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Abstract. Urban driving simulators, such as CARLA, provide 3-D envi-
ronments and useful tools to easily simulate sensorimotor control systems
in scenarios with complex multi-agent dynamics. This enables the design
exploration at the early system development stages, reducing high infras-
tructure costs and high risks. However, due to the high-dimensional input
and state spaces of closed-loop autonomous driving systems, their testing
and verification is very challenging and it has not yet taken advantage
of the recent developments in theory and tools for runtime verification.
We show here how to integrate the recently introduced rtamt library, for
runtime verification of STL (Signal Temporal Logic) specifications, with
the CARLA simulator. Finally, we also present the obtained results from
monitoring quantitatively interesting requirements for an experimental
Adaptive Cruise Control system tested in CARLA.

Keywords: autonomous driving · simulation · Signal Temporal Logic ·
runtime verification.

1 Introduction

Controllers design for autonomous driving systems is based, to a large extent,
on high-fidelity simulators, such as CARLA [7], for their validation in urban
driving scenarios with traffic intersections, pedestrians, street signs, street lights
etc. CARLA is a versatile simulator that supports multiple approaches of au-
tonomous driving, including a system decomposition into perception, planning
and control, as well as the training of autonomous systems with machine learn-
ing (ML) components. CARLA is continuously developed towards a richer set of
environment models, driving scenarios and ML use cases, but little is done for
providing adequate means of model evaluation. CARLA and similar simulators,
in their basic configuration, can export simulation traces to be further post-
processed. However, this is not enough to effectively validate simulated systems.

Recent advances in runtime verification render it a promising perspective, for
a multitude of reasons. First, closed-loop reachability analysis of control systems
is characterized by theoretical limitations [1], which render them inapplicable
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to real-scale industrial problems [9]. Second, runtime verification of simulation
traces allows validating systems in realistic urban driving scenarios with complex
dynamics between the traffic agents and the environment. Third, the runtime
verification of STL (Signal Temporal Logic) properties [11] enables systematic
design space exploration (e.g. through property falsification and parameter syn-
thesis) [4]. These analysis capabilities also open prospects for testing and veri-
fying the robustness of autonomous driving systems with ML components.

We present here the first step towards this perspective, i.e. the runtime verifi-
cation of STL properties for autonomous driving systems in CARLA. Specifically,
we have extended CARLA by integrating the rtamt library [12], for online run-
time verification of STL properties. rtamt supports the qualitative and quantita-
tive (property robustness) verification of STL specifications. This new tool com-
bination allowed (i) the design space exploration of an Adaptive Cruise Control
(ACC) system, with respect to various PID (proportional-integral-derivative)
control parameters and (ii) the quantitative verification of performance require-
ments that are necessary for an ACC system [14]. Our experimentation with the
CARLA model took place on a set of diversified scenarios, which guarantee that
the ACC system is effectively validated under realistic urban driving conditions.

Section 2 presents the CARLA simulator, its configuration and integration
with the rtamt library. Section 3 discusses the experimental results from our
ACC system. In Section 4, we review the related work and in the last section we
summarize the achievements and the future research prospects.

2 Online runtime verification of STL properties in
CARLA

CARLA is a driving simulation environment [7] built on top of the Unreal Engine
4 game engine. It features a variety of digital assets for urban driving scenar-
ios, including a sensor suite, various actors placed/moving on the map and the
capability to control them, as well as the simulated environmental conditions.

A simulation is composed of: (i) the CARLA Simulator that computes the
physics and renders the scene and all actor properties, (ii) client scripts written
using a Python API, to spawn actors, attach sensors to them and, then, retrieve
the sensor data, process them and compute the parameters needed by the con-
troller (throttle, brake and steering). Computed values are then sent back to
CARLA Simulator, thus forming an ever-running client-server interaction loop.

A client script consists of two parts:
– In the first part, connection with the CARLA Simulator is established, sen-

sors are attached to the controlled vehicles and the actors of the simulated
scenario are spawned or destroyed.

– The second part (Figure 1a) contains the control algorithm and the client-
server interaction loop. The client retrieves the simulated world (get world())
and the sensor signals, and then responds (via the carla.VehicleControl

object) with the vehicle control signals that are subsequently applied to the
Vehicle object (method apply control()).
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The simulated world, maintained by the server, has its own clock and time. The
time-step can be fixed or variable depending on the user preferences. CARLA
runs, by default, in asynchronous mode: the server runs the simulation, without
waiting for the client, which receives sensor data via a callback function that
is called whenever there is new sensor data. In synchronous mode, the client
imposes total control over the simulation and its information: the server waits
for a client tick (world.tick()), before updating to the next simulation step.

(a) (b)

Fig. 1: CARLA (a) main simulation loop, and (b) online monitoring

The time-step duration affects the computation of physics. As time progresses
and more variables are involved, the simulation may become imprecise. There-
fore, physics must be computed within time-steps not greater than 0.1 sec. An
important consideration is the reproducibility of simulation scenarios. This is
achieved using functions of the Python API that enable and stop a simulation
recorder. Then, the obtained file can be playback.

To inspect the actor behavior (e.g. location, velocity, acceleration), there are
client functions to access values at the latest tick. If the simulation runs in syn-
chronous mode (Figure 1a), data is stored in signals and it is reliable. For online
monitoring (Figure 1b), we use the synchronous mode with fixed time-step, en-
suring that the simulation time and physics will be in synchrony and the sensed
signals are reliable. There are, however, challenges regarding the properties that
can be monitored, since online monitoring is restricted to a single pass through
the simulation trace. To assess the performance of closed-loop autonomous sys-
tems, we need to be able to determine the satisfaction/violation of a property
specification based on a robustness degree function, i.e. a means to indicate how
far is the monitored trace from satisfying or violating a specification. This allows
to interpret the performance of the system design under various parameters, sce-
nario events (e.g. street signs) and environment perturbations, as opposed to the
binary pass/fail answer of qualitative verification, which is not very informative.
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We rely on the rtamt library [12] that generates online robustness moni-
tors from bounded-future STL specifications [11,4] that can express temporal
properties for continuous signals. Monitoring takes place through evaluating the
(equivalent) past STL specification, according to its quantitative semantics, in-
terpreted in discrete or dense time [6]. For a signal given as a sequence of (time,
value) pairs, rtamt computes at different instants how far is the signal from
satisfying or violating the property. When using discrete-time monitors, sensing
of inputs and output generation are done at a periodic rate, whereas dense-time
monitors compute the min and max of a numeric sequence over a sliding window.

Fig. 2: STL runtime verification of CARLA simulations with the rtamt library

Figure 2 shows how an rtamt monitor is integrated with a CARLA simula-
tion in synchronous mode and fixed time-step. The (time, value(s)) pairs with
data, for every car with the autonomous system enabled, are stored by the client
at each step. This requires monitoring events, like that the host (ego) vehicle
is behind another car. If these conditions hold true, the monitor’s update func-
tion computes the robustness measures from the signals. This is a non-intrusive
solution, since all computations take place, while the simulated time is frozen.

3 Experimental results for an ACC system

3.1 An experimental ACC system

ACC systems extend the functionality of conventional cruise control systems by
the capability to adjust the host vehicle’s velocity and assuring a safety distance
to the preceding vehicle through controlling its throttle and/or brake. A key
part of ACC is the range sensor, which is used to measure the distance from the
preceding vehicle. We use the CARLA obstacle detector that detects obstacles,
including vehicles, located within a specified distance from the host vehicle,
towards its traveling direction. The ACC system of the host vehicle is enabled,
when the preceding vehicle is too close (distance below a fixed threshold r) or
if it is moving slowly. In this case, the ACC controls the throttle and the brake,
in order to keep the distance higher or equal to the safety distance, which is
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dynamically calculated, as in Def. 1. In the absence of a preceding vehicle, the
velocity of the host vehicle is controlled by the CARLA server.

Definition 1. [13] A longitudinal distance between a car ch that drives behind
another car cp, where both cars are driving at the same direction, is safe w.r.t. a
response time ρ, if for any braking of at most abrakemax

, performed by cp, if ch
will accelerate by at most aaccelmax

during the response time, and from there on
will brake by at least abrakemin

until a full stop, then it won’t collide with cp.

Let vh, vp be the longitudinal velocities of the cars. Then, the safe longitudinal
distance between ch and cp is ([x]+ := max{x, 0}):

SD =

[
vh · ρ+

1

2
aaccelmax

· ρ2 +
(vh + ρ · aaccelmax

)2

2 · abrakemin

−
v2p

2 · abrakemax

]
+

In our case, ρ is equal to the time elapsed between two simulation steps, since we
the simulation runs in synchronous mode this is fixed and set to 0.05 seconds.

For aaccelmax
, abrakemin

and abrakemax
we parameterized the simulation model

using values from vehicle specifications by car manufacturers. The values used
are: aaccelmax = 5.4m/sec2, abrakemin = 2.9m/sec2, abrakemax = 9.8m/sec2.

The ultimate aim of ACC is to allow the host vehicle traveling with a velocity
vh at most equal to vp, lower than the road speed limit (imposed by CARLA),
while minimizing the distance d from the preceding vehicle, without violating
SD. The available time, before the two vehicles get closer than SD is:

timesafe =
d− SD
vh − vp

Thus, the target velocity vtar and target acceleration atar for the host vehicle to
have in next simulation sample (time-step) are:

atar =
min{vp, speedlimit} − vh

timesafe

vtar = vh + ρ · atar

Fig. 3: PID controller for the ACC system

The ACC function is driven by the PID controller of Figure 3, which computes
the needed throttle and brake based on vtar and the actual velocity (vh). The PID
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controller continuously calculates an error value e(t), as the difference between
the desired set point (in our case vtar) and a measured process variable (vh), and
applies a correction based on three terms, namely the proportional, the integral,
and the derivative (denoted respectively by P, I and D). In practice, the PID
controller applies a responsive correction to the controlled function.

3.2 Design space exploration w.r.t. PID parameters

When designing a PID controller, it is important to understand how to improve
the system’s performance. As a rule of thumb, by increasing the proportional
gain (KP ) we achieve a proportional increase of the control signal for the same
level of e(t). In this way, the system reacts more quickly, but it tends to exceed
its target more (overshoot). The parameter of derivative control (KD) affects
the capability of damping, which is important to decrease overshoot. The value
of integral parameter (KI) affects the capability to limit the steady error, but
the system may become more sluggish and oscillatory, if it is not properly tuned.

Our runtime verification approach can help to adjust the gains KP , KI , and
KD with the aim to eventually achieve a satisfactory overall response. We present
here the experimental results obtained for two different sets of parameter values:

KPA
= 1, KIA = 1, KDA

= 0.0005

KPB
= 2, KIB = 0.01, KDB

= 0.4

Since the primary aim of the ACC system is to keep the safe distance from the
preceding vehicle, we evaluate the requirement,

R := d− SD > 0

in order to find the parameter set that seems to be more appropriate. For the
runtime verification of R and for all other experiments that are reported hence-
forward, we employed the rtamt library to generate discrete-time monitors that
were integrated with the CARLA simulation of our ACC system.

Figure 4 shows the robustness of R, when monitoring similar driving scenarios
with the two mentioned sets of parameters (A and B). These scenarios refer to the
route of two cars moving one behind the other in the CARLA urban environment
with junctions, stop signs and traffic lights. While following the same route, the
scenarios differ slightly with respect to the duration of the red traffic lights.

In Figure 4a, no robustness value is shown in specific simulation steps, when
the preceding vehicle was too far and the ACC of the host vehicle was disabled.
For parameters KPA

,KIA ,KDA
, R is strongly violated, when the cars stop at

the second traffic light, and it is violated, for more than 300 steps, while waiting
for the green traffic light. For KPB

,KIB ,KDB
(Figure 4b), R is slightly violated

at the same instant, but the system adjusts quickly and the host vehicle stops at
the traffic light maintaining the safety distance. By simulating more similar sce-
narios, we found that R is violated for KPA

,KIA ,KDA
at the second traffic light

and every next time the vehicles stop for a long period. The problem vanishes
for KPB

,KIB ,KDB
that was chosen for the experiments reported hereafter.
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(a)

(b)

Fig. 4: Robustness of R for (a) KPA
,KIA ,KDA

and (b) KPB
,KIB ,KDB

A more detailed view of the same scenario, extended by additional steps, is
shown in Figure 5. These graphs show the distance between the two vehicles
and how it compares with the safety distance (Figure 5a), and their velocities
(Figure 5b). We observe that in a stop signal, the host car stops when the
preceding has already left and similarly in a traffic light, the vehicles stop and
start moving with a time difference. In Figure 5a, we see that d gets closer to
SD, as the PID controller adjusts by using more historic data.

3.3 Requirements for an ACC system

According to [14], any ACC system has to fulfill the following performance re-
quirements, in order to be used in public roads:
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(a)

(b)

Fig. 5: Distance (a) between host and preceding vehicle and (b) their velocities

R1. Relative difference vp−vh should not be too high, except when the preceding
vehicle is out of range or the host vehicle has decelerated, due to a stop signal
or a red traffic light, while the preceding vehicle is moving ahead.

R2. Acceleration of the host vehicle (ah) must be greater than or equal to G,
except if the preceding vehicle’s acceleration (ap) is less than this limit,

G := −0.25 · Thw+1
m

with m the vehicle’s mass and Thw a constant time headway, i.e. the distance
between the two vehicles in time expressing the degree to which the safety
distance varies proportionally to the vehicles velocity (spacing policy).

The STL property for the first mentioned requirement is:

R1 := vp − vh < c ∨ d > r ∨ stoppedh
where c is a threshold for the relative difference between velocities, r is the
distance threshold under which the ACC system is enabled and stoppedh is
true, when the host vehicle decelerates, due to a stop signal or a red traffic
light. We set the threshold for the difference between the velocities c = 1.5m/s.

The STL property for the R2 requirement is (�− is the historically operator):
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(a)

(b)

Fig. 6: Robustness of requirement (a) R1 and (b) R2

R2 := ah ≥ G ∨ �− [0:t]ap < G

where [0 : t] is the time interval for the host vehicle to adjust its acceleration
back to normal, after an extreme deceleration of the preceding vehicle.

Figure 6a shows the robustness of R1 for the scenario of Section 3.2. We
observe violations after stop signals and green traffic lights. In stop signals,
when the host vehicle stops, the preceding has already moved ahead, causing an
excessive difference in velocities. When a traffic light turns to green, the host
vehicle needs more steps to start accelerating and the velocities difference is also
increased. These performance perturbations, due to usual driving incidents, do
not invalidate our system. R1 is satisfied and robustness raises as time proceeds,
showing that the ACC adjusts to acceleration changes of the preceding vehicle.

Figure 6b shows the robustness of R2 for the same scenario. In this experi-
ment, we have set Thw = 1.5 sec, t = 3 and m = 1200 kg (mass of “Seat Leon”
that is the host vehicle in our experiments). The ACC fulfills the requirement,
although the robustness in some steps is low (host vehicle’s acceleration is close
to G). By increasing/decreasing Thw we could find the lowest time headway that
still fulfills R2 or a higher time headway, for which the robustness is increased.



10 Zapridou et al.

4 Related work

In contrast with other systems, automotive control systems exhibit complex
behaviors that are difficult to anticipate at design time. Their performance re-
quirements typically arise out of test driving scenarios.

The VerifAI toolkit [8] analyzes simulation traces (also from CARLA) of
systems with ML components. It has a wider scope from our work, aiming to
address the absence of specifications for perception components, the analysis of
ML components and environment modeling (e.g. distribution assumptions made
by ML components). It works through offline monitoring system-level properties
in Metric Temporal Logic (MTL) [2]. Monitors can output falsifying traces and
a feedback to direct sampling to find falsifying scenarios. Such an analysis may
be also possible in our case, since rtamt can be easily used for offline monitoring.

Through simulation-based analysis, we can also identify behaviours that can
be then captured as requirements. In [10], a set of automotive behavior classes
is identified that control engineers typically want to avoid (ringing, excessive
overshoot, slow response time, steady state error etc.) and a library of signal
templates for STL is proposed, such that it will be easier to specify STL re-
quirements that exclude them. These requirements are easier to be checked over
simulation traces produced by a Simulink model of the system under design,
whereas for our ACC requirements (adopted from [14]) in Section 3.3, we advo-
cate their validation over realistic driving scenarios generated by CARLA.

Worth to mention are the S-TaLiRo [3] and Breach [5] tools, for sensitiv-
ity analysis and falsification testing over Simulink traces. Sensitivity analysis
of model robustness to STL requirements is based on uniformly varying model
parameters, whereas falsification looks for an input signal that violates a require-
ment. Another interesting prospect is the requirements-driven testing [15].

5 Conclusion and future research prospects

We presented an approach for integrating CARLA simulations with runtime
monitors generated by the rtamt library1. Our proposal enables the validation
of autonomous driving control by online monitoring STL specifications over re-
alistic driving scenarios. We believe that this is a means for design space explo-
ration and has the potential to uncover undesired behaviours or check important
performance requirements. We showed the results from applying our approach,
in order to find appropriate parameters for the PID control of an experimental
ACC system and for checking it against important performance requirements.

Our work is a first step towards additional contributions that will allow
testing and verification of autonomous driving systems with ML components.
CARLA already supports the simulation of such systems, but we need to fur-
ther develop our approach towards automating property falsification, parameter
synthesis, sensitivity analysis and systematic scenario testing.

1 The CARLA client scripts for our ACC system with the integrated rtamt monitors
can be accessed online at http://depend.csd.auth.gr/software/carla

http://depend.csd.auth.gr/software/carla
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