(𝑋)) its domain (resp. vector of do-

8 Fotios Gioulekas et al.

SQR
FP=2

400ms

X sporadic
FP=3

4 per 100ms

higher-to-lower priority relation

(at each channel)
mailbox

(FIFO)

sporadic process

periodic process

blackboard

(shared variable)

Y periodic

FP=1

600ms

burst size and min. period priority index

Input Channel

Output Channel

Fig. 3: Example FPPN that is triggered from an external input channel to generate data sporadically, processes it

and sends the to an external output channel. A FIFO channel connects the sporadic source with the square process

and a shared variable channel connects the square with the sink process. Certain real-time constraints are defined

for the processes, while functional priority arrows are depicted above channels.

mains), i.e., the set(s) of values that the variable(s) may
take. Valuations of variables 𝑋 are shown as 𝑋0, 𝑋1 . . .,

or simply as 𝑋 (dropping the superscript). Each variable

is assumed to have a unique initial valuation. From the

software point of view, this means that all variables are

initialized by a default value.

Table 2: Use of indices in notations

Notation What the indices refer to

𝜋1, 𝜋2 The valuations of variable 𝜋
𝛾[1], 𝛾[2] The samples of variable 𝛾

(different instantiations
appearing at the first, second, etc.

time interval)
𝑥?[1]𝑐, 𝑥![2]𝑐 The samples of external channel 𝑐

being read or written

Var includes all process state variables 𝛱𝑝 and the

channel state variables 𝛾𝑐. The current valuation of a

state variable is often simply referred to as state. For a

variable of channel 𝑐, an alphabet 𝛴𝑐 and a type CT 𝑐

are defined; a channel type consists of write ‘operations’

(𝑊𝑐) and read ‘operations’ (𝑅𝑐) defined as functions

specifying the variable evolution. Function 𝑊𝑐 : D(𝑐) ×
𝛴𝑐 → D(𝑐) defines the update after writing a symbol

𝑠 ∈ 𝛴𝑐 to the channel, whereas 𝑅𝑐 : D(𝑐) → D(𝑐) ×𝛴𝑐

maps the channel state to a pair (𝑅𝑐1, 𝑅𝑐2), where 𝑅𝑐1
is the new channel state and 𝑅𝑐2 is the symbol that is

read from the channel. For a FIFO channel, its state 𝛾𝑐
is a (initially empty) string and the write operation left-

concatenates symbol 𝑠 to the string: 𝑊𝑐(𝛾𝑐, 𝑠) = 𝑠 ∘ 𝛾𝑐.
For the same channel, 𝑅𝑐(𝛾𝑐 ∘ 𝑠) = (𝛾𝑐, 𝑠), i.e., we read

and remove the last symbol from the string. The write

and read functions are defined for each possible channel
state, thus rendering the channels non-blocking. This is

implemented by including ⊥ in the alphabet, in order

to define the read operation when the channel does

not contain any ‘meaningful’ data. Thus, reading from

an empty FIFO is defined by: 𝑅𝑐(𝜖) = (𝜖,⊥), where 𝜖

denotes an empty string. For blackboard channel, its
state is a (initially empty) string that contains at most

one symbol – the last symbol written to the channel:

𝑊𝑐(𝛾𝑐, 𝑠) = 𝑠, 𝑅𝑐(𝛾𝑐) = (𝛾𝑐, 𝛾𝑐), 𝑅𝑐(𝜖) = (𝜖,⊥).

An external channel ’s state is an infinite sequence

of samples, i.e., variables 𝛾𝑐[1], 𝛾𝑐[2], 𝛾𝑐[3], . . ., with the

same domain. For a sample 𝛾𝑐[𝑘], 𝑘 is the sample index.

Though the sequence is infinite, no infinite memory

is required locally in the FPPN system, because (as
it is later explained) each sample that departs from

an external channel to the environment or vice versa

needs to be kept in a local buffer only for a limited

interval of time, until the sample’s deadline. If 𝑐 is an

external output, the channel type defines the sample

write operation in the form 𝑊 ′
𝑐 : D′(𝑐) × N+ × 𝛴𝑐 →

D′(𝑐), where D′(𝑐) is the sample domain, the second

argument is the sample index and the result is the new

sample value. For an external input, we have the sample

read operation 𝑅𝑐 : D′(𝑐) × N+ → D′(𝑐) ×𝛴𝑐. The set

of outputs is denoted by 𝑂 and the set of inputs by 𝐼.

The program expressions involve variables. Let us

call Act the set of all possible actions that represent

operations on variables. An assignment is an action

written as 𝑌 := 𝑓(𝑋). For the channels, two types of

actions are defined, 𝑥!𝑐 for writing a variable 𝑥, and 𝑥?𝑐

for reading from the channel, where D(𝑥) = 𝛴𝑐. For

external channels, we have 𝑥![𝑘]𝑐, 𝑐∈𝑂 and 𝑦?[𝑘]𝑐, 𝑐∈𝐼,

where [𝑘] is the sample index. Actions are defined by

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 9

a function Effect : Act ×D(Var) → D(Var), which for

every action states how the new values of all variables

are calculated from their previous values. The actions

are assumed to have zero delay. The physical time is

modeled by a special action for waiting until time stamp

𝜏 , w(𝜏).

An execution trace 𝛼 ∈ Act* is a sequence of actions,
e.g.,

𝛼 = w(10), 𝑥?[1]𝐼1, 𝑥 := 𝑥2, 𝑥!𝑐1,w(100), 𝑦?𝑐1, 𝑂1![3]𝑦

The timestamps in the execution are monotonically

increasing. The waiting actions indicate the absolute

time of all the data actions that follow until the next

waiting action. In the example, at time 10 we read

sample [1] from 𝐼1 and we compute its square. Then we

write to channel 𝑐1. At time 100, we read from 𝑐1 and

write the sample [3] to 𝑂1 .

A process models a subroutine with a set of locations
(code line numbers), variables (data) and operators that

define a guard on variables (‘if’ condition), the action

(operator body) and the transfer of control to the next
location.

Definition 1 (Process) Each process 𝑝 is associated

with a deterministic transition system (ℓ𝑝
0, 𝐿𝑝, 𝜋𝑝, 𝜋𝑝

0,

ℐ𝑝, 𝒪𝑝, 𝐴𝑝, 𝒯𝑝), with 𝐿𝑝 a set of locations, ℓ𝑝
0 ∈ 𝐿𝑝 an

initial location, and 𝜋𝑝 the set of state variables with

initial values 𝜋𝑝
0. ℐ𝑝,𝒪𝑝 are (internal and external) in-

put/output channels. 𝐴𝑝 is a set of actions with variable

assignments for 𝜋𝑝, reads from ℐ𝑝, and writes to 𝒪𝑝. 𝒯𝑝
is a transition relation 𝒯𝑝 : 𝐿𝑝×𝐺𝑝×𝐴𝑝×𝐿𝑝, where 𝐺𝑝

is the set of predicates (guarding conditions) defined on

the variables of 𝑋𝑝. To ensure that the transition system

is indeed deterministic we assume that any two or more

transitions branching out from the same location have

mutually exclusive guarding conditions.

⊓⊔
One execution step (ℓ1, 𝜋

1, 𝛾1)
𝑔:𝑎→ (ℓ2, 𝜋

2, 𝛾2) for the

valuations 𝜋1, 𝜋2 of variables in 𝜋𝑝 and the valuations

𝛾1, 𝛾2 of channels in ℐ𝑝 ∪𝒪𝑝, implies that there is tran-

sition (ℓ1, 𝑔, 𝑎, ℓ2) ∈ 𝒯𝑝, such that 𝜋1 satisfies guard-

ing condition 𝑔 (i.e., 𝑔(𝜋1) = 𝑇𝑟𝑢𝑒) and (𝜋2, 𝛾2) =

Effect(𝑎, (𝜋1, 𝛾1)). Since Def. 1 prescribes a determinis-

tic transition system, for each location ℓ1 the guarding

conditions enable for each possible valuation 𝜋𝑖 a single

execution step.

Definition 2 (Process job execution and execu-

tion trace) A job execution is a non-empty sequence

of process 𝑝 execution steps starting and ending in 𝑝’s

initial location ℓ0, without intermediate occurrences of

ℓ0:

(ℓ0, 𝜋1, 𝛾1)
𝑔1:𝑎1→ (ℓ1, 𝜋1, 𝛾1) . . .

𝑔𝑛:𝑎𝑛→ (ℓ0, 𝜋2, 𝛾2),

for 𝑛 ≥ 1, ℓ𝑖 ̸= ℓ0

The projection of a job execution to the actions is

called job execution trace, denoted 𝛼:

𝛼 = 𝑎1, 𝑎2, ..., 𝑎𝑛 (1)

A job execution of process 𝑝 is denoted as:

(𝜋1, 𝛾1)
𝛼−→𝑝 (𝜋2, 𝛾2)

where 𝛼 is the job execution trace.

⊓⊔
From a software point of view, a job execution is seen

as a subroutine run from a caller location that returns

control back to the caller. We assume that at 𝑘-th job

execution, external channels 𝐼𝑝, 𝑂𝑝 are read/written at

sample index [𝑘].

In an FPPN, there is a one-to-one mapping between

every process 𝑝 and the respective event generator 𝐸𝐺𝑝

that defines the constraints of interaction with the envi-

ronment. Every 𝐸𝐺𝑝 is associated with (possibly empty)

subsets 𝐼𝑝, 𝑂𝑝 of the external input/output (I/O) chan-

nels. Those are the external channels that the process
𝑝 can access: 𝐼𝑝 ⊆ ℐ𝑝, 𝑂𝑝 ⊆ 𝒪𝑝. The I/O sets of differ-

ent event generators are disjoint, so different processes

cannot share external channels.

Definition 3 (Event) The term ‘event’ refers to the

time instant 𝜏𝑘 when two things happen simultaneously:

a process 𝑝 is invoked for the 𝑘-th time and the samples

𝛾𝑐[𝑘] become available for access in the process’s external

channels: 𝑐 ∈ 𝐼𝑝 ∪𝑂𝑝. Formally, we use the term ‘event’

in two senses: in the narrow sense and in the broad

sense.

In the narrow sense an event 𝑒 is:

𝑒 = (𝜏𝑘, 𝑝)

where 𝜏𝑘 is the invocation time and 𝑝 is the process

being invoked by its event generator.
In the broad sense, an event 𝑒 is:

𝑒 = (𝑡,P)

where 𝑡 is invocation time and P is a (sub-)set of the

processes invoked simultaneously by their event genera-

tors at time 𝑡 (whereby different invocations will have,

in general, a different sample index 𝑘). Note P is a

multi-set, since an event generator may invoke a process

many times at the same time instant (thus producing a

burst of invocations), and each invocation should entail

a separate job execution.

⊓⊔
Every 𝐸𝐺𝑝 defines the set of possible sequences

of timestamps 𝜏𝑘 for the event of 𝑘-th invocation of

process 𝑝 and a relative deadline 𝑑𝑝 ∈ Q+. The intervals

[𝜏𝑘, 𝜏𝑘 + 𝑑𝑝] determine when the 𝑘-th job execution

can occur. This timing constraint has two important

reasons. First, if the subsets 𝐼𝑝 or 𝑂𝑝 are not empty then

these intervals should indicate the timing windows when

the environment opens the 𝑘-th sample in the external

10 Fotios Gioulekas et al.

I/O channels for read or write access at the 𝑘-th job

execution. Secondly, 𝜏𝑘 defines the order in which the

𝑘-th job should execute; the earlier it is invoked the

earlier it should execute. Concerning the 𝜏𝑘 sequences,

two event generator types are considered, namely multi-

periodic and sporadic. Both are parameterized by a burst

size 𝑚𝑝 and a period 𝑇𝑝. Bursts of 𝑚𝑝 periodic events

occur at 0, 𝑇𝑝, 2𝑇𝑝, etc. For sporadic events, at most

𝑚𝑝 events can occur in any half-closed interval of length

𝑇𝑝. In the sequel, we associate the attributes of an event

generator with the corresponding process, e.g., 𝑇𝑝 and
𝑑𝑝.

Definition 4 (FPPN) An FPPN is a tuple 𝒫𝒩 =

(𝑃,𝐶,ℱ𝒫, 𝐸𝐺𝑝, 𝐼𝑝, 𝑂𝑝, 𝑑𝑝, 𝛴𝑐, CT 𝑐), where 𝑃 is a set

of processes and 𝐶 ⊆ 𝑃 × 𝑃 is a set of internal chan-

nels, with (𝑃,𝐶) defining a (possibly cyclic) directed

graph. An acyclic directed graph (𝑃,ℱ𝒫) is also de-

fined, with ℱ𝒫 ⊂ 𝑃 × 𝑃 a functional priority relation.

This relation should be defined at least for processes ac-

cessing the same channel, i.e., (𝑝1, 𝑝2) ∈ 𝐶⇒(𝑝1, 𝑝2) ∈
ℱ𝒫∨(𝑝2, 𝑝1) ∈ ℱ𝒫. 𝐸𝐺𝑝 maps every process 𝑝 to a

unique event generator, whereas 𝐼𝑝 and 𝑂𝑝 specify the

respective partitions of the global set of external input

channels 𝐼 and output channels 𝑂, resp. 𝑑𝑝 defines the

relative deadline for accessing the I/O channels of gener-

ator 𝐸𝐺𝑝, 𝛴𝑐 defines alphabets for internal and external
I/O channels and CT 𝑐 specifies the channel types.

⊓⊔
The priority relation ℱ𝒫 defines the order in which

two processes are executed when invoked at the same

time. It is not necessarily a transitive relation. For ex-

ample, if (𝑝1, 𝑝2) ∈ ℱ𝒫 , (𝑝2, 𝑝3) ∈ ℱ𝒫 , and both 𝑝1 and

𝑝3 get invoked simultaneously then ℱ𝒫 does not imply

any execution-order constraint between them unless 𝑝2
is also invoked at the same time. The functional prior-

ities differ from the scheduling priorities. The former

disambiguate the order of read/write accesses to inter-

nal channels, whereas the latter ensure satisfaction of

timing constraints.

5 FPPN Zero-delay Semantics

The functional determinism requirement prescribes that

the data sequences and timestamps in the outputs are

a well-defined function of the data sequences and time

stamps in the inputs. This is ensured by the so-called

functional priorities. In essence, functional priorities

control the process job execution order, which is equiv-

alent to the effect of fixed priorities on a set of tasks

under uni-processor fixed-priority scheduling with zero

task execution times. A distinct feature of the FPPN

model is that priorities are not used directly in schedul-

ing, but rather in the definition of model’s semantics.

Following the usual real-time systems terminology, in-

voking a task implies generation of a job, which has to

be executed before the task’s deadline. The so-called

precedence constraints, i.e., the semantical restrictions

of FPPN job execution order, are implied firstly from

the timestamps when the tasks are invoked and secondly

from the functional priorities. In this section, we define

these constraints in terms of a sequential execution or-

der, i.e. an execution trace defined as the sequence of
actions observed when running a sample execution of

the system for a given sequence of events (arriving via

event generators) and input data (arriving via external

input channels).

The FPPN model requires that all simultaneous

process invocations should be signaled synchronously.

This can be realized by introducing a periodic clock

with sufficiently small period (the 𝑔𝑐𝑑 of all 𝑇𝑝), such

that invocation events can only occur at clock ticks,

synchronously. Two variant semantics are then defined,

namely the zero-delay (ZD) and the real-time (RT)

semantics.

The ZD semantics imposes an order on job execu-

tions assuming that they have zero delay and that they
are never postponed to the future. Since in this case

the deadlines are always met even without exploiting

parallelism, a sequential execution of processes is con-

sidered for simplicity. The semantics is defined in terms

of the rules for constructing the execution trace of the

FPPN for a given sequence of events (𝑡1,P
1), (𝑡2,P

2)
. . . , where 𝑡1 < 𝑡2 < . . . are timestamps and P𝑖 is the

multi-set of processes invoked at time 𝑡𝑖. The execution

trace has the form:

𝑇𝑟𝑎𝑐𝑒(𝒫𝒩) = w(𝑡1) ∘𝐴1 ∘w(𝑡2) ∘𝐴2 . . . (2)

where 𝐴𝑖 is concatenation of job execution traces of the

processes in P𝑖. The job executions are included in an

order, such that if (𝑝1, 𝑝2) ∈ ℱ𝒫 then the job(s) of 𝑝1
execute earlier than those of 𝑝2.

Definition 5 (Configuration) An FPPN configura-

tion 𝜉 is a tuple (𝜋, 𝛾,P) which consists of:

– a process configuration 𝜋, a function that assigns to

every process a state 𝜋(𝑝) ∈ D(𝜋𝑝)

– a channel configuration 𝛾, i.e., the states of internal

and external channels

– a set of pending processes P

⊓⊔
When the set of pending processes is not empty,

the ZD semantics selects the highest priority process,

executes its job and removes the process from the list

of pending processes. We refer to this operation as dis-

patching a process. To formally define the dispatching

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 11

of a process, as well as other operations of the FPPN

semantics, we use inference rules based on the Struc-

tured Operational Semantics (SOS) notation, where the

proposition above the ‘solid line’ i.e., nominator is the

premise, while the proposition below it i.e., denominator

is the conclusion; such a rule is read as follows: if the

premise holds then conclusion holds as well.

Definition 6 (Dispatching a pending process) Dis-

patching a pending process is defined as a transition

‘𝜉
𝛼−→𝒫𝒩 𝜉′’ from configuration 𝜉 to configuration 𝜉′,

given by the rule:
𝑝 ∈ P ∧ (𝜋𝑝, 𝛾)

𝛼−→𝑝 (𝜋′, 𝛾′) ∧ @𝑝′ ∈ P : (𝑝′, 𝑝) ∈ ℱ𝒫
(𝜋, 𝛾,P)

𝛼−→𝒫𝒩 (𝜋 [[𝜋𝑝 ↦→ 𝜋′]], 𝛾′,P ∖ {𝑝})

where by 𝜋[[𝜋𝑝 ↦→ 𝜋′]] we denote the change in 𝜋 when

replacing the state of 𝜋𝑝 by 𝜋′. Hereby we also recall

that 𝛼 is a job execution trace (see Eq. (1) and ‘
𝛼−→𝑝’

denotes execution of a job of process 𝑝 (see Def. 2).

⊓⊔
Given a non-empty set of processes P invoked at

time 𝑡, a maximal execution run of a process network

is defined by a sequence of process dispatchings that

continues until the set of pending processes is empty.

(𝜋0, 𝛾0,P)
𝛼1−→𝒫𝒩 (𝜋1, 𝛾1,P ∖ {𝑝1})

𝛼2−→𝒫𝒩 . . . (𝜋1, 𝛾1, ∅)

(𝜋0, 𝛾0)
w(𝑡)∘𝛼1∘𝛼2∘...↦−→ 𝒫𝒩 (P) (𝜋1, 𝛾1)

Recall the notation 𝐴𝑖 introduced earlier, which in

fact corresponds to the sequence of data processing
actions of a maximal execution run:

𝐴𝑖 = 𝛼1 ∘ 𝛼2 ∘ . . .
𝐴𝑖 always follows immediately after w(𝑡𝑖) in the system

execution trace.
Given an initial configuration (𝜋0, 𝛾0) and a sequence

(𝑡1,P
1), (𝑡2,P

2) . . . of events invoked at times 𝑡1 < 𝑡2 <
. . ., the run of process network is defined by a sequence
of maximal runs that occur at the specified timestamps.

𝑅𝑢𝑛(𝒫𝒩) = (𝜋
0
, 𝛾

0
)

w(𝑡1)∘𝐴1↦−→ 𝒫𝒩(P1) (𝜋
1
, 𝛾

1
)

w(𝑡2)∘𝐴2↦−→ 𝒫𝒩(P2) . . .

The execution trace of a process network is a projection

of the process network run to actions, as it is given by

Equation (2). This trace contains the waiting actions for

each timestamp (w(𝑡1),w(𝑡2) . . .) followed by the data

processing actions executed at every timestamp. From

the effect of these actions it is possible to determine

the sequence of values written to the internal and exter-

nal channels. These values depend on the states of the

processes and internal channels. The concurrent activi-

ties – job executions – that modify each process/channel

states are deterministic themselves and are ordered rel-

atively to each other in a way which is determined by

the timestamps and the ℱ𝒫 relation. Therefore we can

pose the following claim.

Theorem 1 (Functional determinism) The sequen-

ces of values written to all external and internal channels

are functionally dependent on the events of the event

generators and on the data samples at the external in-

puts.

Proof By reductio ad absurdum, let us assume that a

non-deterministic modification of a state variable in

(𝜋, 𝛾) takes place. Therefore, in this case, there exists

an inter-process channel state variable 𝛾𝑐 that is concur-

rently written by two processes 𝑝1 and 𝑝2. This implies

that these two processes are connected by channel 𝑐,

i.e., (𝑝1, 𝑝2) ∈ 𝐶. Recall that the FPPN model requires
that: (𝑝1, 𝑝2) ∈ 𝐶 =⇒ (𝑝1, 𝑝2) ∈ ℱ𝒫 ∨ (𝑝2, 𝑝1) ∈ ℱ𝒫,

i.e. processes 𝑝1 and 𝑝2 are related by relation ℱ𝒫.

Since these two processes execute concurrently and

in ZD semantics we assume the processes take zero

time this should imply that they execute at the same

timestamp. Now recall that in FPPN ZD semantics the

processes should perform a maximal execution run be-
fore the time can advance to the next time stamp. This

implies that 𝑝1 and 𝑝2 can execute at the same times-

tamp only under the condition that they are invoked

simultaneously.

Thus we have that 𝑝1 and 𝑝2 are invoked simulta-

neously and are related by relation ℱ𝒫. This implies
that two simultaneous invocations are executed in the

order that respects the relation ℱ𝒫. Thus, there is no

non-deterministic choice for the order in which the two

processes execute, and hence their execution is not con-

current, which contradicts our initial assumption.

⊓⊔
In the end of this section, let us provide a more

concise definition of what exactly is meant by the ‘func-

tion of the system’ in the case of ZD execution of

the FPPN. For any timestamp 𝑡𝑚, let 𝑡0, 𝑡1, ..., 𝑡𝑚 be

the timestamps that occurred no later than 𝑡𝑚. Let

P0,P1, ...,P𝑚 be the respective processes invoked. Re-

call that the state of all external channels includes, by

definition, the complete history of all elements that

were present there at all previous time instants. Then,

after the execution of all processes, at time 𝑡𝑚 the state

𝛾𝑜(𝑡𝑚) of the external output channels is a function

𝛾𝑜(𝑡𝑚) = 𝐹𝑈𝑁𝐶𝑚(𝛾𝑖(𝑡𝑚),P0,P1, ...,P𝑚) of: 𝑎) input

channel state 𝛾𝑖(𝑡𝑚), 𝑏) the contents of P0,P1, ...,P𝑚,

i.e., which processes have been invoked and in which

order. Basically, the functional determinism property

means that the outputs calculated by an FPPN depend

only on the events and the input data sequences, but

not on the scheduling.

To exploit task parallelism, in the RT semantics, the

sequential order of execution and the ZD assumption

will be relaxed.

12 Fotios Gioulekas et al.

6 FPPN Real-Time Semantics

In the RT semantics, job executions last for some phys-

ical time and can start concurrently with each other

at any time after their invocation. Given precedence

constraints are respected, which for certain jobs impose

the same relative order of execution as in ZD seman-

tics, so that non-deterministic updates of the states of

processes and channels are excluded. To ensure timeli-

ness, the jobs should complete their execution within

the deadline after their invocation. The semantics intro-

duces the entities for communication, synchronization,

scheduling and is defined by transformation of an FPPN

model to an executable formal specification language

called BIP (which stands for ‘Behavior, Interactions,

and Priorities’).

The real-time version of BIP [4] is used for modeling

networks of connected TA components [42]. We adopt

the extension in [21], which introduces the concept of

continuous (asynchronous) transitions, which, unlike the

default (discrete) transitions take a certain physical time.

Next to the support for tasks via continuous transitions,

BIP also supports the urgency in timing constraints, and

those are TA features required for adequate modeling

and timing verification of data-flow languages [20]. An

important characteristic of the BIP language, for imple-

menting the functional code of tasks, is the possibility

to specify data actions in an imperative programming

language (C/C++).

In Figure 4, we list in the middle the main elements
of a BIP model, whereas on the right two connected BIP

components are shown, which form a small BIP model.

A BIP component is a transition system with more
general semantics than the transition system defining an

FPPN process (Def 1). We use BIP components to model

not only the processes, but also other FPPN entities,
e.g., internal channels and event generators. For each

FPPN process and the corresponding event generator

we respectively generate a pair of BIP components that

are shown in the figure.

If we compare the BIP components to their corre-

sponding FPPN processes, then in BIP we find the same

elements – the locations, the initial location, the data

actions, the data conditions (the same as the ‘guard-

ing condition’) and the transitions. The list of ports of

a BIP component is analogous to the list of channels

connected to a process, except that one can use data

actions to define various operations on ports, not only

the FPPN-like reads and writes. An important differ-

ence of BIP ports from the FPPN read/write actions

is that BIP ports are blocking, i.e., a BIP interaction

via port is only possible when all other ports connected

to it via connector are ready to make the interaction

synchronously in all components. Another difference is

that the transitions are now classified as discrete and

continuous. The discrete transitions are similar to ZD

semantics, i.e. they are (conceptually) supposed to take

zero time.

An essential addition in BIP components is the pos-

sibility to use special variables called ‘clocks’. Their

values start at zero and increase linearly in time. It is

also possible to set guarding conditions, called timing

conditions, to program some actions when the timing

value of a clock satisfies a given requirement. A clock

can be reset to zero by a timing action. In Figure 4, we

illustrate how to program a periodic event generator

using timing conditions and actions.

In the FPPN-to-BIP model transformation process a

TA component is created for each process, event gener-

ator, and arrow in the relation ℱ𝒫. These components

are connected by multi-port connectors. For convenience

we indicate the ports that are joined to the same con-

nector by the same name, such as ‘Start <process>’,

‘Invoke <process>’ etc.

Figure 4 illustrates how an FPPN process and its

event generator are transformed into BIP components

and connected together. The process’s functional code
is parsed, searching for primitives that are relevant

for the interactions of the process with other com-

ponents. The relevant primitives are the reads and

writes from/to the data channels. For those primitives,

ports are attached to the generated BIP component,
e.g., ‘XIF Read(IN x,IN valid)’, via which the respective

transitions inside the component synchronize and ex-

change data with other components. In line with Def. 2,

every job execution corresponds to a sequence of tran-

sitions that starts and ends in an initial location. The

first transition in this sequence, ‘Start’, is synchronized

with the event generator component, which enables this

transition only after the process has been invoked. The

event generator shown in Figure 4 is a simplified variant

for periodic tasks, whose deadline is equal to the pe-

riod. In [40], it is also described how we model internal

channels and more details are given on event generator

modelling.

To ensure a functional behavior equivalent to ZD

semantics, the job executions have to satisfy precedence

constraints between subsequent jobs of the same process,

and the jobs of process pairs connected by a channel. In

both cases, the relative execution order of these subsets

of jobs is dictated by the ZD semantics, whereby the jobs

are executed in the invocation order and the simultane-

ously invoked jobs follow the functional priority order.

In this way, we ensure deterministic updates in both

cases: (i) for the states of processes by excluding auto-

concurrency, and (ii) for the data shared between the

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 13

Start_SQR

S1

Invoke_SQR
reset x

Finish_SQR

Deadline_SQR
when [x = T]

Start_SQR Finish_SQR

EventGenerator (T)

void SQR_Init() {

index = 0;

}

void SQR_Execute() {

XIF_Read(&x, &x_valid);

if (x_valid) {

y = x * x;

YIF_Write(&y);

}

index = index + 1;

}

discrete transition

continuous transition

port

when [x = T] timing condition

[valid] data condition

reset x timing action

y := x*x data action

multi-port
connector

location

Initial location

Invoke_SQR

init

Start_SQR

 y := x*x

XIF_Read(IN x, IN valid)

Finish_SQR

Start_SQR Finish_SQR

XIF_Read(IN x, IN valid)

YIF_Write(OUT y)

[valid][¬valid]

index := 0

index := index+1

YIF_Write(OUT y)

Start_SQR

Fig. 4: Transformation of functional code to BIP

Invoke� FalseInvoke�

FunctionalPriority (δδδδ�	, δδδδ�, ��,	��) Imposing precedence when (�, �) ∈ ��

δδδδ�	, δδδδ�		– invocation poll period; �,	�– anticipated invocation time

��,	�� – job queue size; ��,	�� – queue of struct (time, confirmed)

Invoke�

invoke�();

advance�();

FalseInvoke�

cancel�();

advance�()

Invoke�

invoke�();

advance�();

Start�

[not busy

and ready�()()()()]

busy:=True;

Finish�

Q�.Pop();

busy:=False;

Finish�

Q�.Pop();

busy:=False;

Start� Finish� Invoke� FalseInvoke� Start� Finish�

FalseInvoke�

cancel�();

advance�()

Start�

[not busy

and ready�()()()()]

Q�.Pop();

busy:=True;

init�();

init�();

init�()

�:=0;

Q�.Allocate ():= struct (time=>0, confirmed=>false);

Q�.Push();

invoke�()

Q�.Tail.confirmed:= true;

advance�()

�:= �+ δδδδ�

Q�.Allocate ():= struct (time=>�, confirmed=>false);

Q�.Push();

cancel�()

Q�.Pull();

ready �()

[Q�.Head.confirmed] and

[(Q�.Head.time) < (Q	�� . Head .time)]

or

[[(Q�.Head.time) = (Q ��. Head .time)] and � = �]

Subroutine definition:

Fig. 5: Functional priority component (FP component) generated for each (𝐴,𝐵) ∈ ℱ𝒫

processes by excluding data races on the channels. The

precedence constraints for (i) are satisfied by construc-

tion, because BIP components for processes never start

a new job execution until the previous job of the same

process has finished. For the precedence constraints in

(ii), an appropriate component is generated for each pair

of ℱ𝒫-related processes and plugged incrementally into

the network of BIP components.

Figure 5 shows such a component generated for a

given pair of processes “A” and “B”, assuming (A,B) ∈
ℱ𝒫 . We saw in Figure 4 that the evolution of a job execu-

tion goes through three steps: ‘invoke’, ‘start’ and ‘finish’.

The component handles the three steps of both processes

in almost symmetrical way, except in the method that

determines whether the job is ready to start: if two

jobs are simultaneously invoked, then first the job of

14 Fotios Gioulekas et al.

process “A” gets ready and then, after it has executed,

the job of “B” becomes ready.

The FP component is connected via ports ‘Invoke 𝛼’

or ‘FalseInvoke 𝛼’ to the event generator (EG) compo-

nent of the respective processes. At regular intervals

𝛿𝛼, specific for the process 𝛼, the FP component per-

forms either ‘Invoke’ or ‘FalseInvoke’ interaction, with

the decision which of them is selected being taken by the

EG component. For periodic processes 𝛿𝛼 = 𝑇𝛼 (i.e., the

period) and the decision is always to perform an ‘In-

voke’ interaction (check the periodic EG component in

Figure 4). For sporadic processes, typically 𝛿𝛼 ≪ 𝑇𝛼

and most of the time only ‘FalseInvoke’ interactions

are performed and only occasionally there are ‘Invoke’

interactions. We use the name ‘sporadic protocol’ for a

user-defined subroutine that runs inside the EG with

period 𝛿𝛼, polls the environment (I/O peripherals) and

decides whether the sporadic process needs to be invoked

to handle an external event.

The FP component has two variables of type ‘queue’

(a FIFO buffer of data entries of certain type). Since

the entries of these two queues contain the information

about jobs, we refer to them as ‘job queues’. A queue

is implemented by a circular buffer with the following

operations:

– Allocate() picks an available (statically allocated)

cell and creates a reference to it

– Push() pushes the last allocated cell into the tail

– Pull() undoes the push

– Pop() retrieves the data from the head of the queue

The two job queues are denoted by 𝑄𝛼 where 𝛼 ∈
{𝐴,𝐵} indicates to which of the two processes it refers.

With 𝛼 we denote ‘other than 𝛼’, i.e., if 𝛼 = 𝐴 then

𝛼 = 𝐵 and if 𝛼 = 𝐵 then 𝛼 = 𝐴. The jobs are arranged

in a job queue in an order consistent with their invoca-

tion times, starting from the earliest-invoked job in the

head and ending with the latest-invoked job in the tail.

An entry in the queue contains the invocation time and

a Boolean flag indicating whether the invocation at a

given time has been already ‘confirmed’ by an ‘Invoke’

interaction. An invariant of the FP component behav-

ior is that the job queue tail always contains the next

anticipated job, which is conservatively marked as ‘not

yet confirmed’. The older jobs in the queue, closer to

the head, are always ‘confirmed’, otherwise they would

not have been kept in the queue. The non-confirmed

job at the tail prevents the situation where, after all

previous jobs have been executed, the 𝛼 process would

execute some job, whereas it has not yet been ‘confirmed’

whether process 𝛼 has to execute a job that was invoked

at the same time or earlier. The ‘Invoke’ interaction

‘confirms’ the job in the tail (via ‘invoke 𝛼’ subroutine)

and pushes a new anticipated non-confirmed job (via

‘advance 𝛼’ subroutine). The ‘FalseInvoke’ interaction

removes the last anticipated (but not confirmed) job

from the tail (via ‘cancel 𝛼’) and pushes a new one at

the next anticipated time. The ‘Start’ interaction can

only take place for a confirmed job in the head of the

queue under the condition that the job of the other

process has a later invocation time or lower priority.

This is checked via the ‘ready 𝛼’ subroutine. When the

job has finished executing it is removed from the queue.

7 Functional Equivalence of ZD and RT

Semantics

We study here the differences and the correctness prop-

erties of the ZD and RT semantics, which eventually
entail an equivalent functional behavior. Hereby, for the

ZD semantics we are based on its formal definition and

for the RT semantics we mainly use the properties of

the BIP FP component for Functional Priority, as de-
scribed in previous section and in Figure 5. Recall that

for each pair of functional-priority related processes in

the FPPN, our FPPN-to-BIP model transformation cre-

ates an instance of the FP component that is connected

to the BIP components for the two processes.

We will show that both semantics satisfy – by con-

struction – three key correctness properties of the FPPN

MoC: (1) mutual exclusion of functional priority related

processes, (2) conformance to the invocation times, and

(3) conformance to the functional priorities. For the

ZD semantics, the properties are implied by the def-

initions, and for the RT semantics by the properties

of the FPPN-to-BIP model transformation. Finally, we

will show that the aforementioned properties entail a

functional equivalence between the two semantics.

In both semantics, processes are specified in terms

of transition systems, as is seen in Def. 1 for the ZD

semantics and from the bottom-right BIP component

of Figure 4, for the RT semantics. However, the TA

transitions may take non-zero time, as opposed to the

process definitions for the ZD semantics. Moreover, in

BIP, apart from the usual data-computation actions, the

automaton may perform actions classified as interactions

via ports, to synchronize and exchange data with other

components. The BIP component for a given process is

obtained from the FPPN process automaton through

the following transformation steps: (i) the ‘Start’ and

‘Finish’ transitions are added for interactions via the

respective ports, (ii) the read actions ‘𝑥?𝑐’ and write

actions ‘𝑦!𝑐’ are interpreted as interactions through ports

‘Read(𝑐,𝑥)’ and ‘Write(𝑐,𝑦)’, i.e., they do not perform

direct accesses to the state ‘𝛾𝑐’ of channel 𝑐, but instead

‘instruct’ the data channel components to update their

state by the respective interactions. Consequently, in

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 15

BIP, the process components interact with the channel

component ‘Channel(𝑐)’ connected to their ‘read’ and

‘write’ ports.

If we abstract from the timing of actions and check

their order, the execution traces of an FPPN process or

BIP process are virtually the same. Let a job execution

of the FPPN be:

(ℓ0, 𝜋1, 𝛾1)
𝑔1:𝑎1→ (ℓ1, 𝜋1, 𝛾1) . . .

𝑔𝑁 :𝑎𝑁→ (ℓ0, 𝜋2, 𝛾2),

with trace: 𝛼 = 𝑎1𝑎2 . . . 𝑎𝑁 . In this case, the trace of

executed BIP transitions will be

𝛼 = Start 𝑎1𝑎2 . . . 𝑎𝑁 Finish

The three correctness properties are formulated using

logical formulas that characterize the system’s state

trace that is given as a sequence of global states that

the system visits in-between actions. For both semantics

the global state includes the current values of state

variables and the current locations ‘ℓ’ of all process

automata. Additionally, for the ZD semantics, it also

includes the current configuration and the current time

(i.e., the timestamp of the last w(𝑡) action). For the

RT semantics, on top of the process automata related

state, the global also includes the variable state and

locations of the other BIP components, i.e., the data-

channel components, the EG components, and the FP

components. For our logical formulas only the following

information in the system state is relevant:

– whether or not a given process automaton is in its

initial location ℓ0

– what is the latest invocation time of a given process;

for the ZD semantics it simply equals to the current

time, and for the RT semantics it can be derived from

the state of automata, in particular, it is contained

in the head of the respective job queue in a related

FP component.

The logical formulas for the correctness properties

are, in fact, theorems for both the ZD and RT semantics

and our arguments for their validity indicate the lines of

reasoning for their proofs. At the top-level, the formulas

quantify over processes 𝑝 and time variables 𝑡. The pred-

icates are the LTL formulas, relations between processes,

and (in-)equalities over time variables. The LTL formu-

las express statements about the system state trace and

they use the common operators i.e., the always (true

now and forever) ‘2’ operator and the eventually or fi-

nally (true now or sometime in the future) ‘3’ operator.

To simplify the notation we omit all quantizers from the

formulas (if necessary they can be easily guessed).

Regarding the the mutual exclusion property, first,

we note that in ZD semantics there are no two job exe-

cutions that may be ever interleaved with each other in

the FPPN system action trace, i.e., there are no FPPN

action fragments like 𝑎1𝑎
′
1𝑎

′
2𝑎

′
3𝑎2, where 𝑎𝑖 and 𝑎′𝑖 are

steps of two different job executions 𝛼 and 𝛼′. Therefore,

the system execution trace is defined as concatenation

of complete job executions: the FPPN behavior is seen

as selecting a process, letting it run a complete sequence

of steps of a job execution until the return to its initial

state ℓ0, and then selecting another process and repeat-

ing the same cycle, and so on. On the other hand, the

BIP operational semantics [7] a priori lets all compo-

nents execute their actions concurrently, except those
components that are blocked waiting for interactions.

Consequently, the RT semantics potentially allows some

interleaving.

The non-interleaving behavior of the ZD seman-

tics prevents data race conditions between functional-

priority related processes, where races could occur in

the access order to the shared data channels. For any

two processes that do not share a data channel, their

interleaving does not impact the functional behavior,

and thus can be permitted in RT semantics.

We conclude that the RT semantics has to fulfill the
mutual exclusion correctness property, which delimits

the necessary non-interleaving.

Mutual Exclusion of functional priority related

processes 𝑝 1 𝑝′ ⇒ 2(¬ℓ0𝑝 ⇒ ℓ0𝑝′)

where by 𝑝 1 𝑝′ we denote two processes that are func-

tional priority related ((𝑝, 𝑝′) ∈ ℱ𝒫 ∨ (𝑝′, 𝑝) ∈ ℱ𝒫) and

ℓ0𝑝 states that at the beginning of trace the automaton of

𝑝 is at its initial location ℓ0, and hence no job execution

of that process is currently active.

The operator ‘2’ (referred to as ‘always’) means

an assertion that the logical statement to which the

operator is applied is true for the system trace, if we

start capturing it from no matter which moment of

time. The property specifies that if two processes are

functional priority related then whenever a job execution

of one process is currently running no job execution of

the other process is also running at the same time. This

means that the processes concerned do not interleave

their job executions.

According to the RT semantics, the BIP automata

for the two functional-priority related processes are con-

nected to an FP automaton. As we see in Figure 5,

whenever one of the processes starts a job execution

– at the ‘Start’ interaction – the ℱ𝒫 component sets

its ‘Busy’ flag to ‘true’, which prevents that another

‘Start’ interaction is initiated before the execution of

the ‘Finish’ interaction. The FP component is therefore

guaranteeing mutual exclusion between the given pair of

processes. Since the ZD semantics satisfies mutual exclu-

16 Fotios Gioulekas et al.

sion by construction, we conclude that both semantics

satisfy this property.

The next property requires the system to let the job

executions of functional priority related processes start

in an order that respects the invocation time:

Conformance to Invocation Order 𝑝 1 𝑝′ ⇒
2
(︀
¬ℓ0𝑝 ∧ 𝑖𝑡𝑝 = 𝑡 ∧3(¬ℓ0𝑝′ ∧ 𝑖𝑡𝑝′ = 𝑡′) ⇒ (𝑡 ≤ 𝑡′)

)︀
where 𝑖𝑡𝑝 is a function of the system state that returns

the invocation time of the latest job execution for 𝑝 that

has started so far.

Operator ‘3’ (referred to as ‘eventually’) states that

the logical formula to which the operator is applied

will eventually hold in the future. Thus, the property

states that the invocation time of a job that is currently

running, does not exceed the invocation time of any job

that starts later.

This property is satisfied by the ZD semantics, be-

cause at every moment 𝑡 the maximal execution of all

jobs invoked at 𝑡 is performed, whereupon any new job

can be invoked only at a moment 𝑡′ later than 𝑡. For

the RT semantics, let us consider a job that is ‘ready’

to ‘start’ according to the FP component, shown in
Figure 5. Since the queue structures contain the job

invocation times, the 𝑟𝑒𝑎𝑑𝑦 𝛼() condition states that

if two jobs have different execution times only the job

that is invoked earlier can be ready to execute first.

The following property determines the order of jobs

that are invoked simultaneously:

Conformance to Functional Priority 𝑝 1 𝑝′ ⇒
2
(︀
¬ℓ0𝑝 ∧ 𝑖𝑡𝑝 = 𝑡 ∧3(¬ℓ0𝑝′ ∧ 𝑖𝑡𝑝′ = 𝑡) ⇒ (𝑝, 𝑝′) ∈ ℱ𝒫

)︀
The ZD semantics satisfies this property based on

the definition of ‘
𝛼−→𝒫𝒩 ’ transition relation between

two configurations, which excludes the possibility that a

process may execute a job while a higher-priority process

is pending. By inspecting the ‘𝑟𝑒𝑎𝑑𝑦 𝛼()’ condition, it is

obvious that the RT semantics also satisfies the property.

The mutual exclusion property excludes the data

races at internal channels at the level of individual ac-

tions, and the two other properties ensure that there are

no races at the level of job executions, since the job order

is a function of the jobs’ invocation timestamps. The

functional determinism theorem and its proof show that

this order of job executions determines a unique func-

tion of the system outputs on the system inputs. Thus,

the two semantics exhibit unique and hence equivalent

functional behavior.

8 Design Framework

8.1 Design Flow Toolchain

The model-based design philosophy for embedded sys-

tems [29] that we follow is grounded on the principle

of evolutionary design using models, which support the

gradual refinement of system’s design (making the mod-

els more detailed and accurate) including the configu-

ration of real-time attributes that ensure predictable

timing and schedulability. Such a process allows con-

sidering various design scenarios and promotes the late
binding to design decisions. Our approach to refinement

is based on component-based models, which allow the

design to evolve incrementally by plugging new compo-

nents and transforming existing ones.

In the design flow of Figure 1 in Section 3, we take as

a starting point a set of tasks defined by their functional

code and real-time attributes (e.g., periods, deadlines,

WCET). We assume that these tasks are encapsulated

into a software architecture with ‘functional blocks’ –

or, simply, ‘functions’. Functions correspond to FPPN

processes. Before being integrated into a single architec-

tural model they can be compiled and tested separately

by functional simulation or by running them on the

embedded platform.

Capturing the design is facilitated using tools with

a GUI interface, whereas the design flow is automated

using scripts and analysis tools. The entire design frame-

work, called TASTE2BIP, is available for download at [3].

The high-level architecture description framework that

supports our design flow is the TASTE toolset [29,35],

whose front-end tools are based on the AADL (Ar-

chitecture Analysis & Design Language) syntax [16].

TASTE is an extensible open-source software engineer-

ing framework for real-time distributed system design.

It is amenable to customization by new code generation

tools and languages. For our design flow, we are based

on the translation of FPPN networks in TASTE to BIP,

as an intermediate step for the real-time scheduling on

multiple processor cores with functionally deterministic

communication and schedulability constraints.

An architecture model in TASTE consists of func-

tional blocks, which interact with each other via pairs of

interfaces (IF), the so-called ‘required IF’ and ‘provided

IF’, where the former performs a procedure call to the

latter. The provided interfaces can be explicitly used

for invoking tasks, i.e., they may get attributes like ‘pe-

riodic’/‘sporadic’, ‘deadline’ and ‘period’. Each FPPN

process is represented by a unique functional block that

‘provides’ a unique sporadic or periodic interface, whose

implementation in C/C++ language defines a job exe-

cution. The functional block also ‘requires’ reading and

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 17

writing interfaces for each data channel that the process

reads (resp. writes) from (resp. to). Also, each process

is assigned a unique integer, a defined TASTE attribute

that corresponds to the functional priority ℱ𝒫 index.

Higher ℱ𝒫 indexes refer to lower priorities, as defined

in Section 4 (cf. Figure 2).

Moreover, criticality levels can also be defined for

the processes, according to their importance for safety

of people and equipment. For example, in avionics, criti-

cality A is given to the computers that control the flaps
of the wings, criticality B to autopilot, criticality C to

communication with the ground, criticality E for enter-

tainment on board. Safety standards define respective

tolerated error rate per hour of flight, 10-9 for autopilot

and usually 10-3 for the entertainment of board (each

level is associated with an integer i.e., A = 5, B = 4, C

= 3, D = 2, E = 1). The criticality levels are taken into

account by our offline scheduling tool [36]. The proposed

flow currently supports two levels of criticality i.e., ‘D’

and ‘E’, where ‘D’ corresponds to process with higher

criticality level than ‘E’.

The first refinement step in Figure 1 comprises the

connection of processes with each other by ‘plugging’

the data channels for explicit communication between

the processes. A data channel is also represented by a

single TASTE functional block, which ‘provides’ one

read and one write interface, being plugged into the ‘re-

quired’ interfaces of the TASTE blocks for the processes

that read and write to them. By editing the TASTE

attributes of the functional blocks, we can specify the

type of data channel (i.e., mailbox or blackboard) and

its capacity (for a mailbox), in terms of the number of

data items that are buffered in the channel. A tempo-

rary required attribute of a data channel is the (upper

bound of) byte size of one data item, which in fact is a

platform-dependent low-level detail that can be depre-

cated in future versions of our framework, as TASTE

supports more powerful data type management2. The at-

tributes of TASTE functional blocks have been amended

as appropriate, in order to reflect the priority index and

criticality of the FPPN processes, as well as the channel

parameters. The resulting model can be compiled and

simulated within the TASTE native framework, as well

as in our design framework too.

2 To this end, TASTE supports a language called ASN.1 in
which we can define the data types for all ‘provided’/‘required’
interfaces in a platform-independent manner. Moreover, an
ASN.1 compiler is also provided that translates the data type
specification into platform-dependent code and ensures appro-
priate cross-platform data conversion. In our framework, such
capabilities are future work prospects, since we currently focus
on a single multi-core platform and no support is provided
for distributed systems with communication between different
platforms.

The next refinement step is the scheduling for the

multi-core platform. This step includes the transforma-

tion of the TASTE architectural model into the equiv-

alent BIP model for the FPPN network (Figure 1).

Through this, the FPPN network can be coordinated

by the multi-core BIP RTE, which guarantees that the

formally defined RT semantics for the network of BIP

components is respected, while they are executing on

multiple cores. Thus, we provide a formal, incremental

component-based model for scheduling, while respecting

by construction the RT semantics of FPPNs.

The scheduling decisions are computed offline, using

a static mapping of processes to cores and a static order-

ing policy, for which the scheduler has to compute the

optimal order to be used online. The scheduling decisions
are subsequently reflected by plugging an additional BIP

component, called online-scheduler (cf. Figure 6), which,

on top of the FP components, further restricts the order

and timing of execution of the process components on

each processor core. The offline computation of the static

schedule is based on a task graph, which is automatically

generated from the architectural model (Figure 1) by

taking into account the periods, the functional priorities

and the WCET of processes. The WCET should be

obtained by analysis tools for the code derived from the

BIP model with the BIP compiler and linked with the

BIP RTE. The task graph represents a maximal set of

jobs invoked in a hyperperiod (least common multiple of

all periods) and their precedence constraints; it reflects

the invocation times and the deadlines of jobs relatively

to the hyperperiod start time.

For deriving a task graph that correctly represents

the sporadic processes, we adopt certain restrictions for
these processes in the FPPN network [38]. In particular,

every sporadic process 𝑝 should be connected by data

channels to a single periodic process, referred to as ‘user’

process 𝑢(𝑝). A sporadic process should not be related

by ℱ𝒫 to any other process than its unique periodic

‘user’, which makes it possible to reflect its precedence

constraints in a task graph. This restriction also makes

sense from a practical point of view, as the sporadic tasks

often act as utility to dynamically re-configure some of

the parameters of certain periodic tasks, which are thus

‘users’ of sporadic tasks according to this terminology.

The task graph is given as input to the static sched-

uler, while the new schedule obtained from the tool

is manually translated into constraints for the online-

scheduler (this step in Figure 1 has not yet been au-

tomated). First, by inspecting the time charts of the

generated offline schedule, the user has to define a tex-

tual file for the static mapping of process components to

the cores. Secondly, for those processes that are mapped

to the same core and are not functional priority related,

18 Fotios Gioulekas et al.

τ2

a b

τ1

[a > b]

Attributes (labels)

Tasks (graph nodes)

Condition
(a, b functional priorities)

Model
Transformation

‘Rule’

B2B1

[B1 = f(τ1)]

Functional
Priority

b after a

[B2 = f(τ2)]

Online Scheduler

Functional Priority components

B1

EvGen1
channel

B2

EvGen2

B3

EvGen3

Task graph
Architectural

model

Static
schedule

System
BIP model

FPPN BIP model

FilterB[1]

(0,200,25)

CoefB[1]

(0,200,25)

CoefB[2]

(0,200,25)

p i [k i]

(A i , D i , Ci)

Core 1

Core 2

time

Fig. 6: Model and graph transformations for the FPPN semantics

new FP components have to be added, which ensure

the same order as the static order computed by the

tool. These additional FP components altogether, in

fact, constitute the ‘online scheduler’. Note that one

can either add new edges to the ℱ𝒫 relation in the

high-level FPPN representation before FPPN-to-BIP

transformation or plug new instances of FP component

into the BIP model of FPPN.

The joint application and scheduler model is called

System Model (Figure 1). This BIP model is eventually

compiled and linked with the BIP-RTE for the final

implementation on the embedded platform.

8.2 FPPN2BIP Model Transformation

The model transformation tool maps the TASTE FPPN

model entities (XML file and C/C++ code) to BIP as

shown in Table 3 and eventually generates an equiv-

alent BIP model according to the RT semantics. The

model transformation, which is depicted in Figure 6,

consists of: (a) code-to-code transformations of TASTE-

embedded code into BIP-embedded C/C++ code, and

(b) graph-to-graph transformations, where a network of

TASTE components is transformed into a network of

BIP components. It can be described by the following

set of transformation rules that synthesize the network

of BIP components according to the configuration of

the FPPN model:

(i) Event Generator and BIP Process Constitution: Ev-

ery task 𝜏𝑎 is transformed into a BIP subnetwork

𝐵𝑎 comprising a BIP Task component and an Event

Generator component 𝐸𝑣𝐺𝑒𝑛𝑎 bound to each other

by two connectors, 𝑆𝑡𝑎𝑟𝑡𝑎 and 𝐹𝑖𝑛𝑖𝑠ℎ𝑎, as shown

in Figure 4.

(ii) Connection between Task and Functional Priority

Components: Each BIP subnetwork 𝐵𝑎 is connected

to the FP Components that correspond to the ℱ𝒫
arrows, which involve 𝜏𝑎. The aforementioned 𝑆𝑡𝑎𝑟𝑡𝑎
and 𝐹𝑖𝑛𝑖𝑠ℎ𝑎 connectors are extended to include the

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 19

Table 3: TASTE2BIP model transformation

FPPN entity TASTE representation Transformation BIP component(s)

Periodic process

Function with attributes: Function to Task component Task and
·Class=periodic process + Event Generator Event Generator with
·Fpriority=integer periodic features
Provided interface: and invocations
·Kind=cyclic
·period, deadline, WCET

Sporadic process

Two functions† Function #1 to Task component Task and
Function #1 attributes: and Function #2 to Event Generator Sporadic Event Generator
·Class=sporadic process instrumented by given
·Fpriority=integer sporadic protocol
Provided interface for #1:
·Kind=sporadic
·min-interarrival,deadline,
WCET, queue size
Function #2 attributes:
·Class=sporadic protocol
Provided interface #2:
·Kind=cyclic
·protocol period 𝛿
Function with attributes: Function to Blackboard channel
·Class=blackboard component implementing with the given
·DataChannelSize (size of
ASN.1 data type)

Blackboard (shared variable) data item size

Blackboard write port⋆parameters:
channel IN data, valid,

OUT write fail
read port⋆parameters:
OUT data, valid
Function with attributes: Function to Mailbox (FIFO)
·Class=mailbox component implementing channel with the given
·DataChannelSize (size of Mailbox (FIFO) data item size
ASN.1 data type) and length (number of

Mailbox (FIFO) ·DataChannelLength=int items)
channel write port⋆parameters:

IN data, valid,
OUT write fail
read port⋆parameters:
OUT data, valid

† Required interface of function #2 connected to provided interface of function #1.
⋆ Ports connected with provided interfaces, assigned attributes of connected processes.

respective ports of the relevant FP components. The

Event Generator component 𝐸𝑣𝐺𝑒𝑛𝑎 is also bound

by connectors 𝐼𝑛𝑣𝑜𝑘𝑒𝑎 and 𝐹𝑎𝑙𝑠𝑒𝐼𝑛𝑣𝑜𝑘𝑒𝑎 to the

respective ports of the FP components. In the end,

if there are two functionally priority related tasks 𝜏1
and 𝜏2, with priority indexes 𝑎 and 𝑏, respectively,

where 𝑎 > 𝑏, then their Task components will be

plugged to the FP component corresponding to the
arrow (𝜏2, 𝜏1) in relation ℱ𝒫 (Figure 5).

(iii) Connection of Task with Channels: If two tasks 𝜏1
and 𝜏2 write and read data to/from an internal chan-

nel 𝑐, then their Task component is connected via

𝑊𝑟𝑖𝑡𝑒 and 𝑅𝑒𝑎𝑑 ports to the Channel component

𝐶ℎ𝑎𝑛𝑛𝑒𝑙(𝑐). A Task component can have multiple

𝑊𝑟𝑖𝑡𝑒 and 𝑅𝑒𝑎𝑑 ports depending on the number of

the channels it connects to.

8.3 Task Graph Generation

Scheduling with precedence constraints is usually based

on task graphs, which exist in different flavors. The

Task Graph, as defined below, represents the process job

execution of an FPPN network during one hyperperiod.

Since the system’s hyperperiod is continuously repeated,

it suffices to schedule one hyperperiod and then repeat
the resulting schedule periodically.

Definition 7 (Task Graph) A directed acyclic graph

𝒯 𝒢(𝒥 , ℰ) whose nodes 𝒥 = {𝐽𝑖} are jobs defined by

tuples 𝐽𝑖 = (𝑝𝑖, 𝑘𝑖, 𝐴𝑖, 𝐷𝑖,𝑊𝑖), where 𝑝𝑖 is the job’s

process, 𝑘𝑖 ∈ {1, 2, 3, . . .} is the job’s invocation count,

𝐴𝑖 ∈ Q≥0 is the invocation time, 𝐷𝑖 ∈ Q+ is the abso-

lute deadline, and 𝐶𝑖 ∈ Q+ is the WCET. The 𝑘-th job

of process 𝑝 is denoted by 𝑝[𝑘]. The edges ℰ represent

the precedence constraints.

20 Fotios Gioulekas et al.

Xsporadic[1]

(0,10,10)

Xsporadic[2]

(0,10,10)

pi [ki]

(A i , D i , W i)

Xsporadic[3]

(0,10,10)

Xsporadic[4]

(0,10,10)

SQ [13]

(0,390,10)

Xsporadic[5]

(400,410,10)

Xsporadic[6]

(400,410,10)

Xsporadic[7]

(400,410,10)

Xsporadic[8]

(400,410,10)

SQ [14]

(400,790,10)

Xsporadic[9]

(800,810,10)

Xsporadic[10]

(800,810,10)

Xsporadic[11]

(800,810,10)

Xsporadic[12]

(800,810,10)

SQ [15]

(800,1190,10)

Yperiodic[16]

(0,590,20)

Yperiodic[17]

(600,1190,20)

Fig. 7: The Task Graph generated for the FPPN network example shown in Fig. 3

The invocation times, deadlines and job invocation

counts are specified to be relative to the beginning of

the hyperperiod.

The sporadic processes introduce uncertainty for the

invocation times of tasks, which in principle compli-

cates the scheduling. As mentioned before, we consider

that every sporadic process 𝑝 is functionally related to

one and only one ‘user’ process 𝑢(𝑝), which allows to

compute the hyperperiod of the system. To cope with

sporadic jobs invoked inside the user period, we repre-

sent a sporadic process by an ‘𝑚-periodic server’ task,

whose jobs that are invoked at the boundaries of the

user period intervals represent the jobs that have been

invoked in the preceding user-period interval. For con-

venience, we require that the user period should not be

greater than the inter-invocation interval of the sporadic

process: 𝑇𝑢(𝑝) ≤ 𝑇𝑝. If 𝑚 is the burst size (the maxi-

mal number of invocation events per 𝑇) of the sporadic

process, by the above constraint, the burst size of the

periodic server can be conservatively selected to be equal

to 𝑚 as well.

Algorithm 1 describes the procedure for generating

the task graph from a given FPPN process network 𝒫𝒩 .

First, the algorithm obtains a new process network 𝒫𝒩 ′,

where all sporadic tasks 𝑝 are replaced by their periodic

server 𝑝′. We use ‘prime’ for the parameters of network

𝒫𝒩 ′, e.g., 𝑑′, 𝑇 ′. Note that every burst of 𝑚 periodic

server jobs, by definition, represents the sporadic jobs in-

voked during the period before the respective user job is

invoked at the end of the interval. Being invoked before

the user job, the sporadic jobs should have, according to

FPPN semantics, precedence over the user job, and it is

for this reason that we set the priority of the server to be

higher than that of the user: (𝑝′, 𝑢(𝑝))∈ℱ𝒫 ′. Addition-

ally, the deadlines of the server jobs are conservatively

corrected according to the formula 𝑑′𝑝′ = 𝑑𝑝 − 𝑇𝑢(𝑝).

This correction is required due to the fact that in our

framework the periodic server lets a newly invoked spo-

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 21

radic job wait, for at most 𝑇𝑢(𝑝), until the end of the

period, and only then it is considered as an invoked

periodic-server job. Hence, the worst-case waiting time

has to be subtracted from the relative deadline.

Algorithm 1 Task Graph Generation

Input: FPPN Model 𝒫𝒩 (in TASTE XML representation).
Output: Textual representation of a Task Graph
1: Generate a new FPPN model 𝒫𝒩 ′, where each sporadic

process 𝑝 is replaced by 𝑚-periodic ‘server process’ 𝑝′

with burst size 𝑚′
𝑝′ = 𝑚𝑝, period: 𝑇 ′

𝑝′ = 𝑇𝑢(𝑝), priority

relation: (𝑝′, 𝑢(𝑝)) ∈ ℱ𝒫′ and deadline: 𝑑′𝑝′ = 𝑑𝑝 −𝑇𝑢(𝑝).
2: Calculate the least common multiple 𝐿𝐶𝑀 (hyperperiod

ℋ) of the process periods in 𝒫𝒩 ′.
3: By simulation of zero-delay execution for process network

𝒫𝒩 ′ generate the trace 𝐽 of the jobs executed in one
hyperperiod. The generated trace should be of the form
𝐽 = (𝑝𝑖[𝑘𝑖]) (process identifier and its invocation count).
Let <𝐽 the total order defined by the trace.

4: Construct 𝒯 𝒢(𝒥 , ℰ), where nodes 𝒥 are the elements of
the generated sequence 𝐽 and the edges ℰ between jobs
denoted as 𝐽𝑎 = 𝑝𝑎[𝑘𝑎] and 𝐽𝑏 = 𝑝𝑏[𝑘𝑏] are defined as
follows:
(i) (𝐽𝑎, 𝐽𝑏) ∈ ℰ ⇐⇒ 𝐽𝑎 <𝐽 𝐽𝑏 ∧ (𝑝𝑎 1 𝑝𝑏 ∨ 𝑝𝑎 = 𝑝𝑏)

with 𝑝𝑎 1 𝑝𝑏 ⇐⇒ (𝑝𝑎, 𝑝𝑏) ∈ ℱ𝒫′ ∨ (𝑝𝑏, 𝑝𝑎) ∈ ℱ𝒫′,
which means that the processes are related by ℱ𝒫′ and
job 𝐽𝑎 is executed earlier than job 𝐽𝑏 in the sequence
𝐽 .

(ii) Job parameters for job 𝐽𝑖 = 𝑝[𝑘]:

– 𝐴𝑖 = 𝑇 ′
𝑝 · ⌊(𝑘 − 1)/𝑚′

𝑝⌋
– 𝐷𝑖 = 𝐴𝑖 + 𝑑′𝑝

5: Truncate all the deadlines 𝐷𝑖 to the hyperperiod: 𝐷𝑖 :=
𝑚𝑖𝑛(ℋ, 𝐷𝑖).

6: Perform transitive reduction of relation ℰ to remove re-
dundant edges.

Subsequently, at Step 3 the algorithm performs sim-

ulation of one hyperperiod of the multi-periodic network

𝒫𝒩 ′ to generate a sequence of job executions in the

order respecting the FPPN ZD semantics. This can be

done in a straightforward way by applying the definition

of the ZD semantics.

At Step 4, we create a graph whose nodes are jobs in

the generated sequence and whose edges are generated

as follows. A pair of jobs is joined by an edge if they

belong to the same process or to functionally priority

related processes. The edge direction respects the order

of jobs in the job sequence. The invocation times and

the absolute deadlines are derived from the invocation

count 𝑘, process’s period 𝑇𝑝 and relative deadline 𝑑𝑝.

At Step 5, since we assume constrained-deadline

scheduling, all jobs should finish by the end of the hy-

perperiod. Thus the deadlines of all jobs are truncated

to the hyperperiod duration.

At Step 6, the graph is simplified to remove redun-

dant edges by transitive reduction, i.e., obtaining the

minimal relation whose transitive closure is the same as

the transitive closure of the original relation. This can

be applied because the ‘precedence’ relation between

jobs, which is represented by the task graph edges, is a

transitive relation.

Figure 7 depicts the derived Task Graph for the

FPPN network of Figure 3. In this figure we see three

occurrences of a chain of four subsequent sporadic jobs

‘XSporadic[4𝑘 + 1, 2, 3, 4]’ that precede a job ‘SQ[𝑘]’.

This is because the process ‘XSporadic’ in Figure 3 has

burst size four and its user is process ‘SQ’.

8.4 Task Scheduling

To present the main principles of FPPN scheduling let

us consider the illustrative example in Figure 8 with
three tasks. The ‘split’ task appends two small data

items (a few bytes) in two output channels and sleeps

for 1 ms to imitate some task execution time. Tasks

‘A’ and ‘B’ read the data and Task ‘A’ sleeps for 12
ms whereas Task ‘B’ sleeps for 6 ms. All tasks have

the same periodic scheduling window, with period and

deadline being 25 ms. In the derived task graph, every

task is represented by a job. The jobs are numbered

as 𝐽𝑖 = 𝐽1, 𝐽2, 𝐽3 and annotated by their WCETs. The

arrival times 𝐴𝑖 and deadlines 𝐷𝑖 for all jobs are the

same.

The static scheduler accepts a parameter 𝜖 for the

worst-case cost of a single transition in the BIP TA

components. Parameter 𝜖 is platform-dependent and

characterizes the interference between the task compo-

nents, when they access the BIP RTE to execute discrete

automata transitions. It defines the worst-case execution

time that it takes for the BIP RTE engine to coordinate

the execution of one discrete interaction of BIP compo-

nents. This parameter is calculated by measurements on

the the target platform and back-annotated to the static

scheduler. If there are no available measurements for

parameter 𝜖, the user can start with an estimation of 𝜖

parameter and adjust it later in the design cycle. Before

applying the static scheduling tool to the task graph,

the graph is automatically extended by inserting for

every application job four other jobs, called virtual jobs,

having WCET 𝜖 and representing the four discrete BIP

interactions involved in a job execution: ‘Invoke’, ‘Start’,

‘Finish’, and ‘Deadline’ [36]. Based on the extended task

graph, the total maximal system load (i.e., resource

utilisation factor) is automatically calculated, which

indicates the minimal number of CPU cores needed.

The scheduling tool applies list scheduling algorithm

based on an heuristically computed fixed priority rela-

tion (consistent with the ℱ𝒫 relation). For the given

number of CPU cores, the tool distributes the jobs be-

tween the cores and determines their start times based

22 Fotios Gioulekas et al.

split

25ms25ms25ms25ms

In
p

u
t

B
u

ff
e

r

A

25ms25ms25ms25ms

B

25ms25ms25ms25ms

O
u

tp
u

t
B

u
ff

e
r1

O
u

tp
u

t
B

u
ff

e
r2

J2

split [1]

(1) ms

J1

A [1]

(12) ms

J3

B [1]

(6) ms

Jiiii : : : : AAAAiiii = 0= 0= 0= 0, , , , DDDDiiii = = = = 25 25 25 25 msmsmsms , , , , εεεε = = = = 1 1 1 1 msmsmsms

period

WCET

Process Network Task Graph

Fig. 8: The FPPN model of a system with three tasks

p2

p1

Engine

0 5000 10000 15000 20000 25000

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

Re
so

ur
ce

s

Time

J1J2 J3J4 J5 J6J7 J8J9J1
0

J1
1

J1
2

J1J2J4 J5 J6J7 J8J9J1
0

J3 J1
1

J1
2

Fig. 9: FPPN schedule computed by the static scheduler for the three-tasks example

on the fixed priority policy simulation [38]. For the task

graph of Figure 8 two CPU cores are needed. This hap-

pens due to the 12 ms interference overhead (four BIP

interactions required per job execution take 4·𝜖 = 4 ms);

the task graph cannot be scheduled on a single processor,

because an amount 3 · 4 · 𝜖 + (1 + 12 + 6) ms = 31 ms of

processor time per period of 25 ms has to be allocated.

In the schedule of Figure 9, Task ‘Split’ and Task ‘A’

are mapped to Core 1 and Task ‘B’ to Core 2.

The static scheduler produces the time-triggered

table depicted in Figure 9, and the schedule also includes

the virtual jobs that represent the execution of BIP RTE

engine. By our convention, Core 0 is reserved for the

engine, so that is where the virtual jobs are scheduled.

From the schedule we see that the schedule intervals for

the application jobs J1, J2 and J3 are preceded by gaps

where the jobs wait until the engine handles the BIP

transitions, executed as virtual jobs on Core 0. This

phenomenon illustrates the idea on how we model and

handle interference, for more details see [36].

As it was mentioned earlier, representing the sched-

ule by BIP components and plugging them into the

BIP model is not yet automated. Thus, this is done

manually by inserting the additional ℱ𝒫 components,

which should impose the computed schedule on the

system.

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 23

9 Case Study: a Spacecraft On-board Guidance,

Navigation and Control System

The space industry aims to utilize state-of-the-art multi-

core processors, which will allow to reduce size, weight,
cost, and power consumption, while software predictabil-

ity and safety in terms of timing and functional be-

havior should be preserved with a sufficient level of

assurance. Our framework was employed within the con-

text of a space-industry collaborative project, to port

a Guidance Navigation & Control (GN&C) on-board

production-grade application, originally conceived for a

uni-processor, onto the quad-core symmetric multipro-

cessing LEON4FT architecture [2] based on the rad-hard

chip NGMP (Next Generation Microprocessor) of the

European Space Agency.

9.1 Application Design with the TASTE-to-BIP

framework

The GN&C module is an on-board real-time software

with hard deadlines that regulates the spacecraft move-

ment by processing the sensor data and controlling the

associated actuators. The GN&C application computes

the orbital location required to satisfy the mission re-

quirements, based on the guidance equipment. Subse-

quently, the navigation routines track the actual space-

craft location, while the flight controller relocates the

orbital accordingly. The GN&C subsystem comprises

the four tasks listed below.

(i) The Guidance Navigation Task that is respon-

sible to execute the guidance and navigation algo-

rithms by estimating the current translational state

of the spacecraft, taking into account the actuators

data and the sensors’ measurements. This task also

computes the derived air data parameters and aero-

dynamic, while keeping the vehicle on track during

the flight to reach the desired location for parachute

triggering. It calculates the actual location and pro-

vides the reference attitude and the calculated air

data and aerodynamic parameters for the control

task. This specific task is built as a periodic process

with period 𝑇𝑝 = 500ms, deadline 𝑑𝑝 = 500ms and

worst-case execution time 𝐶=22ms. Its criticality is

at level D.

(ii) The Control FM task is also a periodic process

with period 𝑇𝑝 = 50ms, deadline 𝑑𝑝 = 50ms, worst-

case execution time 𝐶=8ms and criticality level D.

This task executes the control and flight management

algorithms.

(iii) The Control Output Task is a D-critical periodic

process with period 𝑇𝑝 = 50ms, deadline 𝑑𝑝 = 50ms

Data Input
Dispatcher

Guidance
Navigation

Control FM Control Output

Send decoded MVM data

Read GPS & MVM
sensor data and
decode it

Decode 1st
IMU data
packet

Execute Flight
Management
& Control
Procedures

50ms
500
ms

50ms 50ms

Send Navigation &
Control data Get nonencoded

DKE data

Send actual location,
reference attitude,
aerodynamic parameters

Initializatio
n

Encode & Output
DKE data (geodetic
altitude, longitude,
mach, Dynamic

pressure)

Execute
Guidance
Procedures

Initializatio
n

Initializatio
n

Get decoded IMU data packets

Execute
Navigation
Procedures

Send 1st
 IMU data packet

Decode 10th
IMU data
packet

Send 10th
 IMU data packet

Initializatio
n

Fig. 10: The MSC of GN&C execution within a single

Hyperperiod of 500ms

and worst-case execution time 𝐶=4ms. It is in charge

of sending the outputs of the GN&C subsystem (i.e.

mach, dynamic pressure, longitude and geodetic val-

ues) to the Dynamics Kinematics and Environment

(DKE) module.

(iv) The Data Input Dispatcher Task is invoked each

time new sensor data is available. This process reads,

decodes, and dispatches the input data to the other

tasks. The input data is categorized as MVM (Mis-

sion and Vehicle Management), IMU (Inertial Mea-

24 Fotios Gioulekas et al.

surement Unit) and GPS (Global Positioning Sys-

tem) data. For the purpose of this study, the external

data was not communicated via the chip I/O chan-

nels, but had been measured and stored in advance

as static data for the application executable. The

IMU data processing is performed in 10 packets per

global cycle of 500ms. This is a periodic process with

period 𝑇𝑝 = 50ms, deadline 𝑑𝑝 = 50ms and worst-

case execution time 𝐶=6ms. The task criticality is

also at level D.

The data flow between the GN&C tasks within a

hyperperiod of H = 500ms, after removing all RTEMS
(Real-Time Executive for Multiprocessor Systems) calls

and timers, is shown in the Message Sequence Chart

(MSC) of Figure 10. The tasks’ WCETs were estimated

by profiling the execution of the application under the

BIP RTE.

We considered two different implementation scenar-

ios to highlight the applicability of our approach by

exercising both our fully automated design flow, as well
as a similar flow with user intervention at different de-

sign steps with the aim to refine the model behavior and

improve the implementation efficiency. Specifically, we

explored two versions of the GN&C application design.

Scenario A was based on the timing constraints of the

original specification, utilizing two of the four available
LEON4FT CPU cores. In this case, the Control Output

and the Guidance Navigation tasks exhibit respectively

30ms and 450ms time offsets (close to the end of their

periods). Scenario B was a ‘pipelining’ scenario, in which

we aimed to utilize three computing cores by assuming

that there was headroom to increase the end-to-end
latency constraint (i.e. the deadline) of the two afore-
mentioned tasks to exceed their period. Within this

context, in Scenario B the user modifies the generated

BIP model and the task graph, so as to remove the off-

sets from the Control Output and Guidance Navigation

tasks and to shift every job execution of those tasks into

the next period. Consequently, having their input data

prepared in the previous period,these tasks can start

executing on different processor cores, in parallel with

the two other tasks. Our intent for Scenario-B is to test

an implementation where the system could process more
data samples per unit of time, so that the application

designer could reduce the task periods to improve the

throughput and hence the quality of operation.

We first developed a TASTE architecture descrip-

tion for the GN&C FPPN model. At the same time, we

had to adapt the functional code of tasks for use in our

framework, by removing the low-level RTEMS calls for

multi-tasking from the original mono-core implementa-

tion and adding high-level calls to TASTE interfaces for

explicit data communication according to our MoC. We

note that both scenarios use the same TASTE model

structure that is shown in Figure 11.

The TASTE architectural model was fed into our

TASTE-to-BIP framework and was automatically trans-

formed into a BIP model, while the task graph for a

hyperperiod was also generated. We then passed the

task graph to the offline scheduling tool, which first

calculated the system load3, in order to determine the

minimum required number of processor cores, while tak-

ing into account the precedence constraints between
jobs [38] and the multi-core interference [36]). For Sce-

nario A, the system load calculated by the tool was

112%, i.e., at least two cores are required. For two cores,

the offline scheduler generated a static schedule, demon-

strating that all deadlines could be met, thus giving

the verdict that the system is schedulable. We did not

encounter any need to insert additional FP components

for the online scheduling, because all tasks mapped by

the scheduler to the same core were already fully ordered

by the functional priority constraints of the application

model.

The BIP model was then compiled and linked with

the BIP RTE for the LEON4 multi-core processor by

adopting a thread-to-CPU core affinity rule, which means

that the BIP RTE performs one-to-one thread mapping

to cores (therefore, the terms thread and core are used

as synonyms). The executable was loaded and ran on the

LEON4FT board and the task execution traces were col-

lected and depicted in Gantt charts form. We note that

the current version of BIP RTE utilizes an additional

CPU core. Consequently, for Scenario A, one more core

was required, which made three cores in total.

The two case study scenarios are presented in the

next two subsections in more detail. For brevity, we often

avoid namimg the 4 tasks and prefer using a short la-

bel ’P<id>’ instead, where ‘<id>’ is a numeric process

identifier. P1 stands for the Data Input Dispatcher, P2

for the Control FM, P3 for the Control Output and P4

for the Guidance Navigation task. Since the BIP RTE

occupies a separate core and has a certain overhead, we

use P20 for the ‘job’ of a ‘virtual task’ that represents

handling a discrete BIP interaction by the RTE. One

virtual job execution comprises the online checking of

the run-time status of all BIP components, determining

which new BIP automata transitions/interactions are

ready for execution and executing one of them. We note

that the BIP RTE executes only the discrete transi-

tions, which in our FPPN model mainly correspond to

‘Start’, ‘Finish’, ‘Deadline’, ‘Invoke’ and ‘FalseInvoke’

transitions. Continuous-time transitions, including all

computations of the tasks and their ‘Read’ and ‘Write’

3 In scheduling theory this metric is similar to processor
utilization.

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 25

actions, are executed in parallel by the tasks on the dif-

ferent cores. The tasks synchronize with the BIP RTE

only on their ‘Start’ and ‘Finish’ interactions, which are

executed synchronously with the BIP engine.

9.2 Scenario-A

The functional priority indexes FP for the tasks in

Scenario A were assigned as follows:

(i) Data Input Dispatcher: FP=1

(ii) Control FM Task: FP=2

(iii) Control Output Task: FP=3

(iv) Guidance Navigation Task: FP=4

This specific precedence order was chosen by analyzing

the task execution order shown in the MSC diagram

(Figure 10) and the application’s source code, in par-

ticular how the threads of different tasks interact by

conditional signals. Figure 12 depicts the GN&C FPPN
model, where the functional priorities impose precedence

from the numerically smaller FP indices (i.e., higher-

priority) to the numerically larger ones. The length of

the ’Navigation DATA MB’ mailbox was set to 10, due

to the fact the Guidance-Navigation task requires 10

IMU packets to be processed before it can execute, which

translates to an offset of 9 periods of the other tasks (i.e.

450 ms). Figure 13 delineates the task graph generated

by the TASTE-to-BIP tool for a hyperperiod of 500ms.

We executed Scenario A on the LEON4FT CPU and

observed the four discrete interactions per 1 job execu-

tion and 31 jobs per hyperperiod (specifically 31×4=124

discrete transitions are executed by the BIP RTE per

hyperperiod as it is shown in the measured Gantt chart

of Figure 14 for a hyperperiod 500ms plus a 100ms

timing-window). The P20 activities were mapped to

Core 0, whereas the jobs of tasks P1, P2 and P3 were

mapped to Core 1 and those of P4 to Core 2. The job

of P4 is executed right after 10 consecutive jobs of P1

and P2 and 9 jobs of P3. This job is delayed due to the

450ms invocation offset and its least functional priority.

Since P3 and P4 do not communicate via the chan-

nels ((𝑃3, 𝑃4) /∈ ℱ𝒫) it is possible to execute them in

parallel, which was actually programmed in our static

schedule. In fact, this was necessary in order to satisfy

the deadlines, because , as mentioned earlier, the system

load exceeded 100%.

In order to explore existing possibilities for reducing

the encountered execution overhead, let us recall that

there are 124 transitions executed by the BIP engine on

Core 0 per one hyperperiod. In an optimized BIP model,

it would be desirable to share Arrival and Deadline

transitions between the tasks, which would cut the P20

overhead by almost 50% (a scenario to be explored in

future work). To further reduce the overhead, we could

possibly merge the tasks with short execution times,

such as P1 and P2, into one.

9.3 Scenario-B

In the pipelined version of the GN&C application, we

aim to increase the number of LEON4FT cores utilized

in parallel, in order to evaluate the possibility of in-

creasing the throughput [23]. To this end, we modified

the execution order of the tasks in a way that does not

violate their data dependencies. This modification was

accomplished by changing the functional priority, though

when doing this the user always has to take into account

the tasks’ dependencies in the application. This change
is performed through the TASTE architecture descrip-

tion and is an input into the TASTE-to-BIP framework.

The user will also have to intervene and change the

functional priorities during the late design steps, if he
realizes that the real-time constraints are not met. In

our case, by changing the functional priority relation of

the Control Output (P3) and Guidance Navigation (P4)

tasks, it was possible to process the data received in the

previous period, while the rest of the tasks operate in

current period. Effectively, the offsets were prolonged

from 30ms to 50ms for the Control Output Task and

from 450ms to 500ms for the Guidance Navigation Task.

This meant that P3 and P4 tasks could be executed

at the start of every next period, since the necessary

data to operate was available at this timing point. To

preserve the functional behavior in Scenario B, these

tasks should execute earlier, so we assigned them higher

functional priorities, i.e., smaller FP indices.

Furthermore, to ensure the extra parallelism, a buffer-

ing scheme was incorporated by increasing the mailbox

(FIFO) size between Data Dispatcher and Guidance

Navigation tasks by one position (11 memory addresses

in total), so that they could run in parallel and their rel-

ative functional priorities will not affect them (therefore,

the mailbox channel has no functional priority arrow as-

sociated with it). As was previously mentioned, priority

arrows exclude data races and protect the data channel

interfaces. In our case, the use of a double buffer ensured

that P4 (reader) could read one data value from mail-

box, while P1 (writer) could concurrently write another

data value to the mailbox. With this modification in

the FPPN model, we allowed P1, P3 and P4 to execute

in parallel, since they had no predecessors. The derived

FPPN model for Scenario B is shown in Figure 15, where

the FP indices were assigned as follows:

(i) Data Input Dispatcher: FP=1

(ii) Control Output Task: FP=2

(iii) Guidance Navigation Task: FP=3

26 Fotios Gioulekas et al.

Fig. 11: The GN&C application in TASTE (both implementation scenarios have this structure)

Data_Input_Dispatcher

[D] 50ms

FP=1

Guidance_Navigation_Task

[D] 500 ms

FP=4

Navigation_Data_MB

(mailbox)

Control_Output_Task

[D] 50 ms

FP=3

Control_FM_Task

[D] 50ms

FP=2

Control_Output_Data_BB

(blackboard)

Control_Data_BB

(blackboard)

Set_Navigation_BB

(blackboard)

Navigation_Control_BB

(blackboard)

IMU Data

GPS Data

MVM Data

geodetic altitude

longitude

mach

dynamic pressure

P1 P4

P2 P3

Fig. 12: The GN&C FPPN model (Scenario-A)

(iv) Control FM Task: FP=4

The generated task graph in Figure 16 yielded a

system load 65%, which is significantly smaller than

in Scenario-A, due to removal of ℱ𝒫 from the FPPN

model, which resulted in fewer precedence constraints.

Figure 17 illustrates the measurements obtained during

the execution of Scenario B on the LEON4FT CPU.

All the four CPU cores were utilized and the deadline

constraints were met. Specifically, P3 was executed on

Core-3 and in parallel, P1 and P4 were executed respec-

tively on Core 1 and Core 2, while the BIP RTE engine

ran the BIP transitions on the fourth core (Core 0). Al-

though a higher parallelism was achieved in comparison
to Scenario A, the throughput was not increased due to

the interference between P1 and P4, which resulted in

longer execution time for P4. We observed that it took

38ms after the next period start, for the jobs of P3 and

P4 to complete their execution.

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 27

p i [k i]

(A i , D i , C i)

Data_Input_

Dispatcher [1]
(0,10,10)

Data_Input_

Dispatcher [2]
(50,60,10)

Data_Input_

Dispatcher [3]
(100,110,10)

Data_Input_

Dispatcher [4]

Control_FM

_Task[22]
(0,30,22)

Control_FM

_Task[23]
(50,80,22)

Control_FM

_Task[24]
(100,130,22)

Control_FM

_Task[25]

Control_Output

_Task[11]
(30,35,5)

Control_Output

_Task[12]
(80,85,5)

Control_Output

_Task[13]
(130,135,5)

Control_Output

_Task[14]

Guidance_Navigation

_Task[21]
(450,500,60)

Dispatcher [4]
(150,160,10)

Data_Input_

Dispatcher [5]
(200,210,10)

Data_Input_

Dispatcher [6]
(250,260,10)

Data_Input_

Dispatcher [7]
(300,310,10)

_Task[25]
(150,180,22)

Control_FM

_Task[26]
(200,230,22)

Control_FM

_Task[27]
(250,280,22)

Control_FM

_Task[28]
(300,330,22)

_Task[14]
(180,185,5)

Control_Output

_Task[15]
(230,235,5)

Control_Output

_Task[16]
(280,285,5)

Control_Output

_Task[17]
(330335,5)

Data_Input_

Dispatcher [8]
(350,360,10)

Data_Input_

Dispatcher [9]
(400,410,10)

Data_Input_

Dispatcher [10]
(450,460,10)

Control_FM

_Task[29]
(350,380,22)

Control_FM

_Task[30]
(400,430,22)

Control_FM

_Task[31]
(450,480,22)

Control_Output

_Task[18]
(380,385,5)

Control_Output

_Task[19]
(430,435,5)

Control_Output

_Task[20]
(480,485,5)

Fig. 13: Task graph for Scenario-A

2

1

0

 0 100000 200000 300000 400000 500000 600000

P
ro

ce
ss

o
rs

time

Gantt chart

P
2

0

P
2

0

P
2

0
P
2

0

P
2

0

P
2

0
P
2

0

P
2

0
P
2

0
P
2

0
P
2

0

P
2

0

P
2

0

P
2

0
P
2

0

P
2

0
P
2

0
P
2

0
P
2

0
P
2

0

P
2

0
P
2

0

P
2

0
P
2

0
P
2

0
P
2

0

P
2

0
P
2

0

P
2

0
P
2

0
P
2

0

P
2

0

P
2

0
P
2

0

P
2

0
P
2

0

P
2

0

P
2

0
P
2

0
P
2

0
P
2

0
P
2

0

P
2

0
P
2

0

P
2

0
P
2

0
P
2

0
P
2

0

P
2

0
P
2

0

P
2

0

P
2

0

P
2

0
P
2

0
P
2

0
P
2

0
P
2

0
P
2

0
P
2

0
P
2

0
P
2

0

P
2

0

P
2

0
P
2

0
P
2

0
P
2

0
P
2

0

P
2

0
P
2

0

P
2

0

P
2

0

P
2

0

P
2

0
P
2

0
P
2

0
P
2

0

P
2

0

P
2

0
P
2

0

P
2

0
P
2

0

P
2

0

P
2

0
P
2

0

P
2

0
P
1

P
2

P
3

P
1

P
2

P
3

P
1

P
2

P
3

P
1

P
2

P
3

P
1

P
2

P
3

P
3

P
1

P
2

P
3

P
1

P
1

P
2

P
3

P
1

P
2

P
3

P
1

P
2

P
1

P
3

P
1

P
2

P
2

P
3

P
3

P
2

P
4

Fig. 14: Execution of the GNC application on LEON4FT (in microseconds)

9.4 Discussion

Through the GN&C case study we had the chance to

evaluate our model-based design flow that utilizes the

FPPN MoC. The implementation of Scenario A resulted

in a straightforward application of the model’s seman-

28 Fotios Gioulekas et al.

Data_Input_Dispatcher
[D] 50ms

FP=1

Guidance_Navigation_Task
[D] 500 ms

FP=3

Navigation_Data_MB
(mailbox)

Control_Output_Task
[D] 50 ms

FP=2

Control_FM_Task
[D] 50ms

FP=4
Control_Output_Data_BB

(blackboard)

Control_Data_BB
(blackboard)

Set_Navigation_BB
(blackboard)

Navigation_Control_BB
(blackboard)

IMU Data

GPS Data

MVM Data

geodetic altitude

longitude

mach

dynamic pressure

P1 P4

P2 P3

Fig. 15: The GN&C FPPN model (Scenario-B)

p i [k i]

(A i , D i , C i)

Data_Input_

Dispatcher [22]

(0,50,6)

Data_Input_

Dispatcher [23]

(50,100,6)

Data_Input_

Dispatcher [24]

(100,150,6)

Data_Input_

Dispatcher [25]

(150,200, 6)

Data_Input_

Dispatcher [26]

(200,250,6)

Data_Input_

Dispatcher [27]

(250,300,6)

Data_Input_

Dispatcher [28]

(300,350, 6)

Data_Input_

Dispatcher [29]

(350, 400,6)

Data_Input_

Dispatcher [30]

(400,450,6)

Data_Input_

Dispatcher [31]

(450,500, 6)

Guidance_Navigation

_Task[11]

(0,500,22)

Control_Output

_Task[12]

(0,50,4)

Control_Output

_Task[13]

(50,100,4)

Control_Output

_Task[14]

(100,150, 4)

Control_Output

_Task[15]

(150,200,4)

Control_Output

_Task[16]

(200,250,4)

Control_Output

_Task[17]

(250,300,4)

Control_Output

_Task[18]

(300, 350,4)

Control_Output

_Task[19]

(350, 400,4)

Control_Output

_Task[20]

(400,450,4)

Control_Output

_Task[21]

(450,500,4)

Control_FM_Task[1]

(0,50,8)

Control_FM_Task[2]

(50,100, 8)

Control_FM_Task[3]

(100,150, 8)

Control_FM_Task[4]

(150,200, 8)

Control_FM_Task[5]

(200,250, 8)

Control_FM_Task[6]

(250, 300, 8)

Control_FM_Task[7]

(300,350, 8)

Control_FM_Task[8]

(350, 400, 8)

Control_FM_Task[9]

(400,450, 8)

Control_FM_Task[1

0]

(450,500, 8)

Fig. 16: Task graph for Scenario-B

tics and its associated design flow. On the other hand,

it was also shown how the designer could intervene in

specific design steps towards modifying the implementa-

tion, while preserving the FPPN semantics. Specifically,

since the TASTE-to-BIP tool is not aware of the extra

buffering place employed in Scenario B in the mailbox

channel, we had to modify the generated task graph by

deleting the two job-precedence arrows (J22 → J11 and

J11 → J23) associated with the precedence constraints

between the Data Input Dispatcher and Guidance Navi-

gation tasks (note the absence of priority arrow on top

of mailbox). The resulted task graph is the one shown in

Figure 16. Additionally, we delayed the Control-Output

task such that to deliver its output with a 20ms a delay

(i.e. the time-offset for Control-Output task is 50ms in

Scenario B instead of the 30ms offset in Scenario A),

which was tolerable to sustain the correct operation of

the GN&C subsystem.

Recall that in our BIP model all jobs are synchro-

nized with the BIP RTE engine at the ‘Start’ and ‘Stop’

interactions, whereas the engine is busy executing 124

interactions per 500ms with each one taking 1ms, which

means that the BIP engine is busy for 25% of the time.

Thus, when a task component tries to execute a BIP

interaction via a BIP engine, the engine may turn out

to be unresponsive for some time (e.g., busy with other

tasks), so the given task will have to wait for its turn.

This causes some minor idle-processor gaps between

the task execution intervals and can be interpreted as

interference between the tasks for accessing the BIP

engine. Similar forms of inter-task interference exists in

all multi-tasking real-time environments, while it is mod-

eled and taken into account by our scheduling tools [36],
when estimating the system load and applying our static

scheduling tool to obtain from it a ‘schedulability’ ver-

dict.

In Scenario B, where more tasks execute in parallel

on different cores, we noticed additional interference,

which were reflected to the tasks by requiring more time

to complete their jobs than the estimated WCET. Al-

though the pipelined version of Scenario B utilizes more

cores than Scenario A, we noticed that the parallelism

gain did not effectively speed-up the application on

LEON4FT. This happens mainly due to the additional

interference between P1 and P4, which extends the exe-

cution times of both beyond the WCET’s respected in

Scenario A. We suspect that this interference arises due

to the imperfect implementation of synchronization of

BIP interactions between tasks, when two tasks access

the same channel, since in particular P1 and P4 execute

in parallel and access the mailbox. The nature of this

interference is under study towards improving the BIP

RTE implementation, so as to reduce it. If this is not

possible, the scheduling models will have to be updated,

in order to take into account this interference.

10 Conclusions

We presented a model-based design approach, which

allows deriving correct-by-construction multi-core imple-

mentations of reactive streaming software, when the soft-

ware is programmed using the high-level FPPN model

of computation. Applications are programmed indepen-

dently from the execution platform, while sustaining

determinism in task parallelism by construction. At the

same time, through a gradual refinement of the system’s

design it is possible to configure real-time attributes

that ensure schedulability and a predictable timing be-

havior. The design framework allows to explore vari-

ous implementation scenarios, in order to improve the

resource utilization, without invalidating the guaran-

tees offered by the FPPN model of computation. The

means to achieve all these is a careful definition of the

FPPN semantics at two distinct levels, while preserv-

ing fundamental correctness properties, and a model

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 29

3

2

1

0

 0 100000 200000 300000 400000 500000 600000

Pr
oc

es
so

rs

time

Gantt chart

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P2
0

P1 P2P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2P1 P1 P2 P1P1 P2P2

P4

P3 P3 P3 P3 P3 P3 P3 P3 P3P3

Fig. 17: Real-Time execution of Scenario-B on LEON4FT (in microseconds)

transformation framework for transcribing FPPNs into

an executable formal specification language called BIP,

for modeling connected timed automata. The designer

can specify FPPNs by embedding functional code into a

high-level description of the software architecture using

the TASTE toolset.

The proposed method was evaluated through the

implementation of a real-time application for satellites

on ESA’s next generation multi-core processor. Within

this context two implementation scenarios were studied.

Compilation from a model of computation to an ex-

ecutable model based on automata is not new [21]; a

contribution of this paper is to show how this is done

for the FPPN model. Such an approach has the ad-

vantage of obtaining an executable model which, being

automata based, is potentially easier to verify than

low-level middleware code. On the other hand, such an

approach raises the problem of certification of the code

generator that translates the automata-based language

into the binary code and the problem of certifying the

associated run-time engine. Another topic of research

is overhead minimization, as it was shown in our case

study, where we had the chance to explore a multitude

of possibilities for substantial manual improvements of

the generated code. These issues are subjects of future

research prospects.

Additional future work also includes the design frame-

work’s improvement, so as to automate the design step

involving the offline and online schedulers, and to en-

hance the interference awareness of the scheduling meth-

ods. Also, statistical tools as described in [37] are to be

incorporated towards deriving reliable WCET estima-

tions. Finally, the possibility to include the ITU-T SDL

language or Simulink at the architectural level of our

framework is also considered.

References

1. Autofocus tool. URL https://af3.fortiss.org/. [Avail-
able Online; accessed: 05-February-2019]

2. GR-CPCI-LEON4-N2X: Quad-core LEON4 next
generation microprocessor evaluation board,
http://www.gaisler.com/index.php/products/boards/gr-
cpci-leon4-n2x

3. Time-critical applications on multicore plat-
forms. URL http://www-verimag.imag.fr/

Time-Critical-Applications-on-Multicore.html

4. Abdellatif, T., Combaz, J., Sifakis, J.: Model-based im-
plementation of real-time applications. In: Proceedings of
the Tenth ACM International Conference on Embedded
Software, EMSOFT ’10, pp. 229–238. ACM, New York,
NY, USA (2010). DOI 10.1145/1879021.1879052. URL
http://doi.acm.org/10.1145/1879021.1879052

5. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P.,
Yi, W.: Times: A tool for schedulability analysis and
code generation of real-time systems. In: K.G. Larsen,

30 Fotios Gioulekas et al.

P. Niebert (eds.) Formal Modeling and Analysis of Timed
Systems, pp. 60–72. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

6. Baier, C., Katoen, J.P.: Principles of Model Checking
(Representation and Mind Series). The MIT Press (2008)

7. Basu, A., Bensalem, S., Bozga, M., Bourgos, P., Mahesh-
wari, M., Sifakis, J.: Component assemblies in the context
of manycore. In: B. Beckert, F. Damiani, F.S. de Boer,
M.M. Bonsangue (eds.) Formal Methods for Components
and Objects: 10th International Symposium, FMCO 2011,
Turin, Italy, October 3-5, 2011, Revised Selected Papers,
pp. 314–333. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2013)

8. Brau, G., Hugues, J., Navet, N.: Towards the sys-
tematic analysis of non-functional properties in model-
based engineering for real-time embedded systems.
Science of Computer Programming 156, 1 – 20
(2018). DOI https://doi.org/10.1016/j.scico.2017.12.
007. URL http://www.sciencedirect.com/science/

article/pii/S0167642317302927
9. Broy, M., Dederichs, F., Dendorfer, C., Fuchs, M.,

Gritzner, T., Weber, R.: The design of distributed sys-
tems - an introduction to focus. Tech. Rep. TUM-I 9202-2,
Technische Universitat Munchen (1992)

10. Broy, M., Fox, J., Hölzl, F., Koss, D., Kuhrmann, M.,
Meisinger, M., Penzenstadler, B., Rittmann, S., Schätz,
B., Spichkova, M., Wild, D.: Service-Oriented Modeling
of CoCoME with Focus and AutoFocus, pp. 177–206.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008).
DOI 10.1007/978-3-540-85289-6 8. URL https://doi.

org/10.1007/978-3-540-85289-6_8
11. Broy, M., Stolen, K.: Systems: Focus on Streams, Inter-

faces, and Refinement, p. 348. Springer-Verlag New York
(2001). DOI 10.1007/978-1-4613-0091-5

12. Chaki, S., Kyle, D.: DMPL: Programming and veri-
fying distributed mixed-synchrony and mixed-critical
software. Tech. rep., Carnegie Mellon University
(2016). URL http://www.andrew.cmu.edu/user/schaki/

misc/dmpl-extended.pdf
13. Claraz, D., Grimal, F., Laydier, T., Mader, R., Wirrer, G.:

Introducing multi-core at automotive engine systems. In:
ERTSS’14, Embedded Real-time Software and Systems
(2014)

14. Cordovilla, M., Boniol, F., Forget, J., Noulard, E., Pagetti,
C.: Developing critical embedded systems on multicore
architectures: the Prelude-SchedMCore toolset. In: RTNS
(2011)

15. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Lud-
vig, J., Neuendorffer, S., Sachs, S., Xiong, Y.: Taming
heterogeneity - the Ptolemy approach. Proceedings of the
IEEE 91(1), 127–144 (2003)

16. Feiler, P., Gluch, D., Hudak, J.: The architecture analy-
sis & design language (AADL): An introduction. Tech.
Rep. CMU/SEI-2006-TN-011, Software Engineering In-
stitute, Carnegie Mellon University, Pittsburgh, PA
(2006). URL http://resources.sei.cmu.edu/library/

asset-view.cfm?AssetID=7879
17. Forget, J., Boniol, F., Grolleau, E., Lesens, D., Pagetti,

C.: Scheduling dependent periodic tasks without synchro-
nization mechanisms. In: RTAS’10, pp. 301–310

18. Fuhrmann, H., von Hanxleden, R., Rennhack, J., Koch, J.:
Model-based system design of time-triggered architectures
- avionics case study. In: 2006 ieee/aiaa 25th Digital
Avionics Systems Conference, pp. 1–12 (2006). DOI
10.1109/DASC.2006.313745

19. Geilen, M., Basten, T.: Reactive process networks. In:
EMSOFT’04, pp. 137–146. ACM (2004)

20. Ghamarian, A.H.: Timing analysis of synchronous
dataflow graphs. Ph.D. thesis, Eindhoven University of
Technology (2008)

21. Giannopoulou, G., Poplavko, P., Socci, D., Huang, P.,
Stoimenov, N., Bourgos, P., Thiele, L., Bozga, M., Ben-
salem, S., Girbal, S., Faugere, M., Soulat, R., de Dinechin,
B.D.: DOL-BIP-Critical: a tool chain for rigorous design
and implementation of mixed-criticality multi-core sys-
tems. Design Automation for Embedded Systems 22(1),
141–181 (2018). DOI 10.1007/s10617-018-9206-3. URL
https://doi.org/10.1007/s10617-018-9206-3

22. Gioulekas, F., Poplavko, P., Katsaros, P., Bensalem,
S., Palomo, P.: A process network model for reac-
tive streaming software with deterministic task par-
allelism. In: A. Russo, A. Schürr (eds.) Fundamen-
tal Approaches to Software Engineering, pp. 94–110.
Springer International Publishing, Cham (2018). DOI
10.1007/978-3-319-89363-1 6

23. Gioulekas, F., Poplavko, P., Katsaros, P., Palomo, P.:
Process network models for embedded system design based
on the real-time bip execution engine. In: S. Bliudze,
S. Bensalem (eds.) Proceedings of the 1st International
Workshop on Methods and Tools for Rigorous System
Design, Thessaloniki, Greece, 15th April 2018, Electronic
Proceedings in Theoretical Computer Science, vol. 272,
pp. 79–92. Open Publishing Association (2018). DOI
10.4204/EPTCS.272.7

24. Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S., Joo, Y.P.:
PeaCE: A hardware-software codesign environment for
multimedia embedded systems. ACM Trans. Des. Autom.
Electron. Syst. 12(3), 24:1–24:25 (2008)

25. Halbwachs, N.: Synchronous Programming of Reactive
Systems. Springer-Verlag, Berlin, Heidelberg (2010)

26. Hansson, A., Goossens, K., Bekooij, M., Huisken, J.:
CoMPSoC: A template for composable and predictable
multi-processor system on chips. ACM Transactions on
Design Automation of Electronic Systems (TODAES)
14(1), 2 (2009)

27. Hölzl, F., Feilkas, M.: 13 AutoFocus 3 - A Scien-
tific Tool Prototype for Model-Based Development of
Component-Based, Reactive, Distributed Systems, pp.
317–322. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2010). DOI 10.1007/978-3-642-16277-0 13. URL
https://doi.org/10.1007/978-3-642-16277-0_13

28. Huber, F., Molterer, S., Rausch, A., Schatz, B., Sihling,
M., Slotosch, O.: Tool supported specification and simu-
lation of distributed systems. In: In International Sympo-
sium on Software Engineering for Parallel and Distributed
Systems, pp. 155–164. B. Kramer, N. Uchihira, P. Croll,
and S. Russo Eds., IEEE (1998)

29. Hugues, J., Zalila, B., Pautet, L., Kordon, F.: From the
prototype to the final embedded system using the Ocarina
AADL tool suite. ACM Trans. Embed. Comput. Syst.
7(4), 42:1–42:25 (2008)

30. Johnston, W.M., Hanna, J.R.P., Millar, R.J.: Advances
in dataflow programming languages. ACM Comput. Surv.
36(1), 1–34 (2004)

31. Kahn, G.: The semantics of a simple language for par-
allel programming. In: J.L. Rosenfeld (ed.) Information
Processing ’74: Proceedings of the IFIP Congress, pp.
471–475. North-Holland, New York, NY (1974)

32. Lee, E.A., Messerschmitt, D.G.: Static scheduling of syn-
chronous data flow programs for digital signal processing.
IEEE Transactions on Computers C-36(1), 24–35 (1987)

33. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow.
Proceedings of the IEEE 75(9), 1235–1245 (1987). DOI
10.1109/PROC.1987.13876

Correct-by-construction Model-based Design of Reactive Streaming Software for Multi-core Embedded Systems 31

34. Mkaouar, H., Zalila, B., Hugues, J., Jmaiel, M.: From
aadl model to lnt specification. In: Reliable Software
Technologies Ada-Europe 2015, Springer International
Publishing, pp. 11–20. Springer International Publishing,
Cham (2015). DOI 10.1007/978-3-319-19584-1 10

35. Perrotin, M., Conquet, E., Delange, J., Schiele, A., Tsio-
dras, T.: TASTE: A real-time software engineering tool-
chain overview, status, and future. In: I. Ober, I. Ober
(eds.) SDL 2011: Integrating System and Software Model-
ing. Int. SDL Forum. Revised Papers, pp. 26–37. Springer,
Berlin, Heidelberg (2012)

36. Poplavko, P., Kahil, R., Socci, D., Bensalem, S., Bozga,
M.: Mixed-critical systems design with coarse-grained
multi-core interference. In: Leveraging Applications of
Formal Methods, Verification and Validation: Founda-
tional Techniques, ISoLA’16, pp. 605–621. Springer Inter-
national Publishing (2016). DOI https://doi.org/10.1007/
978-3-319-47166-2∖textunderscore42

37. Poplavko, P., Nouri, A., Angelis, L., Zerzelidis, A.,
Bensalem, S., Katsaros, P.: Regression-based statistical
bounds on software execution time. In: Verification and
Evaluation of Computer and Communication Systems -
11th International Conference, VECoS 2017, Montreal,
QC, Canada, August 24-25, 2017, Proceedings, pp. 48–63
(2017). DOI https://doi.org/10.1007/978-3-319-66176-6∖
textunderscore4

38. Poplavko, P., Socci, D., Bourgos, P., Bensalem, S., Bozga,
M.: Models for deterministic execution of real-time multi-
processor applications. In: Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition,
DATE ’15, pp. 1665–1670. EDA Consortium, San Jose,
CA, USA (2015). URL http://dl.acm.org/citation.

cfm?id=2757012.2757198

39. Saidi, S.: On the benefits of multicores for real-time sys-
tems. In: 2017 Euromicro Conference on Digital System
Design (DSD), pp. 383–389 (2017). DOI 10.1109/DSD.
2017.85

40. Socci, D., Poplavko, P., Bensalem, S., Bozga, M.: A timed-
automata based middleware for time-critical multicore
applications. In: 2015 IEEE International Symposium
on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing Workshops, pp. 1–8 (2015). DOI
10.1109/ISORCW.2015.55

41. Triki, A., Combaz, J., Bensalem, S., Sifakis, J.: Model-
based implementation of parallel real-time systems. In:
Proceedings of the 16th International Conference on Fun-
damental Approaches to Software Engineering, FASE’13,
pp. 235–249. Springer-Verlag, Berlin, Heidelberg (2013)

42. Waez, M.T.B., Dingel, J., Rudie, K.: A survey of timed
automata for the development of real-time systems. Com-
puter Science Review 9, 1–26 (2013)

43. Yang, Z., Hu, K., Ma, D., Bodeveix, J.P., Pi, L., Talpin,
J.P.: From aadl to timed abstract state machines: A veri-
fied model transformation. Journal of Systems and Soft-
ware 93, 42 – 68 (2014). DOI https://doi.org/10.1016/
j.jss.2014.02.058. URL http://www.sciencedirect.com/

science/article/pii/S0164121214000727

44. Yang, Z., Hu, K., Ma, D., Pi, L.: Towards a formal se-
mantics for the aadl behavior annex. In: 2009 Design,
Automation Test in Europe Conference Exhibition, pp.
1166–1171 (2009). DOI 10.1109/DATE.2009.5090839

